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Baskar, Deepak Charles
M.S.O.E.
Rose-Hulman Institute of Technology
May 2018
Gain Modeling of Erbium-Doped Fiber Amplifiers Pumped at 980 nm
Thesis Advisor: Dr. Sergio Granieri
Erbium-Doped Fiber Amplifiers (EDFA) are one of the most widely used optical amplifiers in the field of optical communications and fiber lasers. Theoretical models based on the rate equations, therefore, were developed to predict the performance of such amplifiers. The goal of this thesis is to provide a numerical model for EDFAs and verify its validity through experimental measurements. Two computer programs based on two different numerical methods (the Finite Difference method and the 4th Order Runge-Kutta Method) to solve differential equations were written. The different fiber parameters to build the model including absorption and emission cross-sections and scattering losses were experimentally determined. Two different optical amplifiers were built using different lengths of doped Erbium fiber. Experimental output signal optical power and gain of the two amplifiers were measured for different values of input signal power and pump power. These results were predicted by the numerical model with a considerable degree of accuracy. 
Keywords: Numerical models, Erbium-Doped Fiber Amplifier, finite difference method
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[bookmark: _Toc514251701]A Brief History of Rare-Earth-Doped Fibers Amplifiers
Doped fiber amplifiers are a type of optical amplifier that use rare earth metals like Erbium and Thulium to provide the medium for the stimulated emission that amplifies the input optical signal. The first doped fiber amplifier was a Neodymium-doped fiber operating at 1.06 um devised by E Snitzer, in 1964 [1].
This work lay dormant after a demonstration of its abilities until the advent of silica glass fibers that could be used for telecommunications. [2] Almost a decade later, rare-earth-doped lasers were inspected as a possible device for transmission purposes. [3] In 1983, single mode rare-earth-doped fibers were exhibited by Broer and Simpson at Bell Laboratories. [4] The fiber was doped with Neodymium at a concentration of 10ppm, and it helped in the study of the relaxation mechanisms of rare-earth ions in an amorphous medium. 
A few years later, the development of fiber amplifiers occurred because of improvements to fabrication techniques. [5] Erbium-doped fiber amplifiers were fabricated simultaneously by both AT&T Bell Laboratories and the University of Southampton. [2] The key advancement here was the identification of the Er3+ ion for its ideal transition wavelengths. This triggered research into these fibers, and it became the catalyst to develop a new generation of transmission networks. In the present day, fiber amplifiers are essential to the transmission with massive undersea cables and networks being a good example of how integrated into our lives it has become. 
[bookmark: _Toc514251702]Motivation for this thesis
The widespread usage of fibers in optical communication required characterization of the fibers. Therefore, theoretical models were developed based on existing optical theory and these models most often involve complex differential equations, even if the amplifier was operating under ideal conditions. 
The computational intensity of such models was high with regards to the performance of existing computers. Pedersen et al. mention [6] that they would have to solve 402 coupled differential equations to solve just the four equations that describe the power and the noise along the length of the fiber. This is excluding the 40 steps that they had to consider for the optical mode of the fiber. This meant that the rate equations had to be computed for 40 separate points. 
There is a huge level of computation required for this, and therefore it can be extrapolated that some level of approximation had to be done to make sure that the results were obtained in time. This thesis attempts to recreate the models that were proposed during the rise in popularity of fiber amplifiers. It follows the model that Pedersen et al. [6] describe closely. This model is in itself a reduction of a model that Desurvire and Giles present in [7]. 
Considering the advancements in computation and programming since the early 90’s, the researcher hoped that any inaccuracies that were inherent to older means of computation could be overcome. The goal of this thesis is to model an Erbium-Doped Fiber Amplifier accurately which would then be used to model a fiber Q-switched laser with a saturable absorber.
[bookmark: _Toc514251703]Organization of the Thesis
The thesis is presented in the following manner:
Chapter 2 deals with the theory needed to understand the working of laser amplifiers. The atomic rate equations and the equations that describe the power and the population density in the fiber are derived based on the information and theory mentioned by Pedersen et al. in [6] and Giles and Desurvire in [7]. 
Chapter 3 deals with the process of building the model using MATLAB, the mathematical theory behind the solution of the equations described in Chapter 2 and the difficulties that were faced while programming. The chapter describes two of the techniques used to solve the coupled differential equations that were derived in Chapter 2, the adjustments to the code, and then shows the testing of the model with data from papers that performed simulations. 
Chapter 4 involves experiments conducted to characterize both the fiber and the total system that is built. It includes a verification of the data procured from the vendor. 
Chapter 5 deals with experiments conducted with the fiber when it works as an amplifier. This chapter describes how the final experiments were conducted, the issues faced, and a showcase of the simulated results for different lengths of the fiber. 
The conclusion and future work sections deal with possible adjustments that can be made to the code and possible additions to the code with regards to non-linear optical effects that were excluded from this model and possible tweaks that could be done to make the model more accurate. 
[bookmark: _Toc514251704]THEORY OF ERBIUM-DOPED FIBER AMPLIFIERS
[bookmark: _Toc514251705]Derivation of the Equations
A three-level laser system is the standard model for Erbium-Doped Fiber Amplifiers (EDFAs).  There are two possible three-level configurations.  The first configuration, as shown in Figure 2-1 has the first level as the ground state, the third level as the short-lived excited state or the pump state, and the second level as the metastable state, which is characterized by the lifetime τ. Another three-level system that exists has the metastable state as the third level instead of the second [8]. Since the former system corresponds to the case of the Er3+ ion, it is used for the model. 

[bookmark: _Ref508703946][bookmark: _Ref508703640][bookmark: _Toc514251796]Figure 2‑1: Er3+ 3-Level System with 980nm pump
The lifetime τ typically is a few milliseconds, while the decay rate from the short-lived excited state is extremely low, most often about 10-8 seconds. Therefore, the three-level system can be approximated by a two-level system, as shown in Figure 2-2.

[bookmark: _Ref508704106][bookmark: _Ref508703775][bookmark: _Toc514251797]Figure 2‑2: Er3+ 3-Level System with both 980nm pumps and ‘two’ levels
To derive a list of equations that would characterize the two-level system depicted in Figure 2-2, the following terms used in the equations must be defined. The subscript ‘p’ defines any rate for the pump laser, while the subscript ‘s’ is for any signal laser and to differentiate the two further, the letter ‘R’ is used in any instance of rates involving the pump, while ‘W’ is used for rates linked to the signal. Since there are two types of transitions that can happen, they are also defined by the appropriate subscripts; ‘a’ for absorption, and ‘e’ for emission. 
Therefore, we can write the transitions as follows:
Rpa: Pump absorption rate from level 1 to level 2
Rpe: Pump emission rate from level 2 to level 1
Wsa: Stimulated absorption rate from level 1 to level 2
Wse: Stimulated emission rate from level 2 to level 1
and we define Ae as the spontaneous emission rate (which occurs from level 2 to level 1). The population density at level 1 is defined by  while the density at level 2 is defined as . The total density of the Erbium ions is given by . 
[bookmark: _Toc514251706]Derivation of the Population Equation
The equations for the population density of both the energy levels can be derived from the rates. The reduced two-state model is considered for this derivation. The atomic rate equations with respect to the two population levels can be written as follows:
	
	
	2‑1
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Equation 2-1 is evaluated in the steady-state regime where the rate is zero. Therefore, 2-1 can be equated to zero which lets the equation be rearranged as follows:
	
	
	2‑3


Factoring out  and  from 2-3 and rearranging the resultant equation, the following expression for  can be obtained:
	
	
	2‑4


Now, using the above expression in 2-2 will result in an expression for  in terms of the rates after simplification as seen in 2-5:
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An expression for  can be obtained by using 2-2 and 2-5to obtain the expression below:
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Equations 2‑5 and 2‑6 together define the population density at steady state. They are used in the coupled differential equations that define the pump and the signal powers. This thesis uses the approach that Pedersen et al. use in [6]. The next section derives these equations along with the expressions for Amplified Spontaneous Emission. 
[bookmark: _Toc514251707]Derivation of the Coupled Differential Power Equations
This section will closely follow the equations described in [6]. The various pump and signal absorption and emission rates must first be defined. The pump absorption rate is defined as follows: 
	
	
	2‑7


where σpa is the absorption cross-section at the pump wavelength, is the pump power at ‘’,  is Planck’s constant,  is the pump frequency and is the normalized pump LP01mode that satisfied the following equation. 
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Similarly, the emission rate for the pump can be defined:
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In the case of this thesis, the pump laser operates at 980 nm. Therefore, the emission cross-section for the pump is considered to be zero, and so Rpe is zero. The same absorption and emission cross-sections can be defined for the signal wavelength as well. These rates, however, will include the effect of Amplified Spontaneous Emission (ASE):
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where σe(ν) and σa(ν) are the emission and absorption cross-section while νs is the signal laser frequency. SASE(ν,z) is the amplified spontaneous emission spectral density at position ‘z’. The spontaneous emission is amplified in both the forward and backward directions. Therefore, SASE(ν,z) has to be determined from the backward, and the forward traveling amplified spontaneous emission spectrum:
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The absorption and emission factors are determined from the overlap integral between the signal mode and the population density of the ground and the excited states respectively:
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where ad is the Erbium doping radius. Therefore, the signal power amplified in the forward direction is given by 
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And similarly, the pump power in the forward direction is given by:
	
	
	2‑17


[bookmark: _Toc514251708]Amplified Spontaneous Emission
Spontaneous Emission is a phenomenon present in all optical amplifiers. There is the possibility that any ion in the excited state could spontaneously decay to the lower energy state by emitting a photon that is not coherent with the photons emitted via a stimulated process. 
It can be understood that the phenomenon exists in fiber amplifiers as well. The original spontaneous photon can cause emission of photons that are coherent with itself and not the main signal. This can occur within the entire signal bandwidth and therefore can cause a drastic reduction in gain. It is referred to as Amplified Spontaneous Emission or ASE with regards to EDFAs since the spontaneous emission evolves along the entire length of the fiber, both in the forward and the backward directions. This, therefore, means that the ASE can also be defined by a set of coupled equations, 2-12 and 2-13. 
[bookmark: _Toc488053932]

[bookmark: _Toc514251709]Assumptions
The equations used by Pedersen et al. is based on certain assumptions which have been adopted. They are:
It assumes that pumping is done at 980nm which would mean that the emission cross-section for the pump is zero, as mentioned earlier when deriving the coupled differential equations. 
There is negligible Excited State Absorption while modeling. 
Other non-linear optical effects, like two-photon absorption, non-linear dispersion are assumed to be negligible.
[bookmark: _Toc488053924][bookmark: _Toc514251710]Bessel functions
The mode for the fiber is simply defined as a normalized LP01 mode in [6]. This is insufficient to model the fiber accurately, and therefore we use the equations that Giles and Desurvire use in [7] to model the fiber mode:
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J0,1 and K0,1 are the Bessel and modified Bessel functions, V is the Fiber Number, and the variables u, and v are defined based on the value of V, and r is the radius of the fiber. The V number is given by the equation where λk is the chosen wavelength:
.
If V lies between 1 and 3, u and v can be approximated as [8]
 
. 
The calculation requires knowledge of the index of refraction of both the core and the cladding of the fiber and the numerical aperture is used in the code in the place of the refractive index expression. This mode is normalized and therefore  still holds. 
[bookmark: _Toc514251711]Methods to ascertain Cross-Sections
There are a handful of theoretical and experimental techniques that help in the determination of the absorption and emission cross-sections, of which this thesis will detail three. 
Fuchtbauer Landenberg Analysis:
This theoretical analysis is based on the Einstein Coefficients. It is agreed that the analysis over-estimates the cross-sections by up to 50%. 


Gain-Loss measurements and Saturation Power measurements:
Gain-Loss measurements help in determining the ratio between the emission and absorption cross-sections. 
The Saturation Power measurements independently measure the absorption cross-section and so, with the aid of the previous measurements, the emission cross section can be determined. 
McCumber Theory:
This theory is added only for the sake of completion as it is by far the most accurate. 
[bookmark: _Toc514251712]Fuchtbauer-Landenberg Analysis
The Fuchtbauer-Landenberg analysis uses equations derived from the Einstein relations for the A and B coefficients for a two-level system. [10] This thesis will conduct the experiment using this analysis.
The analysis assumes that 
The ratio between the cross-sections is equal to the ratio between the effective linewidths. 
The population of the ions on the Stark Levels is nearly equal. The field correlation factors for g1 and g2 manifolds must be identical.
There is no inhomogeneous broadening. 


