Abstract
The focus of this paper lies at the intersection of the fields of tropical algebra and graph theory. In particular the interaction between tropical semirings and directed graphs is investigated. Originally studied by Lipvoski, the directed graph of a ring is useful in identifying properties within the algebraic structure of a ring. This work builds off research completed by Beyer and Fields, Hausken and Skinner, and Ang and Shulte in constructing directed graphs from rings. However, we will investigate the relationship (x, y)→(min(x, y), x+y) as defined by the operations of tropical algebra and applied to tropical semirings.
Faculty Sponsor
Mike Janssen
Recommended Citation
Zonnefeld, Caden G.
(2021)
"Directed Graphs of the Finite Tropical Semiring,"
Rose-Hulman Undergraduate Mathematics Journal: Vol. 22:
Iss.
1, Article 4.
Available at:
https://scholar.rose-hulman.edu/rhumj/vol22/iss1/4