Abstract
The Euclidean Steiner Tree Problem (ESTP) involves creating a minimal spanning network of a set of points by allowing the introduction of new points, called Steiner points. This paper discusses a variation on this classic problem by introducing a single Steiner line‚ whose weight is not counted in the resulting network, in addition to the Steiner points. For small sets, we arrive at a complete geometric solution. We discuss heuristic algorithms for solving this variation on larger sets. We believe that, in general, this problem is NP-hard.
Faculty Sponsor
Sam Vandervelde
Recommended Citation
Holby, Jack
(2017)
"Variations on the Euclidean Steiner Tree Problem and Algorithms,"
Rose-Hulman Undergraduate Mathematics Journal: Vol. 18:
Iss.
1, Article 7.
Available at:
https://scholar.rose-hulman.edu/rhumj/vol18/iss1/7