The equations for cross-sections can be written as follows [10]:
The emission cross-section:
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The absorption cross-section:
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Here, λ is the wavelength of peak emission or absorption, g(ν) and g’(ν) are the respective line shape functions, μ is the refractive index, g1 and g2 are the level degeneracies while A21 is the Einstein coefficient, the spontaneous decay rate. If there is no non-radiative decay,  where τfl is the fluorescence lifetime of the fiber. The lineshape function is given by:
	
	


The effective linewidth is defined because the lineshape function is complex:
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The lineshape now can be given by:
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Now, the two cross-section equations can be re-written as 
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At this point, the ratio between the two cross-section equations is computed to give an expression that can be used in the analysis. The level degeneracies are given by 2J+1 where J is the angular quantum number. For the higher level, i.e., 4I13/2, the degeneracy is 7, while it is 8 for the lower level. Since the medium is silica, the bandwidths already have the effect of degeneracy built into them. Therefore, the ratio is given by:
	
	
	2‑26


Barnes et al. measure fluorescence lifetimes with three sets of fibers in [10]. The fibers have a higher concentration of Erbium ions, thus avoiding issues with quenching. They use short lengths of the fiber and pumped it with 800nm lasers and obtained fluorescence data and the spectral response. Absorption data for both the signal and pump bandwidths are obtained by using the Cutback technique. The linewidths may be calculated from Eqn. 2‑22 which is used to calculate the cross-sections. These results that Barnes et al. obtained in [10] are shown below in Table 2.1
[bookmark: _Toc514251848]Table 2‑1 Results of the Fuchtbauer-Landenberg Analysis for different fiber types in [10]
	FIBER TYPE
	ABSORPTION CROSS-SECTION (x1025 m2)
	EMISSION CROSS-SECTION (x1025 m2)

	GeO2-SiO2
	7.9
	+0.8
	6.2
	+0.6

	
	
	-0.5
	
	-0.3

	Al2O3-SiO2
	5.6
	+0.3
	4.7
	+0.3

	
	
	-0.2
	
	-0.2

	GeO2-Al2O3-SiO2
	5.8
	+0.3
	4.9
	+0.3

	
	
	-0.2
	
	-0.2


The Fuchtbauer-Landenberg analysis has some issues with accuracy on account of the aforementioned assumptions. 
It can only be applied when the population of the different Stark levels is close in value. But in reality, this condition does not hold because of the effect of erbium doping in silica glass. The equations hold as long as the ΔE ≪ kBT or even when 
ΔE ≅ kBT, where ΔE is the total Stark Splitting Energy. But in silica glass doped with Er3+ ions, ΔE > 2kBT and so the condition is not satisfied. This causes the Stark levels to have an unequal population which causes the probability of transition to be different and therefore the analysis does not result in accurate results.
The local field correlation factors for J and J’ must be identical but it is not. [8]
Inhomogeneous broadening exists and weights the probability of transition. 
[bookmark: _Toc514251713]Gain-Loss and Saturation Power Measurements
In the Gain-Loss measurement analysis, the assumption taken is as follows:
Concentration does not vary radially as well and does not vary along the entire length of the fiber
The terms used in this analysis is defined below: 
W13 is the pump rate
τ is the radiative lifetime
nT is the concentration of Er3+
The pump power to achieve bleached condition (no gain/no loss) is Pth
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The pump rate for the bleached condition is given by  and so (2-25) can be rewritten as



Setting R=P/Pth and (nT*l*σE) as Gmax, the equation can be written as shown below, if expressed in terms of decibels. 
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In Equation 2‑28, the value of σe/σa is set to 1, and then G is predicted after the value of Gmax is obtained from the experimental data. Lmax is the loss when the fiber is not pumped, and the ratio between Gmax and Lmax provides the value for the ratio of the cross-sections for the next iteration. As the value of R increases, the accuracy increases and this can be seen from the graph that details the gain-loss data. 

[bookmark: _Toc514251798]Figure 2‑3 Recreation of Gain/Loss data plotted against P/Pth [10] 
The ratio converges to give a better value for the ratio of the cross-sections because it does not assume as many criteria as the Fuchtbauer-Landenberg analysis. This can be clearly seen from the comparison of the ratios of the cross-sections [10].
[bookmark: _Toc514251849]Table 2‑2 Cross-Section Ratio Comparison [σE/σA]
	FIBER TYPE
	Fuchtbauer Landenberg Method
	Spectroscopic Measurement

	GeO2-SiO2
	0.7848
	1.28±0.13

	
	
	

	Al2O3-SiO2
	0.8392
	1.20±0.11

	
	
	

	GeO2-Al2O3-SiO2
	0.8448
	1.17±0.10

	
	
	


In Saturation Power measurements, the population of an infinitesimal section of the fiber can be written as:

W13 = 1/τ is the rate that is needed to get an inversion of . The stimulated rate between two levels ‘i’ and ‘j’ is given by:

where  is the cross section of the transition, is the optical power, is the photon energy, and A is the area of the segment.
The saturation power, the power required to reach half inversion, is given by:

In [10], the fluorescent power is measured as a function of the input pump power, in a similar vein to the gain/loss measurement exercise, only the graph is plotted with the x-axis being the input pump power. The saturation power can be used to find the absorption cross-section at the pump wavelength, which can then be used to determine the absorption cross-section at the signal wavelength by using the information about the spectral attenuation at different bands. The absorption cross-section at the pump wavelength is shown below:
[bookmark: _Toc514251850]Table 2‑3 Pump Absorption Cross-Sections as obtained by Barnes et al.	[10]
	FIBER TYPE
	CROSS-SECTION (x1025 m2)

	GeO2-SiO2
	2.52
	+0.03

	
	
	-0.03

	Al2O3-SiO2
	1.9
	+0.3

	
	
	-0.3

	GeO2-Al2O3-SiO2
	1.7
	+0.3

	
	
	-0.3



The absorption cross-section at 980 nm can then be used to extrapolate the absorption cross-section at the 1500 nm bandwidth, which then can be used to calculate the emission cross-section. This is tabulated in Table 2-4:


[bookmark: _Toc514251851]Table 2‑4 Emission and Absorption Cross-Sections, as derived using the Saturation Method [10]
	FIBER TYPE
	ABSORPTION CROSS-SECTION (x1025 m2)
	EMISSION CROSS-SECTION (x1025 m2)

	GeO2-SiO2
	6.7
	+0.3
	7.9
	+0.2

	
	
	-0.3
	
	-0.2

	Al2O3-SiO2
	4.4
	+0.6
	5.1
	+0.6

	
	
	-0.6
	
	-0.6

	GeO2-Al2O3-SiO2
	4.4
	+1.0
	4.7
	+0.8

	
	
	-1.0
	
	-0.8


[bookmark: _Toc514251714]McCumber Relation
The McCumber Relation is a relation between the emission and absorption cross-section that is used in McCumber’s theory of phonon-terminated optical masers [8]. This relation is given as:

where hϵ represents the thermodynamic free energy required to move an Erbium ion from the lower energy level to a higher one while the lattice temperature is constant. The expression for the free energy involves knowing the energy differences between the Stark sublevels with respect to the lowest energy level in the corresponding manifold:



Since the Stark energies are not easy to calculate, two approaches can be taken with the McCumber Relation:
An average separation is assumed between the Stark sublevels
The phenomenological values of λpeak, ηpeak is used to calculate the value of free energy
Since the first assumption still requires computation of energies, the second assumption is studied. In this situation, the peak wavelength and the ratio between the cross-sections are used to calculate the free energy as given by the following equation:

Therefore, the MC relation can be written as follows:

where νpeak is the frequency at λpeak. 
It is shown in [8] that the McCumber relation produces results that are accurate to a very high degree. 
[bookmark: _Toc514251715]COMPUTATIONAL MODELING
[bookmark: _Toc488053925][bookmark: _Toc514251716]Modeling
There are a multitude of ways to solve coupled differential equations. The coupled differential equations this thesis attempts to solve are too complex to solve with the inbuilt functions that MATLAB possesses, and so, the model is hard-coded. As mentioned earlier this will later be incorporated into the program that models the laser cavity. 
Two basic approaches exist for solving differential equations. They can be solved either analytically or numerically. When the equations in Pedersen et al. use in [6] are attempted to be solved analytically, it leads to a complicated set of equations, even under zero-input conditions. Therefore a numerical approach is chosen with three distinguishable attempts in hard-coding the solutions to the equations. 
The first one is an iterative method that attempted to ‘step’ through the fiber to compute the power at the next ‘step’ by using the parameters at the current ‘step.’ This attempt is a rudimentary form of the finite difference method, and therefore it did not work. So, the two established numerical methods are chosen instead. 
4th Order Runge-Kutta Method
Finite Difference Method
The finite difference method is a derivation from Taylor’s theorem while the 4th Order Runge-Kutta method is one of the Runge-Kutta family of numerical methods. Both methods have their advantages and disadvantages which will be discussed in the following subsections. 
[bookmark: _Toc488053928][bookmark: _Toc488053926][bookmark: _Toc514251717]Finite Difference Method
The finite difference method, a derivation from Taylor’s theorem, is a technique to solve differential or partial differential equations. The assumption made is that the function in question can be expanded as a Taylor’s series. If the function can indeed be expanded as a series, the formula for the finite difference method can be derived as follows. The function is first written in the form of a Taylor’s series. 

If the step size is small enough, the value of the higher order differential terms can be assumed to be very small and thus, everything except the first two terms can be discarded. 
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Solving for f’(x0) the expression or the finite difference method is obtained. 
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The finite difference method inherently involves a truncation error because the higher order terms are neglected. The other error that can arise in the result is directly proportional to the step size ‘h.’ The accuracy of this method is highly dependent on the value of ‘h’ and the number of differential terms that can be used in the equation and therefore, a smaller step size would increase the accuracy. At this junction, it is worth mentioning that the step size chosen in the final version of the program is 1 millimeter. 
[bookmark: _Toc514251718]4th Order Runge-Kutta Method:
The 4th order Runge-Kutta method is the most widely known of the Runge-Kutta methods. It’s an iterative numerical method that attempts to predict the next value based on a weighted average of four ‘jumps’ that it calculates. The equations for the 4th order Runge Kutta method are: 
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where

[bookmark: _Toc488053929]The advantage that the Runge-Kutta method has over the Finite Difference method is the quicker convergence that it offers at the cost of its complexity. 
[bookmark: _Toc514251719]MATLAB Coding
[bookmark: _Toc514251720]Finite Difference Method
The Finite Difference method is chosen because of its simplicity. The algorithm of the method lends to a very linear execution meaning that the values of the variables can be extracted at any point during the execution which makes debugging incredibly easy. 
The algorithm is hard coded because all the in-built ODE functions (such as ode23 or ode45) that MATLAB uses are based on the Runge-Kutta equations. This code is developed in concurrence with the code that used the Runge-Kutta method. 
Both 32-bit and 64-bit versions of MATLAB are used and initial tests using the 32-bit version of MATLAB failed. This is caused by the length of the fiber chosen in the analysis that Du et al. conduct in [11]. Since the step size is 1mm and the length of the fiber is 60m, the size of each of the variables caused a memory overflow. 

[bookmark: _Toc514251799]Figure 3‑1 Flowchart describing execution process for Finite Difference Method based MATLAB code
The memory overflow is solved by using a 64-bit version of MATLAB. Initial testing is done using a flat mode for the fiber which is updated to a Bessel mode as mentioned in Section 2.2.1 with the equations used from [7]. While both the developed programs are added in the appendix, it is prudent to discuss some of the sections of the code here. 


[bookmark: _Toc514251800]Figure 3‑2 Code snippet that shows the computation of MFD for both pump and signal lasers in the un-doped and the doped fibers
The code snippet in Figure 3-1 is a section from the “Mode Mismatch Calculation” block in the flowchart. In this snippet, the mode field diameters (MFD) of both the pump and the signal lasers are calculated, both in the SMF-28 and the Er110 fibers. This helps in computing the Mode Mismatch Loss which will be discussed in detail in Chapter 4. The loss arises because the light from the first fiber is not coupled into the second fiber owing to the mismatched MFDs. 


