Document Type

Article

Publication Date

6-1993

Abstract

Difference equations for Hamiltonian systems are derived from a discrete variational principle. The difference equations completely determine piecewise-linear, continuous trajectories which exactly conserve the Hamiltonian function at the midpoints of each linear segment. A generating function exists for transformations between the vertices of the trajectories. Existence and uniqueness results are present as well as simulation results for a simple pendulum and an inverse square law system.

Comments

MSTR 93-05

Share

COinS