Abstract
We consider generalizations of the honeycomb problem to the sphere S2 and seek the perimeter-minimizing partition into n regions of equal area. We provide a new proof of Masters' result that three great semicircles meeting at the poles at 120 degrees minimize perimeter among partitions into three equal areas. We also treat the case of four equal areas, and we prove under various hypotheses that the tetrahedral arrangement of four equilateral triangles meeting at 120 degrees minimizes perimeter among partitions into four equal areas.
Faculty Sponsor
Frank Morgan
Recommended Citation
Quinn, Conor
(2007)
"Least-Perimeter Partitions of the Sphere,"
Rose-Hulman Undergraduate Mathematics Journal: Vol. 8:
Iss.
2, Article 11.
Available at:
https://scholar.rose-hulman.edu/rhumj/vol8/iss2/11