[bookmark: _Toc514251801]Figure 3‑3 Code snippet showing the computation of optical power that enters the WDM
The Main function of the Finite Difference method is straightforward. It uses the equations described in Chapter 2 to calculate the values of all the physical constants like the rates and the population to calculate the incremental change in optical power for the specified step size. Then the power at the next step is calculated using the incremental change for both the pump and the signal powers. This process is repeated until the end of the fiber is reached. 
Amplified Spontaneous Emission (ASE) is computed as a function of the chosen wavelengths at each and every step as seen in Equations 2-12 and 2-13. The sum of the solution to 2-12 and 2-13 is referred to as SASE. This term is used in the computation of the Signal emission and absorption rates. A flowchart describing the process flow is shown in Figure 3-4. 

[bookmark: _Toc514251802]Figure 3‑4 Flowchart describing process flow for the Main function in Finite Difference model
Since the code for the main function is long, it will be split into parts. The first part detailing the computation of the rates and the population terms is given below. As seen in the flowchart, the noise is integral to calculating the Signal emission and absorption rates. 




[bookmark: _Toc514251803]Figure 3‑5 Code snippet showcasing the computation of the rates in the Main function of the Finite Difference program
The forward and backward ASE term is set to zero at the start of the fiber. The total SASE term slowly is amplified along the length of the fiber because of forward ASE. All the rates are then used to compute the population of the ground and excited state. The code that details the computation of the SASE term is given below. 


[bookmark: _Toc514251804]Figure 3‑6 Code snippet of the Amplified Spontaneous Emission computation in the Finite Difference model
As can be seen, the ASE is computed for a range of signal wavelengths that is chosen before in the initialization and this is computed for a particular point in the fiber. This is then used in the next iteration, i.e., used for the next step in the fiber. The next step is the computation of the γe and γa terms from Eqns. 2-14 and 2-15 for both the pump and the signal lasers as shown below. 


[bookmark: _Toc514251805]Figure 3‑7 Code snippet of the computation of γr and γe for the Pump and Signal in the Finite Difference model. 
The final snippet is shown below and it describes the computation of the power at the ‘next step’ as based on the Finite Difference method of solving differential equations for both the Pump and the Signal laser. This entire process is repeated for the entire length of the fiber. 


[bookmark: _Toc514251806]Figure 3‑8 Code snippet of the computation of the Signal and Pump Optical Power for the next ‘step’ in the Finite Difference Model 
The disadvantage of a signal pass is that the backward ASE cannot be calculated. Therefore to calculate that a three pass execution is done, the first in forward direction to calculate the forward ASE, the second in the backward direction to calculate the backward ASE, and a final forward direction with the computed value of backward ASE. This approach is used in [6] by Pedersen et al. From simulations later done for the cases chosen for this thesis, the impact of SASE is minimal. Therefore, single pass execution is preferred in most situations. 
[bookmark: _Toc514251721]4th Order Runge-Kutta Method
Implementing the 4th order Runge-Kutta method involves coding functions for some of the computations and this leads to a much cleaner program as opposed to the finite difference method. Two functions are written, one each for the pump and the signal emission absorption factors as mentioned in Section 2.1.2. 
The RK4 algorithm executes the equations in a specific order and in the code, these equations use the function handles to call the functions which would then compute the values for equations 2-14 and 2-15 which define the γ term in the equations described by Pedersen et al. [6]. The flowchart for the RK4 program is shown in Figure 3-3. 

[bookmark: _Ref509805371][bookmark: _Toc514251807]Figure 3‑9 Flowchart describing execution process for Runge-Kutta based MATLAB code


The code for the Runge-Kutta based MATLAB code and the code for the Finite Difference method based MATLAB code share many similar sections. This is because the data initialization and the code for the approximation of the losses will not change depending on the method used. 
Therefore, the code snippets prudent to the Runge-Kutta code is only mentioned in this section while the others have been explained in the section detailing the Finite Difference model. As can be seen in Figure 3‑9, the execution process for the Runge-Kutta method is reliant on the two functions that are defined for the Pump and Signal γ terms. 

[bookmark: _Toc514251808]Figure 3‑10 Flowchart showing the execution of Gamma Function
As seen in the flowchart above, the function process is simple; an IF statement to check whether the requirement is to compute the γ for the absorption or the emission term and to execute the required section. The function for the Pump Gamma is shown in the code snippet below. 


[bookmark: _Toc514251809]Figure 3‑11 Code snippet showcasing the decision making statements of the Gamma Function in the RK4 method
The variables used in this code snippet are either sent to the function from the Main function or is computed during the execution of the function. The two functions are called with the help of the function handles shown below. The code in the main function uses these handles to compute the values required for the Runge-Kutta formula


[bookmark: _Toc514251810]Figure 3‑12 Code snippet showcasing the function handles that call the two Gamma functions
The code used in the Main function is given below. In this, it can be seen that the Runge-Kutta factors, k1, k2, k3, and k4 are computed both for the Signal and the Pump laser. And as mentioned earlier, these factors use the function handles to call the Gamma functions. Once the factors are computed, the change in the Pump or the Signal term, ‘dP’ is calculated using the Runge-Kutta formula as mentioned in Section 3.1.1. As can be seen in the code snippet, the code is executed for each small section of the fiber until the end of the fiber as mentioned in the flowchart and once this is done, the data is presented in the form of graphs of Pump and Signal power vs. length and Signal Gain vs. length. 


[bookmark: _Toc514251811]Figure 3‑13 Code snippet of the Main function for the 4th Order Runge-Kutta based solution
[bookmark: _Toc514251722][bookmark: _Toc488053933]Adjustments to model with MATLAB
Multiple iterations through the coupled equations for SASE are not implemented in the some of the testing since the impact of SASE for the situation is extremely minimal. For simulations with Du et al. [11] and Mohammed [12], the numerical aperture is not known. Therefore, a value of N.A. is chosen so that the overlap matched the mentioned value as close as possible. 
[bookmark: _Toc514251723]Simulations
For the purpose of validating the accuracy of the code, two papers are chosen, one by Mohammed [12] and the other by Du and Chen [11]. Both papers model EDFAs pumped at 980nm but [12] uses a formula to calculate gain and then compare it with experimental results while [11] simulates the model using the two equations previously derived. The first test of the code is done by comparing the simulations with the results from Du and Chen [11] and the second test is done by comparing the simulations to the results from Mohammed [12]. 
[bookmark: _Toc514251724]Test #1
Du and Chen in [11] use the following values for simulating their calculations. 
λp = 980nm
λs = 1550nm
Γp = Γs = 0.6
No = 2.0*10^24 m-3
a = 2.0μm
Small Signal Launching Power = 1μW
Large Signal Launching Power = 1mW
σpa = 3.8*10^-25 m2
σsa = 3.1*10^-25 m2
σsa = 2.7*10^-25 m2
τ = 11.4ms
In [11], Du and Chen mention that they do not consider the effects of ASE, in addition to disregarding the effects of ESA. The fiber parameters, σpa, σsa, σse, and τ are used from [13].  They go on to perform simulations under different conditions and provide graphs that detail their results about gain, pump threshold, and optimum length, while also explaining said results. The Fiber Length (m) vs. Gain (dB) graphs taken from [11] are shown below. They detail multiple simulation results for small and large signal pumping with changes in the value of the Er3+ concentration. The labels 1, 2, 3, and 4 indicate various Er3+ doping concentrations, 

	[bookmark: _Toc514251812]Figure 3‑14 The Variation of Small Signal Gain with respect to length from [11]
	[bookmark: _Toc514251813]Figure 3‑15 The variation of Large Signal Gain with respect to length from [11]



[bookmark: _Toc514251814]Figure 3‑16 Gain vs. Length for Small Signal Input 

[bookmark: _Toc514251815]Figure 3‑17 Gain vs. Length for Large Signal Input
[bookmark: _Toc514251725]Test #2
In this paper [12], Mohammed uses three formulae for computing gain to choose the best option for simulations. He splits the formula into three sections to compute which one gives the lowest gain value for a chosen large signal input. Out of the three sections, he concludes that the third part of the equation is the least and hence the most effective. This, however, does not help as the equation does not directly involve the final signal powers. 
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This is the data that Mohammad uses in [12]. 
λp = 980nm
λs = 1550nm
No = 4.86*10^24 m-3
Small Signal Launching Power = 1μW to 12μW
σpa = 5.8*10^-25 m2
σsa = 2.9*10^-25 m2
σse = 3.47*10^-25 m2
τ = 10ms
The issue faced is that the paper does not provide the data for some of the terms that is required for the simulation. The missing terms are the value of the overlap integral and the fiber radius. These two terms have a huge impact on the equations and so, the values for the two terms are replaced from the terms used in Du and Chen [11]. The graphs for the gains are calculated for each power input and as we can see, the simulated graph matches the graph in the paper very closely. The graph for an input power of 8.148mW is shown. 

[bookmark: _Toc514251816]Figure 3‑18 Comparison between results obtained from the simulations and the results from Mohammad [12] for an input pump power of 8.148mW
Shown below is another set of simulations that are conducted with an input pump optical power of 5.397mW with the same range of input signal optical powers. It can be seen the simulations slightly over-estimate the value of the gain, but the simulations are a better fit to the experimental curve Mohammad’s simulations. This lack of accuracy can be attributed to the fact that some relevant data is missing in this paper. 



[bookmark: _Toc514251817]Figure 3‑19 Comparison between results obtained from the simulations and the results from Mohammad [12] for an input pump power of 5.397mW
[bookmark: _Toc514251726]Data Required for Simulation
The code has now been validated with two separate theoretical papers. Therefore, the model can be tested experimentally. In order to model said experiments, the following data is required. 
Erbium Doping Concentration
Cross-Sections of the fiber for the Pump and the Signal Inputs
Fluorescence Lifetime
Numerical Aperture
Radius of the Fiber
Optical fibers are sold by their concentrations, i.e., the fiber that is used in this thesis is an Er110-4 fiber from nLight. Therefore, there is no need to perform experiments to ascertain the doping concentration. Almost all the other data can also be obtained from the company’s datasheets, but one must also be able to ascertain this data with the help of experiments. 
Experiments can help determine the cross-section areas and the fluorescence lifetime of the fibers. 
The following chapter will deal with the experiments that are conducted on the fiber to determine the previously mentioned values.


[bookmark: _Toc514251727]CHARACTERIZATION OF THE SYSTEM
[bookmark: _Toc514251728]Overview
In this chapter, experiments are conducted with the Erbium fiber to measure the various optical characteristics. This ranges from the absorption and the emission spectrums to the various losses in the system, thereby characterizing the system as accurately as possible. 
[bookmark: _Toc514251729]Fiber Information
The Erbium-doped fiber available is an nLight fiber (Er110-4/125). The specification sheet for the fiber is available in Appendix B. The specification sheet along with the technical data present on the website list all the information that is prudent to the simulation except the absorption and emission cross-section data which is obtained from the vendor. This data is extensively used in my simulations. 
Radius = 3.75±0.5 μm
Numerical Aperture = 0.2
τ = 11.4 ms
ρ = 8.4 * 10^25 m-3


[bookmark: _Toc514251730]Characterization of the components
The system in its simplest form involves two lasers being multiplexed into a single beam that is then fed into the EDF. The output from the EDF is measured and studied. Therefore, these components and the other additional components of the system must be characterized so the simulations can be as accurate as possible. 
All experiments conducted used the following equipment. 
ILX Lightwave Laser Diode Controller 3900 	(S/N: 39002458)
ILX Lightwave Optical Power Meter FPM 8210 	(S/N: 82101308)
Wavelength Division Multiplexer 			(S/N: 0A2081)
JDS Uniphase HA9 Attenuator 			(S/N: KE09319)
3 Window Coupler 					(S/N: L050049083)
JDS Uniphase BBS Broadband Source 		(S/N: FD110946)
Inphenix LED Light Source 				(S/N: 868512485)
Agilent Optical Spectrum Analyzer 86143B 		(S/N: DE44103038)
The following Laser Diodes are used in all experiments. 
974 nm   - Bookham LC95A74-20 			(S/N: B243446.001)
1550 nm - JDS Uniphase CQF933/408-19340 	(S/N: 461784)
1534 nm - LMI A1905 3CN00410CDAA 		(S/N: 990419413)
[bookmark: _Toc514251731]Characterization of the WDM
The Wavelength Division Multiplexer (WDM) is a passive device that joins two or more wavelengths into a single fiber output. The WDM that is to be used in the experiments has four ports, two clear ports, one black port, and one red port. The final schematic for the WDM after testing is shown in Figure 4-1. 

