Abstract
The discovery of elliptic functions emerged from investigations of integral addition theorems. An addition theorem for a function f is a formula expressing f(u+v) in terms of f(u) and f(v). For a function defined as a definite integral with a variable upper limit, an addition theorem takes the form of an equation between the sum of two such integrals, with upper limits u and v, and an integral whose upper limit is a certain function of u and v.In this paper, we briefly sketch the role which the investigation of such addition theorems has played in the development of the theory of elliptic intgrals and elliptic functions.
Faculty Sponsor
Aihua Li
Recommended Citation
Barrios, Jose
(2009)
"A Brief History of Elliptic Integral Addition Theorems,"
Rose-Hulman Undergraduate Mathematics Journal: Vol. 10:
Iss.
2, Article 2.
Available at:
https://scholar.rose-hulman.edu/rhumj/vol10/iss2/2