Automating HPLC Peak Detection using Convolutional Neural Networks

Document Type

Conference Proceeding

Publication Date

4-2019

Abstract

Visually detecting peaks in LC-MS chromatograms is a straightforward task for humans, but biases and pattern recognition skill variability cause problems with reproducibility. Algorithmic review of clinical raw data without human intervention solves this but is difficult. Existing algorithms model and fit peaks within a semi-automated workflow. To increase confidence in the results, we propose an independent algorithm that uses raw chromatograms as input and classifies peaks using a convolutional neural network, similar to those used for image-based diagnostics. It classifies chromatograms as either peak, no-peak, high-intensity-no-peak, or small-peak, obtaining accuracies of 88.8% overall, 97.1% on non-peaks, and 93.8% on peaks, on 2.3 million chromatograms

Comments

Abstract is on page 62 of the program.

External Access URL

https://www.msacl.org/eProgram/MSACL2019US_eProgram.pdf#page=62

Share

COinS