[bookmark: _Toc514251818]Figure 4‑1 Final Schematic for WDM
This WDM is chosen because it possesses a transmission window wide enough to meet the requirement of the experiments this thesis conducts. Unfortunately, there is no specification sheet to be found for this WDM, nor a make or model number since it is appropriated from an existing system. The WDM must, therefore, be characterized. WDMs are bidirectional, and this is used to test it by sending known optical power values of the pump and the signal laser to the each of the output ports to measure the output on the other side. This lets us know what ports could be used as inputs to the system that this thesis wants to use. 
Initially, the WDM is tested by sending in the signal laser via the P2 and P3 ports and then the output at ports P0 and P1 are measured. The input optical power is varied as a function of the diode drive current. Table 4-1 shows two measurements using the signal laser, one with P2 as the input port while the second one uses P3 as the input port. 

[bookmark: _Toc514251852]Table 4‑1 Port Efficiencies when P2 and P3 are input ports for Signal Wavelength
	1550 nm (100 mA/13 mW Signal Input Optical Power)

	P2 (red) (Input)
	P3 (clear)
	P0 (clear)
	P1 (black)

	W
	dBm
	W
	dBm
	%
	W
	dBm
	%
	W
	dBm
	%

	1.33E-02
	11.23
	0.853
E-06
	-30.69
	0.01
	31.1
E-06
	-15.1
	0.23
	5.83
E-03
	7.66
	43.8

	P2 (red)
	P3 (clear) (Input)
	P0 (clear)
	P1 (black)

	W
	dBm
	%
	W
	dBm
	W
	dBm
	%
	W
	dBm
	%

	1.13E-06
	-29.5
	0.01%
	13.3
E-03
	11.23
	5.01
E-03
	6.99
	37.7%
	16.1
E-06
	-17.9
	0.12


From Table 4-1, it can be seen that the loss is lower when P2 is used as the input port for the signal wavelength. The same measurements are now repeated with the pump laser. P2 is used as the input for this measurement since it proved to be the most efficient path. Table 4-2 shows the measurements made for an input pump optical power of 120.82 mW which is the optical power output from the laser when the pump laser is driven at 240 mA.
[bookmark: _Toc514251853]Table 4‑2 Port Efficiency when P2 is the input port for Pump Wavelength
	P2 (red)
	P0 (clear)
	P1 (black)

	(W)
	(dBm)
	(W)
	(dBm)
	%
	W
	dBm
	%

	1.21E-01
	20.82
	1.03E-01
	20.13
	85%
	2.02E-04
	-6.95
	0.17%


It is seen that the output at P0 is the highest and therefore, it can be assumed that sending in the pump laser via the P0 port and the signal laser via the P1 port would be the most efficient setup. A final test of the WDM is conducted to verify the previous measurements. The procedure is similar; known values of optical power, both in the pump and the signal wavelength range are sent into the respective ports, and the output is measured at port P2 using a spectrum analyzer. The ratio of output power to input power for both the wavelengths is calculated and is seen to be approximately constant (Figure 4-3), thereby validating the previous measurements. 
[bookmark: _Toc514251854]Table 4‑3 Final WDM test displaying the average output percentage at the output port for both inputs wavelengths
	974nm

	Current
	P0 (clear)
	P2 (red)

	(mA)
	(W)
	(dBm)
	(W)
	(dBm)
	%

	240
	1.21E-01
	20.8
	7.90E-02
	18.975
	65.37%

	AVERAGE
	63.70%

	
	

	1534nm

	Current
	P1 (black)
	P2 (red)

	(mA)
	(W)
	(dBm)
	(W)
	(dBm)
	%

	100
	1.34E-02
	11.266
	1.03E-02
	10.109
	77%

	AVERAGE
	77.82%


[bookmark: _Toc514251732]Mode Field Diameter Mismatch Loss
When two fibers with different core radii are spliced together, a loss is introduced into the system that cannot be prevented since all the light from one fiber is not coupled into the next one. This loss must be factored into the model with all the other losses that are inherent to a fiber optic system like reflectance losses and scattering losses. 
The loss that is introduced into the system can be calculated using the formula given below in equation 4-1 [14]. It depends on the Mode Field Diameter (MFD) which in turn is different for both the signal and pump wavelengths. Therefore it is prudent to code the computation of the MFD in the model. 
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The code that computes the splice loss is mentioned in Section 3.2.1. If a situation arises needing the replacement of either the Er110 fiber or the SMF fiber, the appropriate values in the code snippet must be altered. The mode mismatch loss is calculated for the un-doped and the doped Erbium fiber and shown is below in Table 4-4. 
[bookmark: _Toc514251855]Table 4‑4 Splice Losses when SMF 28e is spliced with Er110-4/125
	Loss in the Pump Wavelength (dB)
	1.39

	Loss in the Signal Wavelength (dB)
	0.37


[bookmark: _Toc514251733]OSA vs. Power Meter Calibration
The Optical Spectrum Analyzer (OSA) and the Power Meter (PWM) have different wavelength resolutions and also different methods of measuring the power. The signal laser is sent into the erbium fiber and output at the end of the fiber is measured using the OSA and the PWM. This lets the measuring devices measure just the signal laser because if the pump laser had been used, the ASE would have interfered with the measurements. As can be seen, there is a loss of 15% incurred when using the OSA to measure the output of the system. 
[bookmark: _Toc514251856]Table 4‑5 OSA and Power Meter Calibration
	Laser Diode Controller Current (mA)
	Input Power to EDF (W)
	Power Meter (W)
	OSA (W)
	Ratio

	40
	1.45E-03
	4.12E-04
	3.49E-04
	0.84

	50
	2.39E-03
	8.69E-04
	7.45E-04
	0.85

	60
	3.28E-03
	1.39E-03
	1.20E-03
	0.86

	70
	4.20E-03
	1.98E-03
	1.70E-03
	0.85

	80
	5.10E-03
	2.56E-03
	2.22E-03
	0.86

	90
	6.00E-03
	3.20E-03
	2.76E-03
	0.86

	100
	6.95E-03
	3.83E-03
	3.31E-03
	0.86

	
	
	
	AVG
	0.85


[bookmark: _Toc514251734]Absorption Spectrum and Cross-Section:
Measurement of the absorption or emission spectra requires the knowledge of the power being sent into Erbium-doped fiber. The required data is collected by sending known values of the pump and the signal lasers into the WDM. The output of the WDM is measured and exported to an Excel file. The schematic for this setup is shown below in Figure 4-4. 

[bookmark: _Toc514251819]Figure 4‑2 Experimental Setup to measure the Input to the Erbium-Doped Fiber
Two input sources are used; one being the LED Source and the other is the Broadband Source. The output spectra for both these sources are measured using the setup shown in Figure 4-2. The LED source is driven at 7 different values of diode current and the output spectrum of the LED source before the WDM is shown in Figure 4-5. The same procedure is repeated for the Broadband source to give Figure 4-6. The broadband source is connected as the input to port P1 and the output is measured at port P2 and saved to an Excel file with the help of the spectrum analyzer. Both input sources have been sampled every 0.1nm. 

[bookmark: _Toc514251820]Figure 4‑3 Output of the Inphenix LED Source

[bookmark: _Toc514251821]Figure 4‑4 Output of the Broadband Source
Now that the input to the Erbium Fiber is known, the absorption experiment can be conducted. One end of the Erbium fiber is spliced to the output port of the WDM, P2, while the other end of the EDF is spliced to a pigtail connector which is then connected to the spectrum analyzer. The general procedure for measuring the absorption spectrum would be to find the amount of power absorbed over the range of wavelengths. This will then be used in conjunction with the Fuchtbauer Landenberg Analysis to compute the cross-sections. The schematic for the experiment is shown below in Figure 4-5.


[bookmark: _Toc514251822]Figure 4‑5 Experimental Setup for measuring cross-sections
The procedure is repeated with both the input sources. The LED source is first connected and driven at the chosen values of currents, and the output from the doped fiber is measured and saved as an Excel file. The same procedure is then repeated with the Broadband source. Once both the measurements are made, the values of the output power are then used to compute the absorption coefficient. 
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PIN is the input optical power and POUT is the output optical power and L is the length of the erbium fiber. This absorption coefficient α is then used in the equations derived from the Fuchtbauer-Landenberg analysis to compute the cross-section. This is done by measuring the FWHM of the absorption spectra. The FWHM is then used in equation 2-22 which then lets us compute the value of the absorption cross-section. Both the absorption spectra for the LED source and the BBS is shown below. The absorption spectra of the LED is given in Figure 4-8. As can be seen, the maximum absorption seems to occur at 1530nm which is expected. 

[bookmark: _Toc514251823]Figure 4‑6 Absorption Spectra for the Er110-4/125 Fiber using the LED Source

[bookmark: _Toc514251824]Figure 4‑7 Absorption Spectra for the Er110-4/125 Fiber using the Broadband Source
Using the Fuchtbauer-Landenberg relations, the absorption cross-sections can be computed and they are presented below. As can be seen, the results deviate at the point where the two sets of data from the different sources are concatenated. If a better degree of accuracy is required, a wider broadband source must be used in place of the dual sources used in the experiments. 

[bookmark: _Toc514251825]Figure 4‑8 Comparison between experimental and vendor Absorption Cross-Section of Er110-4/125
[bookmark: _Toc514251735]Emission Spectrum and Cross-Section:
The experiment for the emission cross-section is slightly different on account of having to use a shorter piece of the fiber to measure the emission spectra. In this case, an extremely short piece of the fiber is spliced instead of the previous 35.5cm. The experimental setup is virtually same as that of the one used for the absorption spectra measurement. 
The experiment for the emission spectra involves measuring the output for the signal wavelength ranges for low input pump optical powers. And to avoid the influence of Amplified Spontaneous Emission, an extremely short piece of fiber is cleaved and spliced to the output port P2 of the WDM. The other end is spliced to the pigtail which is connected to the OSA. The pump laser is turned on and fed into the system. For the emission spectra, the pump is driven at a low current and the output from the fiber in the signal wavelength range is measured. There is no input from the signal laser. 
The experiments are conducted at several different values of the pump current. The cross-sections computed from this curve are also slightly skewed, showing an increased cross-section value as compared to the vendor’s cross-section. This can be attributed to various losses and such in the system, and therefore the vendor cross-section data is used in both cases. 

[bookmark: _Toc514251826]Figure 4‑9 – Normalized Amplified Spontaneous Emission with a Pump Current of 35mA

[bookmark: _Toc514251827]Figure 4‑10 Comparison between experimental and vendor Emission Cross-Section of Er110-4/125
It can be seen from Figure 4-10 that the cross-section data measured is comparable to the data obtained from the vendor. Therefore, the cross-section data acquired from the vendor will be used in the model. 

[bookmark: _Toc514251736]VERIFICATION OF THE MODEL
The data acquired from the vendor is validated in the previous chapter by conducting absorption and emission experiments. The system is also characterized and the various losses such as splice loss and mode mismatch loss are factored into the MATLAB model. This is, however, discounting other losses inherent to an experiment such as unclean connectors. 
The experimental setup is checked to make sure that no unaccountable but preventable losses are present which meant making sure that the pigtail connectors are clean and properly inserted and there are no sharp bends in the fiber to prevent bending losses. Once this is verified, the system is set up as shown in Figure 5-1. The signal laser is connected to the attenuator which is then connected to a 90/10 Optical Coupler which helps make sure that the predefined amount of optical power is input into the WDM. 
Two sets of experiments are conducted, one with an erbium fiber of length 13.3 cm (Sample #1) while the other experiment used an erbium fiber that is 27.7 cm long (Sample #2). These two lengths are compatible with the fiber length in the fiber laser that is to be modeled later. 
[bookmark: _Toc514251737]General Procedure
In order to test the model for its accuracy, the experiment has to be repeated under different conditions. Therefore, an experimental setup is designed which lets the erbium fiber be tested for multiple lengths. As mentioned in the earlier two EDFAs are constructed with the help of the two samples. 
The pump laser output is spliced to port P0 of the WDM while the signal laser output is connected to an attenuator and the attenuator is in turn, connected to the 90/10 Coupler. The output from the 90% port is connected as the input to the port P1 of the WDM. The 10% port is connected to an optical power meter.  The port P2 of the WDM is spliced to the chosen Erbium fiber while the other end of the Erbium fiber is spliced to a pigtail which can be connected to the spectrum analyzer to measure the output from the EDF. The schematic for this is shown in Figure 5-1. 

[bookmark: _Ref509161901][bookmark: _Toc514251828]Figure 5‑1 Schematic for the EDFA experiments
Three input pump optical powers are chosen, each corresponding to the current at which the pump laser is driven. These currents are 100 mA, 250 mA, and 300 mA which correspond to input pump optical powers of 25.654 mW, 83.081 mW, and 102.51 mW respectively. 
Now that the input pump optical powers are chosen, the input signal optical powers can be decided. Since it is preferred that both the small signal gain and the large signal gain be tested, a range of optical power inputs is chosen: 1 μW, 10 μW, 25 μW, 50 μW, 100 μW, 250 μW, 500 μW, and 1 mW.
Regardless of the length of the fiber chosen, the general procedure is as follows. The input pump optical power is set a particular value with the help of the laser diode controller. Once this is done, the input signal optical power into the WDM is adjusted using the attenuator. The chosen values of optical power are sent in and the output signal optical power is measured using the spectrum analyzer. This is repeated for other values of the input pump optical powers and then the erbium fiber is replaced with another fiber of differing length. 
Once this is done, simulations are conducted to obtain the output signal optical power at the same length as that of the fiber. With these values, the experimental and the simulated output signal optical powers are calculated. These results are then compared so that conclusions can be drawn about the accuracy of the model. 
[bookmark: _Toc514251738]Amplified Spontaneous Emission
During each of the experiments, the noise value aka the Amplified Spontaneous Emission at the end of the fiber is measured by using the spectrum analyzer. This is done to compare the ASE computation that is done by the MATLAB program. An example ASE measurement is shown below in Figure 5-2. The ASE data is then extracted from the data output from the code and it is seen that the model predicts an extremely low value of ASE, on the order of 10-13W while the experimental data show that the maximum ASE at 1530 nm is almost 2.5µW. The ASE code is then decided not to be included in the execution of the code as the impact of ASE is extremely minimal and therefore, the execution time of the simulations was drastically reduced. 



[bookmark: _Toc514251829]Figure 5‑2 Experimental Amplified Spontaneous Emission measured at a pump optical power of 102.51mW

[bookmark: _Toc514251830]Figure 5‑3 Simulated Amplified Spontaneous Emission at a pump optical power of 102.51mW
[bookmark: _Toc514251739]EDFA based on Sample #1
A piece of the erbium-doped fiber is cut from the spool. This is Sample EDF #1, measured to be 13.3 cm and used in the experimental setup to build the EDFA. The fiber is then cleaved and spliced into the system with one end of the fiber spliced to the P2 lead of the WDM and the pigtail connector is similarly spliced to the other end of the fiber. 
Four experiments are conducted, one with no pump while the other three are with the input pump optical powers as mentioned before. The results are presented in Table 5-1 along with a graph that shows the output signal optical power as a function of the input signal optical power. 
[bookmark: _Toc514251857]Table 5‑1 Output Signal Powers vs. Input Signal Powers for 13.3cm EDF for different Pump Input Powers
	Input Signal Powers
	Output Signal  Power (dBm)

	Input Signal Power (mW)
	Input Signal Power (dBm)
	No Pump Input Power
	25.7 mW Pump Input Power
	83.1 mW Pump Input Power
	102.5 mW Pump Input Power

	1E-03
	-30.00
	-39.45
	-28.36
	-26.47
	-26.17

	10E-03
	-20.00
	-29.49
	-18.67
	-16.74
	-16.56

	25E-03
	-16.02
	-25.38
	-14.67
	-12.82
	-12.58

	50E-03
	-13.01
	-22.57
	-11.73
	-9.78
	-9.48

	100E-03
	-10.00
	-18.96
	-8.76
	-6.88
	-6.57

	250E-03
	-6.02
	-14.37
	-4.90
	-2.95
	-2.59

	500E-03
	-3.01
	-10.70
	-2.11
	-0.05
	0.25

	1
	0.00
	-6.79
	0.52
	2.63
	2.99



[bookmark: _Toc514251831]Figure 5‑4 Output Signal Powers vs. Input Signal Powers for 13.3cm EDF for different Pump Input Powers
[bookmark: _Toc514251740]Absorption Results for Sample #1
The EDFA is operated without the pump laser turned on, meaning that the experiment is an absorption experiment. As mentioned in Section 5.1, 7 values of optical power in the signal wavelength are sent into the fiber and the output is measured using the spectrum analyzer. 
Once these values are measured, simulations are conducted with MATLAB to compute the value of the output signal optical power at the same length as that of the experimental fiber, which in this case is 13.3 cm by changing the value of the input signal optical power in the code. 
Table 5-2 lists the data recorded when the EDF is operated without the pump laser operating. It is seen that the simulated output optical power is close in value to that of the experimental values. The accuracy of the simulations is further seen in Figure 5-5 where the results are presented in the form of a chart. 
[bookmark: _Toc514251858]Table 5‑2 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for No Pump Power Input (13.3 cm)
	Input Signal Power (mW)
	Input Signal Power (dBm)
	Experimental Output Power (dBm)
	Simulated Output Power (dBm)

	0.00
	-30.00
	-39.45
	-40.58

	0.01
	-20.00
	-29.49
	-30.53

	0.03
	-16.02
	-25.38
	-26.46

	0.05
	-13.01
	-22.57
	-23.31

	0.10
	-10.00
	-18.96
	-20.03

	0.25
	-6.02
	-14.37
	-15.30

	0.50
	-3.01
	-10.70
	-11.22

	1.00
	0.00
	-6.79
	-6.67



[bookmark: _Toc514251832]Figure 5‑5 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for No Pump Power Input (13.3 cm)
[bookmark: _Toc514251741]Test #1 with Sample #1
The pump laser is driven at 100 mA which translates to an input pump optical power of 25.7 mW being sent into the WDM. With the input pump optical power set at that value, the input signal optical power is varied with the help of the attenuator to reach the same 7 values as mentioned in Section 5.1 and the output signal optical power is measured using the spectrum analyzer. Table 5-3 lists this data along with the simulated output signal optical power. 
The procedure to obtain the simulated results are similar to the previous experiment. Instead of using a value of zero for the input pump optical power, the value mentioned earlier, 
25.7 mW is used and the value of the input signal optical power is changed as before. 
[bookmark: _Toc514251859]Table 5‑3 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for an input Pump Power of 25.7 mW (13.3 cm)
	Input Signal Power (mW)
	Input Signal Power (dBm)
	Experimental Output Power (dBm)
	Simulated Output Power (dBm)

	0.00
	-30.00
	-28.36
	-23.16

	0.01
	-20.00
	-18.67
	-13.20

	0.03
	-16.02
	-14.67
	-9.28

	0.05
	-13.01
	-11.73
	-6.36

	0.10
	-10.00
	-8.76
	-3.53

	0.25
	-6.02
	-4.90
	-0.03

	0.50
	-3.01
	-2.11
	2.34

	1.00
	0.00
	0.52
	4.44


It is seen that there is a difference in the simulated output optical powers and the experimental output powers. This discrepancy, as will be seen to exist in the latter experiments, will be investigated in Section 5.4

[bookmark: _Toc514251833]Figure 5‑6 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for an input Pump Power of 25.7 mW (13.3 cm)
[bookmark: _Toc514251742]Test #2 with Sample #1
Test #2 involves driving the pump laser at a higher current, now at 250 mA which translates into an input pump optical power of 83.1 mW sent into the WDM. The same procedure is repeated as in the previous experiment with the pump optical power set and the input signal optical power varied with the help of the attenuator. 
The simulations are similarly performed by setting the value of the input pump optical power to the WDM as 83.1 mW in the code. The results are tabulated in Table 5-4 and presented in the form of a chart in Figure 5-7. 
It is seen that the discrepancy continues to exist with the simulated output signal optical power and the experimental output signal optical power. It can be noted that the difference between the two is approximately 4 dB. 
[bookmark: _Toc514251860]Table 5‑4 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for an input Pump Power of 83.1 mW (13.3 cm)
	Input Signal Power (mW)
	Input Signal Power (dBm)
	Final Output Power (dBm)
	Simulated Output Power (dBm)

	0.00
	-30.00
	-26.47
	-22.06

	0.01
	-20.00
	-16.74
	-12.07

	0.03
	-16.02
	-12.82
	-8.12

	0.05
	-13.01
	-9.78
	-5.15

	0.10
	-10.00
	-6.88
	-2.21

	0.25
	-6.02
	-2.95
	1.54

	0.50
	-3.01
	-0.05
	4.22

	1.00
	0.00
	2.63
	6.68



[bookmark: _Toc514251834]Figure 5‑7 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for an input Pump Power of 83.1 mW (13.3 cm)
[bookmark: _Toc514251743]Test #3 with Sample #1
Test #3 is conducted with a different input pump optical power. The pump laser is driven at 300 mA which translates into an input pump optical power of 102.5 mW. The experimental procedure continues to be the same with the input pump optical power being constant while the input signal optical power to the WDM varied with the help of the attenuator. 
The simulations are similarly performed using MATLAB by modifying the value of the input pump and signal optical powers for each of the trials. These results are again tabulated in Table 5-5 and presented in a chart in Figure 5-8. It is seen that the discrepancy between the experimental results and the simulated results is a little higher.
[bookmark: _Toc514251861]Table 5‑5 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for an input Pump Power of 102.5 mW (13.3 cm)
	Input Signal Power (mW)
	Input Signal Power (dBm)
	Final Output Power (dBm)
	Simulated Output Power (dBm)

	0.00
	-30.00
	-26.17
	-21.96

	0.01
	-20.00
	-16.56
	-11.97

	0.03
	-16.02
	-12.58
	-8.02

	0.05
	-13.01
	-9.48
	-5.04

	0.10
	-10.00
	-6.57
	-2.09

	0.25
	-6.02
	-2.59
	1.69

	0.50
	-3.01
	0.25
	4.42

	1.00
	0.00
	2.99
	6.95



[bookmark: _Toc514251835]Figure 5‑8 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for an input Pump Power of 102.5 mW (13.3 cm)
[bookmark: _Toc514251744]EDFA based on Sample #2
Sample #2 is an EDF that is 27.7 cm long. Chronologically this is the first experiment that is conducted, and at that time, the procedure is not decided upon. Therefore, the absorption experiment is conducted without the attenuator. The control variable, in this case, is the signal laser drive current on the Diode Controller. The Gain experiments that followed used the attenuator and therefore the data for them is much more organized. Therefore the absorption curve is not shown in Figure 5-9, with only the experimental results for tests #1 and #2 displayed. 


[bookmark: _Toc514251862]Table 5‑6 Output Signal Powers vs. Input Signal Powers for 27.7 cm EDF for different Pump Input Powers
	Input Signal Powers
	Output Signal Powers (dBm)

	Input Signal Power (W)
	Input Signal Power (dBm)
	83.1 mW Pump Input Power
	102.5 mW Pump Input Power

	1.00E-05
	-20.0000
	-12.89
	-11.46

	2.50E-05
	-16.02
	-8.46
	-7.66

	5.00E-05
	-13.01
	-5.70
	-4.96

	1.00E-04
	-10.00
	-2.76
	-1.96

	2.50E-04
	-6.02
	0.84
	1.39

	5.00E-04
	-3.01
	3.44
	4.04

	1.00E-03
	0.00
	6.14
	6.84



[bookmark: _Toc514251836]Figure 5‑9 Output Signal Powers vs. Input Signal Powers for 27.7 cm EDF for different Pump Input Powers


[bookmark: _Toc514251745]Absorption Results for Sample #2
This experiment is conducted without the attenuator in place and therefore the input signal optical power is varied with the signal laser drive current, with each value of input signal optical power corresponding to a value of a laser drive current. For example, an input signal optical power of 6.95 mW is achieved by setting the signal laser drive current to be 100 mA. 
The simulations are done in a similar fashion as seen in the previous section. It is seen that the simulated absorption results are not close to the experimental output optical power values like the case for the absorption results for Sample #1. 
This plays an important factor in adjusting the model as will be elaborated in Section 5.4. The results are tabulated and displayed Table 5-7. The results are also presented in the form of a chart as seen in Figure 5-10. 
[bookmark: _Toc514251863]Table 5‑7 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for no input Pump Power (27.7 cm)
	Input Signal Power (mW)
	Input Signal Power (dBm)
	Experimental Output Power (dBm)
	Simulated Output Power (dBm)

	0.55
	-12.12
	-12.12
	-18.49

	1.45
	-5.41
	-5.41
	-9.59

	2.39
	-2.07
	-2.07
	-4.45

	3.28
	0.05
	0.05
	-1.53

	4.20
	1.63
	1.63
	0.49

	5.10
	2.82
	2.82
	1.92

	6.00
	3.81
	3.81
	3.03

	6.95
	4.64
	4.64
	3.98




[bookmark: _Toc514251837]Figure 5‑10 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for no input Pump Power (27.7 cm)
[bookmark: _Toc514251746]Test #1 with Sample #2
Sample #2 is used in this experiment. The chosen input pump optical power is 83.1 mW which is set using the laser drive current which is 250 mA. The procedure is similar to the previous experiments with the input signal optical powers adjusted with the help of the attenuator. 
Once the experimental output signal optical power is measured and saved, the simulations are conducted with the only change in the procedure being the change of the length of the fiber to 27.7 cm to reflect the length of Sample #2. Both the experimental and the simulated results are tabulated as shown in Table 5-8, and a chart displaying the two sets of data is seen in Figure 5-11. 


[bookmark: _Toc514251864]Table 5‑8 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for an input Pump Power of 83.1 mW (27.7 cm)
	Input Signal Power (mW)
	Input Signal Power (dBm)
	Experimental  Output Power (dBm)
	Simulated Output Power (dBm)

	0.01
	-20.0000
	-12.89
	-0.82

	0.25
	-16.02
	-8.46
	2.82

	0.05
	-13.01
	-5.70
	5.34

	0.10
	-10.00
	-2.76
	7.55

	0.25
	-6.02
	0.84
	9.92

	0.50
	-3.01
	3.44
	11.28

	1.00
	0.00
	6.14
	12.33


As seen clearly from Figure 5-11, a discrepancy continues to exist, between the experimental results and the simulated results. But in this case, it can be seen that the gulf between the two continues to increase with the greatest difference between the experimental and the simulated output signal optical powers being about 12 dB. 

[bookmark: _Toc514251838]Figure 5‑11 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for an input Pump Power of 83.1 mW (27.7 cm)
[bookmark: _Toc514251747]Test #2 with Sample #2
Sample #2 is used in a final experiment where the input pump optical power is set to 102.5 mW by choosing the laser drive current as 300 mA. The input signal optical powers are varied with the help of the attenuator. The simulations are done similarly. The experimental and the simulated output signal optical powers are then tabulated and shown in Figure 5-12. It is seen here that the difference between the results is still similar to the previous result. 
[bookmark: _Toc514251865]Table 5‑9 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for an input Pump Power of 102.5 mW (27.7 cm)
	Input Signal Power (mW)
	Input Signal Power (dBm)
	Experimental  Output (dBm)
	Simulated Output (dBm)

	0.01
	-20.0000
	-11.46
	-0.57

	0.25
	-16.02
	-7.66
	3.12

	0.05
	-13.01
	-4.96
	5.70

	0.10
	-10.00
	-1.96
	8.00

	0.25
	-6.02
	1.39
	10.49

	0.50
	-3.01
	4.04
	11.93

	1.00
	0.00
	6.84
	13.05


The chart as shown in Figure 5-12, showcases the difference between the experimental and the simulated output signal optical powers effectively. It can be seen in Figure 5-12 and the previous figure that in each case, the difference between the experimental and the simulated results appear to be constant. This is an important inference drawn from the results which will be pivotal in the hypothesis for the adjustments made in Section 5.4. 


[bookmark: _Toc514251839]Figure 5‑12 Experimental Output Power vs. Simulated Output Power as a function of Input Signal Power for an input Pump Power of 102.5 mW (27.7 cm)
[bookmark: _Toc514251748]Adjustment of the MATLAB Model
It is seen that the simulated curve does not match the experimental output graph in most of the figures shown above. Therefore, it is hypothesized that the value of the overlap integral is not constant, but it varies with the length as a result of the pump and the signal powers being absorbed in the fiber. This conclusion is drawn after comparing the absorption experiments for samples #1 and #2. 
Therefore, the code is modified to introduce a factor that could change the value of the signal overlap integral to a chosen value by modifying the mode. With this modified code, the simulations are repeated for the two sets of experimental data, one for the Sample #1 and the other one for Sample #2. The value of the mode is reduced by one-half. The results which are shown below, showcase a much more accurate prediction. Figures 5-15, 5-16, 5-17, and 5-18 showcase the previous results as seen in Section 5.2 but with the simulated results as obtained from the modified code. As is seen from all these charts, the adjusted code delivers a much more accurate simulation. The change in the mode, as a result, is shown in Figure 5-14 while the original mode is shown in Figure 5-13. 
[image: ]
[bookmark: _Toc514251840]Figure 5‑13 Default Input Signal Optical Mode
[image: ]
[bookmark: _Toc514251841]Figure 5‑14 Modified Input Signal Optical Mode
Figure 5-15 shows the simulation and experimental results for the absorption experiment for Sample #1 while Figure 5-16 compares the results for Test #1, Figure 5-17 compares the results for Test #2, and Figure 5-18 compares the results for Test #3. 
	
[bookmark: _Toc514251842]Figure 5‑15 Experimental Output Power vs. Adjusted Simulated Output Power as a function of Input Signal Power for no input Pump Power (13.3 cm)

[bookmark: _Toc514251843]Figure 5‑16 Experimental Output Power vs. Adjusted Simulated Output Power as a function of Input Signal Power for an input Pump Power of 25.7 mW (13.3 cm)

[bookmark: _Toc514251844]Figure 5‑17 Experimental Output Power vs. Adjusted Simulated Output Power as a function of Input Signal Power for an input Pump Power of 83.1 mW (13.3 cm)

[bookmark: _Toc514251845]Figure 5‑18 Experimental Output Power vs. Adjusted Simulated Output Power as a function of Input Signal Power for an input Pump Power of 102.5 mW (13.3 cm)
As seen from these charts, the adjustment improved the accuracy of the simulation. It is evident that this adjustment is not completely satisfactory as the simulation predicts a lower value of output signal optical power at higher input pump optical power values. 
Figures 5-19 and 5-20 similarly showcase the simulated results obtained from the adjusted code for the EDFA based on Sample #2. The adjustment for the value of the mode is made on the absorption curve for Sample #2 which is why the charts are realistic for Sample #2 with the simulations over-estimating the gain. 

[bookmark: _Toc514251846]Figure 5‑19 Experimental Output Power vs. Adjusted Simulated Output Power as a function of Input Signal Power for an input Pump Power of 83.1 mW (27.7 cm)

[bookmark: _Toc514251847]Figure 5‑20 Experimental Output Power vs. Adjusted Simulated Output Power as a function of Input Signal Power for an input Pump Power of 102.5 mW (27.7 cm)
The conclusion drawn from these charts is that the value of the mode integral changes as a function of the optical power present at that particular section of the fiber, i.e., the local optical power. This means that to accurately define the model, multiple tests must be conducted with varying lengths of the EDF so that the value of the overlap integral can be estimated. 
Since the value of the local optical power does not change drastically, a singular adjustment made to the code appears to work for both the samples. The lengths of the samples are comparable to the lengths of the fiber in the Q-switched laser and therefore, it can be said that the goal of the thesis is achieved in that a MATLAB model that predicts the value of the output signal optical power for an EDFA operating at 980 nm is coded and verified. 


[bookmark: _Toc514251749]CONCLUSIONS
The motivation for this thesis is to design and validate a MATLAB program that would model an Erbium-Doped Fiber Amplifier to some acceptable degree of accuracy so that the program can be incorporated into the model for the Q-switched laser. This thesis presents a series of equations that model the EDFA in Chapter 2 that includes the coupled differential equations that define the pump and the signal optical power and the coupled differential equations that define the Amplified Spontaneous Emission. 
From the set of equations that are defined in Chapter 2, two MATLAB models were built, each one based on a numerical method of solving differential equations. One model was based on the finite difference method, and the other model was based on the 4th Order Runge-Kutta method. Both models were validated with theoretical and experimental results from [11] and [12] respectively. In Chapter 3, in addition to solving the equations using the two mentioned methods, the data required for simulating a practical system was defined. 
In Chapter 4, the system was characterized which brought to light the various nuances inherent to the system. This helped refine the MATLAB model, making the accuracy of the simulations increase. The various losses inherent to a fiber amplifier system such as loss due to mismatched mode field diameters and Rayleigh scattering losses were characterized and incorporated into the model. In addition, the absorption and emission cross-section data acquired from the vendor was validated by conducting absorption and emission experiments. 
In the final chapter, various experiments were conducted and the comparison between the experimental and simulated results were shown, which helped this thesis refine the developed model which is presented in Appendix A. The final model presented in this thesis has been shown to predict the values of the output signal power with good accuracy as seen in Section 5.4. 
The adjustment done to the MATLAB model was done by analyzing the equations. It was seen from the equations that define the signal power, Eqn. 2-16 that the only factor that could be modified to account for the difference between the experimental output signal optical power and the simulated output signal optical power was the mode overlap function. A variable was introduced which modified the mode overlap integral to let the value of the mode overlap integral be defined by the user. It was seen that reducing the value of the overlap integral by a factor of 50% made the simulations become more accurate, as shown in Section 5.4. 
In regards to future work, there are a few things that can be suggested. The model as of now is tested for lengths that are compatible with the lengths of the fiber present the Q-switched fiber laser. It would be interesting to conduct experiments with fibers of longer length to test the accuracy of this model. It would also be interesting to test various lengths of the fiber and characterize the mode overlap as a function of the local signal optical power. In addition, extreme situations can be considered with values of extremely high signal powers and low pump powers. 
In conclusion, this thesis presents two different working models that model Erbium-Doped Fiber Amplifiers, one based on the Finite Difference method of solving differential equations while the other is based on the 4th Order Runge-Kutta method. Both models are rigorously tested with theoretical [11]and experimental [12] results from academic papers. An experimental setup is built to verify the data procured from the vendor which allowed for characterization of the setup. Once this was done, various experiments are conducted to verify the model which leads to the hypothesis about the mode overlap function which helps solve the issue with the accuracy of the program. 
Therefore, the final model that is presented in Appendix A achieves the goal of this thesis to build a MATLAB model that would model the fiber amplifier in the Q-switched laser. 
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Finite Difference Model:
tic
 
clc
clear all
close all
disp ('Initialising Variables')
 
%% Scale Factors
 
scale_factor_um     =   1E6;
scale_factor_mm     =   1E3;                        %step size
dzz                 =   1E-3*scale_factor_um;       %step size for Power
 
%% Constants
 
%Physical Constants
h                   =   6.636E-34;                  %Planck constant  (Js)
c                   =   3E8;                        %speed of light   (m/s)
 
%Fiber Constants
L                   =   2*scale_factor_mm;          %length           (mm)
ad                  =   1.75E-6*scale_factor_um;    %fiber radius     (um)
tau                 =   9E-3;                       %transition time  (s)
rhoer               =   8.4e25*scale_factor_um^-3;  %Er doping conc.
 
%Pump and Signal Constants
lambdap             =   974E-9;                     %pump wavelength  (m)
lambdas             =   1550E-9;                    %signal wavelength(m)
nup                 =   c/lambdap;                  %pump frequency   (Hz)
nus                 =   c/lambdas;                  %signal frequency (Hz)
Ep                  =   h*nup;
Es                  =   h*nus;
 
%% Signal Absorption Cross-Section
 
siga=[1.92e-26,1.90e-26,1.88e-26,1.87e-26,1.88e-26,1.88e-26,1.88e-26,...
    1.89e-26,1.91e-26,1.93e-26,1.95e-26,1.98e-26,2.01e-26,2.05e-26,...
    2.09e-26,2.15e-26,2.20e-26,2.26e-26,2.32e-26,2.39e-26,2.48e-26,...
    2.56e-26,2.65e-26,2.75e-26,2.85e-26,2.96e-26,3.08e-26,3.21e-26,...
    3.35e-26,3.50e-26,3.67e-26,3.84e-26,4.02e-26,4.21e-26,4.42e-26,...
    4.66e-26,4.89e-26,5.16e-26,5.44e-26,5.73e-26,6.03e-26,6.36e-26,...
    6.73e-26,7.10e-26,7.48e-26,7.88e-26,8.34e-26,8.82e-26,9.29e-26,...
    9.73e-26,1.03e-25,1.08e-25,1.14e-25,1.19e-25,1.25e-25,1.31e-25,...
    1.37e-25,1.43e-25,1.49e-25,1.56e-25,1.63e-25,1.69e-25,1.75e-25,...
    1.82e-25,1.89e-25,1.97e-25,2.02e-25,2.09e-25,2.16e-25,2.22e-25,...
    2.27e-25,2.35e-25,2.43e-25,2.47e-25,2.53e-25,2.60e-25,2.66e-25,...
    2.71e-25,2.75e-25,2.81e-25,2.87e-25,2.91e-25,2.95e-25,2.99e-25,...
    3.02e-25,3.08e-25,3.11e-25,3.12e-25,3.17e-25,3.18e-25,3.20e-25,...
    3.22e-25,3.25e-25,3.27e-25,3.29e-25,3.30e-25,3.32e-25,3.33e-25,...
    3.34e-25,3.36e-25,3.37e-25,3.39e-25,3.41e-25,3.43e-25,3.45e-25,...
    3.47e-25,3.50e-25,3.54e-25,3.57e-25,3.63e-25,3.66e-25,3.74e-25,...
    3.81e-25,3.87e-25,3.96e-25,4.05e-25,4.14e-25,4.27e-25,4.41e-25,...
    4.58e-25,4.79e-25,5.16e-25,5.45e-25,5.77e-25,6.08e-25,6.39e-25,...
    6.63e-25,6.80e-25,6.90e-25,6.92e-25,6.83e-25,6.64e-25,6.39e-25,...
    6.05e-25,5.66e-25,5.25e-25,4.88e-25,4.58e-25,4.37e-25,4.23e-25,...
    4.12e-25,4.05e-25,3.97e-25,3.89e-25,3.79e-25,3.69e-25,3.57e-25,...
    3.46e-25,3.36e-25,3.26e-25,3.16e-25,3.08e-25,3.00e-25,2.93e-25,...
    2.86e-25,2.78e-25,2.72e-25,2.64e-25,2.56e-25,2.48e-25,2.37e-25,...
    2.27e-25,2.17e-25,2.06e-25,1.95e-25,1.85e-25,1.74e-25,1.64e-25,...
    1.54e-25,1.44e-25,1.35e-25,1.26e-25,1.18e-25,1.10e-25,1.04e-25,...
    9.69e-26,9.14e-26,8.58e-26,8.12e-26,7.66e-26,7.29e-26,6.93e-26,...
    6.60e-26,6.34e-26,6.03e-26,5.86e-26,5.58e-26,5.41e-26,5.21e-26,...
    5.00e-26,4.83e-26,4.66e-26,4.51e-26,4.36e-26,4.21e-26,4.07e-26,...
    3.94e-26,3.80e-26,3.68e-26,3.56e-26,3.44e-26,3.33e-26,3.22e-26,...
    3.12e-26,3.01e-26,2.91e-26,2.81e-26,2.72e-26,2.63e-26,2.54e-26,...
    2.45e-26,2.36e-26,2.29e-26,2.21e-26,2.13e-26,2.05e-26,1.97e-26,...
    1.91e-26,1.84e-26,1.78e-26]*scale_factor_um^2;
 
%% Signal Emission Cross-Section
 
sige=[9.09e-28,9.22e-28,9.35e-28,9.55e-28,9.80e-28,1.01e-27,1.03e-27,...
    1.06e-27,1.10e-27,1.14e-27,1.18e-27,1.23e-27,1.28e-27,1.34e-27,...
    1.40e-27,1.47e-27,1.55e-27,1.63e-27,1.71e-27,1.81e-27,1.92e-27,...
    2.03e-27,2.15e-27,2.29e-27,2.43e-27,2.59e-27,2.76e-27,2.95e-27,...
    3.16e-27,3.38e-27,3.62e-27,3.88e-27,4.16e-27,4.47e-27,4.81e-27,...
    5.18e-27,5.57e-27,6.02e-27,6.50e-27,7.02e-27,7.56e-27,8.16e-27,...
    8.84e-27,9.55e-27,1.03e-26,1.11e-26,1.20e-26,1.30e-26,1.41e-26,...
    1.51e-26,1.63e-26,1.75e-26,1.89e-26,2.03e-26,2.18e-26,2.34e-26,...
    2.49e-26,2.66e-26,2.85e-26,3.04e-26,3.25e-26,3.45e-26,3.67e-26,...
    3.90e-26,4.15e-26,4.41e-26,4.64e-26,4.91e-26,5.18e-26,5.45e-26,...
    5.72e-26,6.06e-26,6.39e-26,6.65e-26,6.97e-26,7.33e-26,7.66e-26,...
    7.98e-26,8.29e-26,8.66e-26,9.04e-26,9.38e-26,9.73e-26,1.01e-25,...
    1.04e-25,1.09e-25,1.12e-25,1.15e-25,1.19e-25,1.23e-25,1.26e-25,...
    1.30e-25,1.34e-25,1.38e-25,1.42e-25,1.45e-25,1.49e-25,1.53e-25,...
    1.57e-25,1.62e-25,1.66e-25,1.70e-25,1.75e-25,1.80e-25,1.85e-25,...
    1.90e-25,1.96e-25,2.02e-25,2.09e-25,2.17e-25,2.24e-25,2.33e-25,...
    2.42e-25,2.52e-25,2.64e-25,2.75e-25,2.88e-25,3.03e-25,3.20e-25,...
    3.39e-25,3.62e-25,3.98e-25,4.30e-25,4.65e-25,5.01e-25,5.37e-25,...
    5.69e-25,5.96e-25,6.18e-25,6.33e-25,6.38e-25,6.33e-25,6.22e-25,...
    6.02e-25,5.75e-25,5.44e-25,5.17e-25,4.95e-25,4.82e-25,4.76e-25,...
    4.75e-25,4.76e-25,4.76e-25,4.76e-25,4.74e-25,4.70e-25,4.65e-25,...
    4.61e-25,4.56e-25,4.51e-25,4.47e-25,4.44e-25,4.42e-25,4.40e-25,...
    4.38e-25,4.36e-25,4.34e-25,4.31e-25,4.26e-25,4.21e-25,4.10e-25,...
    4.01e-25,3.91e-25,3.79e-25,3.66e-25,3.54e-25,3.40e-25,3.26e-25,...
    3.13e-25,2.99e-25,2.86e-25,2.73e-25,2.61e-25,2.49e-25,2.38e-25,...
    2.27e-25,2.18e-25,2.08e-25,2.01e-25,1.94e-25,1.87e-25,1.82e-25,...
    1.76e-25,1.72e-25,1.68e-25,1.65e-25,1.61e-25,1.58e-25,1.55e-25,...
    1.52e-25,1.50e-25,1.47e-25,1.45e-25,1.42e-25,1.40e-25,1.38e-25,...
    1.36e-25,1.33e-25,1.31e-25,1.29e-25,1.26e-25,1.24e-25,1.22e-25,...
    1.20e-25,1.17e-25,1.14e-25,1.12e-25,1.09e-25,1.06e-25,1.03e-25,...
    9.99e-26,9.66e-26,9.32e-26,8.93e-26,8.54e-26,8.13e-26,7.68e-26,...
    7.24e-26,6.75e-26,6.30e-26]*scale_factor_um^2;
 
%% Fiber Cross-Sections for P&S Wavelengths
 
sigpa               =   2.35e-25*scale_factor_um^2; %cross sec - pump abs
sigpe               =   0;                          %cross sec - pump em
sigsa               =   3.16e-25*scale_factor_um^2; %cross sec - sig abs
sigse               =   4.47e-25*scale_factor_um^2; %cross sec - sig em
 
%% Signal Wavelengths and dv calc
 
lambda=[1400,1401,1402,1403,1404,1405,1406,1407,1408,1409,1410,1411,...
    1412,1413,1414,1415,1416,1417,1418,1419,1420,1421,1422,1423,1424,...
    1425,1426,1427,1428,1429,1430,1431,1432,1433,1434,1435,1436,1437,...
    1438,1439,1440,1441,1442,1443,1444,1445,1446,1447,1448,1449,1450,...
    1451,1452,1453,1454,1455,1456,1457,1458,1459,1460,1461,1462,1463,...
    1464,1465,1466,1467,1468,1469,1470,1471,1472,1473,1474,1475,1476,...
    1477,1478,1479,1480,1481,1482,1483,1484,1485,1486,1487,1488,1489,...
    1490,1491,1492,1493,1494,1495,1496,1497,1498,1499,1500,1501,1502,...
    1503,1504,1505,1506,1507,1508,1509,1510,1511,1512,1513,1514,1515,...
    1516,1517,1518,1519,1520,1521,1522,1523,1524,1525,1526,1527,1528,...
    1529,1530,1531,1532,1533,1534,1535,1536,1537,1538,1539,1540,1541,...
    1542,1543,1544,1545,1546,1547,1548,1549,1550,1551,1552,1553,1554,...
    1555,1556,1557,1558,1559,1560,1561,1562,1563,1564,1565,1566,1567,...
    1568,1569,1570,1571,1572,1573,1574,1575,1576,1577,1578,1579,1580,...
    1581,1582,1583,1584,1585,1586,1587,1588,1589,1590,1591,1592,1593,...
    1594,1595,1596,1597,1598,1599,1600,1601,1602,1603,1604,1605,1606,...
    1607,1608,1609,1610,1611,1612,1613,1614,1615,1616,1617,1618,1619]*1e-9;
freq                =   c./lambda;
length_lambda       =   length(lambda);
 
%calculation of dv for the ASE loops
for i=2:1:length_lambda
    dv(i)           =   (c/lambda(1,i))-(c/lambda(1,i-1));
end
 
%% Mode Mismatch Calc
wavelength_1        =   974E-9;
wavelength_2        =   1550E-9;
%SMF-28E
smf_r               =   (8.20E-6)/2;
smf_NA              =   0.14;
%V Numbers
smf_V_974           =   (2*pi*smf_r*smf_NA)/wavelength_1;
smf_V_1550          =   (2*pi*smf_r*smf_NA)/wavelength_2;
%MFD
smf_w_974           =   smf_r*(0.65+(1.619/smf_V_974^1.5)+(2.879/smf_V_974^6));
smf_w_1550          =   smf_r*(0.65+(1.619/smf_V_1550^1.5)+(2.879/smf_V_1550^6));
smf_MFD_974         =   2*smf_w_974;
smf_MFD_1550        =   2*smf_w_1550;
 
%Er110-4/125
Er_r                =   (3.50E-06)/2;
Er_NA               =   0.2;
Er_V_974            =   (2*pi*Er_r*Er_NA)/wavelength_1;
Er_V_1550           =   (2*pi*Er_r*Er_NA)/wavelength_2;
%MFD
Er_w_974           =   Er_r*(0.65+(1.619*Er_V_974^-1.5)+(2.879*Er_V_974^-6));
Er_w_1550          =   Er_r*(0.65+(1.619/Er_V_1550^1.5)+(2.879/Er_V_1550^6));
Er_MFD_974         =   2*Er_w_974;
Er_MFD_1550        =   2*Er_w_1550;
 
%% Bessel Function Definition
 
r_step              =   0.1;                        %radius step
r                   =   0:r_step:10;
r_temp              =   round(ad*10,0);
r_len               =   length(r);
 
v1                  =   1.1428*Er_V_974-0.996;            %Approximation from
u1                  =   (Er_V_974^2-v1^2)^0.5;            %Jeunhomme
v2                  =   1.1428*Er_V_1550-0.996;            %Single Mode Fiber
u2                  =   (Er_V_1550^2-v2^2)^0.5;            %1983
 
%for r<ad
%choose the final value for i based on the value of the radius of the fiber
 
for i=1:1:r_temp+1
    m(i)            =   (1/pi)*((v1/(ad*Er_V_974))*...
                        (besselj(0,(u1*r(i))/ad)/besselj(1,u1)))^2;
    n(i)            =   (1/pi)*((v2/(ad*Er_V_1550))*...
                        (besselj(0,(u2*r(i))/ad)/besselj(1,u2)))^2;
end
 
%for r>ad
 
for i=r_temp+2:1:r_len
    m(i)            =   (1/pi)*((u1/(ad*Er_V_974))*...
                        (besselk(0,(v1*r(i))/ad)/besselk(1,v1)))^2;
    n(i)            =   (1/pi)*((u2/(ad*Er_V_1550))*...
                        (besselk(0,(v2*r(i))/ad)/besselk(1,v2)))^2;
end
 
%flipping the values
m_new               =   fliplr(m);
n_new               =   fliplr(n);
m_new               =   m_new(1:end-1);
n_new               =   n_new(1:end-1);
 
%% Modes
%concantenation of the two arrays to create the total mode
Ip01                =   [m_new,m];
Is01                =   [n_new,n];
 
R                   =   length(Ip01);
LL                  =   277;
 
%% Fiber Loss Terms
L_mismatch_974      =   -10*log10((4/((smf_MFD_974/Er_MFD_974)+...
                        (Er_MFD_974/smf_MFD_974))^2));
L_mismatch_1550     =   -10*log10((4/((smf_MFD_1550/Er_MFD_1550)+...
                        (Er_MFD_1550/smf_MFD_1550))^2));
T_WDM_974           =   1;                          %temp percent
T_WDM_1550          =   0.7;                        %percent
splice_loss         =   0.85;                       %percent
 
%% Initialisation
%Power Initialization
%To be entered in mW
 
%Array Initialization
 
Rpa     =zeros(L+1,R);                  Rpe     =zeros(L+1,R);
Wsa     =zeros(L+1,R);                  Wse     =zeros(L+1,R);
N1      =zeros(L+1,R);                  N2      =zeros(L+1,R);
 
Pp      =zeros(1,L+1);                  Ps      =zeros(1,L+1);
dPp     =zeros(1,L+1);                  dPs     =zeros(1,L+1);
Pp1     =0.083081;                      Ps1     =250e-6;
 
Pp(1)   =(10^(-0.1*L_mismatch_974))*(splice_loss*(T_WDM_974*Pp1));
Ps(1)   =(10^(-0.1*L_mismatch_1550))*(splice_loss*(T_WDM_1550*Ps1));
 
Sase_p  =zeros(L+1,length(lambda));     dSase_p =zeros(L+1,length(lambda));
Sase_n  =zeros(L+1,length(lambda));     dSase_n =zeros(L+1,length(lambda));
Sase    =zeros(L+1,length(lambda));
 
%Flag for ASE                       %1=ON                           %0=OFF
S_Flag  =-1;
 
t_init  =toc;
 
formatSpec  ='Variables initialized at %f seconds\n';
fprintf(formatSpec,t_init)
switchintegral = 0;
 
% 
tic
 
%% First forward execution
 
for i=1:1:L
    
    for j=1:1:R
        
        %RATE EQUATIONS:
        
        Rpa(i,j)=((sigpa*Pp(i))/(Ep))*Ip01(1,j);
        Rpe(i,j)=((sigpe*Pp(i))/(Ep))*Ip01(1,j);
        
        Wsa(i,j)=(((sigsa*Ps(i))/(Es))+...
            sum(siga(1,:).*Sase(i,:).*dv(1,:)))*Is01(1,j);
        Wse(i,j)=(((sigse*Ps(i))/(Es))+...
            sum(sige(1,:).*Sase(i,:).*dv(1,:)))*Is01(1,j);
        
        %POPULATION EQUATIONS:
 
        N2(i,j)=rhoer*((Rpa(i,j)+Wsa(i,j))/...
            (Rpa(i,j)+Rpe(i,j)+Wsa(i,j)+Wse(i,j)+(1/tau)));
        N1(i,j)=rhoer*((Rpe(i,j)+Wse(i,j)+(1/tau))/...
            (Rpa(i,j)+Rpe(i,j)+Wsa(i,j)+Wse(i,j)+(1/tau)));
        
        %ASE EQUATIONS:
        
        for v=1:1:length_lambda
            Ge(v)=sige(v)*2*pi*...
                sum(N2(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
            Ga(v)=siga(v)*2*pi*...
                sum(N1(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
            
            dSase_n(i,v)=-2*h*freq(v)*Ge(v)-(Ge(v)-Ga(v))*Sase_n(i,v);
            dSase_p(i,v)=+2*h*freq(v)*Ge(v)+(Ge(v)-Ga(v))*Sase_p(i,v);
            
            Sase_n(i+1,v)=Sase_n(i,v)+dSase_n(i,v)*dzz;
            Sase_p(i+1,v)=Sase_p(i,v)+dSase_p(i,v)*dzz;
                        
            Sase(i+1,v)=(Sase_p(i+1,v)+Sase_n(i+1,v))*Sase_Flag;
        end
        
    end
    
    %computation of gamma for emission and absorption
    
    Ges(i)=sigse*2*pi*sum(N2(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
    Gas(i)=sigsa*2*pi*sum(N1(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
    
    Gep(i)=sigpe*2*pi*sum(N2(i,101:121).*Ip01(1,101:121).*r(1:21)*r_step);
    Gap(i)=sigpa*2*pi*sum(N1(i,101:121).*Ip01(1,101:121).*r(1:21)*r_step);
    
    %computation of differential power
    %i.e., change of power in the step
    
    dPp(i)=((Gep(i)-Gap(i))*Pp(i));
    dPs(i)=((Ges(i)-Gas(i))*Ps(i));
    
    %computation of power in the next step
    
    Pp(i+1)=Pp(i)+dPp(i)*dzz;
    Ps(i+1)=Ps(i)+dPs(i)*dzz;
 
end
 
t_ffe=toc;
formatSpec='First forward execution concluded at %f seconds';
fprintf(formatSpec,t_ffe)
 
%%
tic
 
%% First backward execution
%calculates backward ASE
 
for i=L+1:-1:1
    if(i~=1)
    for j=1:1:R
        
        %RATE EQUATIONS
        Rpa(i-1,j)=((sigpa*Pp(i))/(Ep))*Ip01(1,j);
        Rpe(i-1,j)=((sigpe*Pp(i))/(Ep))*Ip01(1,j);
        
        Wsa(i-1,j)=(((sigsa*Ps(i))/(Es))+...
            sum(siga(1,:).*Sase(i,:).*dv(1,:)))*Is01(1,j);
        Wse(i-1,j)=(((sigse*Ps(i))/(Es))+...
            sum(sige(1,:).*Sase(i,:).*dv(1,:)))*Is01(1,j);
 
        %POPULATION EQUATIONS
        N2(i-1,j)=(1/10)*rhoer*((Rpa(i-1,j)+Wsa(i-1,j))/...
            (Rpa(i-1,j)+Rpe(i-1,j)+Wsa(i-1,j)+Wse(i-1,j)+(1/tau)));
        N1(i-1,j)=(1/10)*rhoer*((Rpe(i-1,j)+Wse(i-1,j)+(1/tau))/...
            (Rpa(i-1,j)+Rpe(i-1,j)+Wsa(i-1,j)+Wse(i-1,j)+(1/tau)));
        
        %ASE EQUATIONS
        for v=1:1:length_lambda
            Ge(v)=sige(v)*2*pi*...
                sum(N2(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
            Ga(v)=siga(v)*2*pi*...
                sum(N1(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
            
            dSase_n(i,v)=-2*h*freq(v)*Ge(v)-(Ge(v)-Ga(v))*Sase_n(i,v);
            dSase_p(i,v)=+2*h*freq(v)*Ge(v)+(Ge(v)-Ga(v))*Sase_p(i,v);
            
            Sase_n(i-1,v)=Sase_n(i,v)+dSase_n(i,v)*(-1)*dzz;
            Sase_p(i-1,v)=Sase_p(i,v)+dSase_p(i,v)*(-1)*dzz;
                        
            Sase(i-1,v)=(Sase_p(i-1,v)+Sase_n(i-1,v))*Sase_Flag;
        end
        
    end
    
    %EMISSION AND ABSORPTION FACTORS
    Ges(i-1)=sigse*2*pi*...
        sum(N2(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
    Gas(i-1)=sigsa*2*pi*...
        sum(N1(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
    
    Gep(i-1)=sigpe*2*pi*...
        sum(N2(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
    Gap(i-1)=sigpa*2*pi*...
        sum(N1(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
        
    %FINITE DIFFERENCE EQUATIONS
    dPp(i-1)=(Gep(i-1)-Gap(i-1))*Pp(i);
    dPs(i-1)=(Ges(i-1)-Gas(i-1))*Ps(i);
    
    Pp(i-1)=Pp(i)+dPp(i-1)*dzz;
    Ps(i-1)=Ps(i)+dPs(i-1)*dzz;
    end
    
end
 
t_fbe=toc;
formatSpec='First backward execution concluded at %f seconds';
fprintf(formatSpec,t_fbe)
 
 
%% Backward Plot
 
x=(1:1:L+1)/scale_factor_mm;
figure(1)
plot(x,Pp,x,Ps)
legend('Pump','Signal')
title('Inverse Pump and Signal powers');
xlabel('Distance (m)');
ylabel('Power (mW)');
 
%%
tic
 
%% Resetting Terms
 
Pp(1)=Pp1;                              Ps(1)=Ps1;
 
Sase_p=zeros(L+1,length(lambda));       dSase_p=zeros(L+1,length(lambda));
 
Sase_n(2:L+1,:)=0;                      dSase_n=zeros(L+1,length(lambda));
 
Sase=zeros(L+1,length(lambda));
 
%% Final Iteration
 
for i=1:1:L
    
    if switchintegral == 1
        %Ip01              =   (1/0.7984)*[m_new,m];
        %Is01              =   (10/0.4870)*[n_new,n];
    end
    
    
    for j=1:1:R
        
        %RATE EQUATIONS:
        
        Rpa(i,j)    =   ((sigpa*Pp(i))/(Ep))*Ip01(1,j);
        Rpe(i,j)    =   ((sigpe*Pp(i))/(Ep))*Ip01(1,j);
        
        Wsa(i,j)    =   (((sigsa*Ps(i))/(Es))+...
                        sum(siga(1,:).*Sase(i,:).*dv(1,:)))*Is01(1,j);
        Wse(i,j)    =   (((sigse*Ps(i))/(Es))+...
                        sum(sige(1,:).*Sase(i,:).*dv(1,:)))*Is01(1,j);
        
        %POPULATION EQUATIONS:
        
        N2(i,j)     =   rhoer*((Rpa(i,j)+Wsa(i,j))/...
                         (Rpa(i,j)+Rpe(i,j)+Wsa(i,j)+Wse(i,j)+(1/tau)));
        N1(i,j)     =   rhoer*((Rpe(i,j)+Wse(i,j)+(1/tau))/...
                        (Rpa(i,j)+Rpe(i,j)+Wsa(i,j)+Wse(i,j)+(1/tau)));
        
        %ASE EQUATIONS:
        
        for v=1:1:length_lambda
            Ge(v)   =   sige(v)*2*pi*sum...
                        (N2(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
            Ga(v)   =   siga(v)*2*pi*sum...
                        (N1(i,101:121).*Is01(1,101:121).*r(1:21)*r_step);
            
            dSase_n(i,v)    =   -2*h*freq(v)*...
                                Ge(v)-(Ge(v)-Ga(v))*Sase_n(i,v);
            dSase_p(i,v)    =   +2*h*freq(v)*...
                                Ge(v)+(Ge(v)-Ga(v))*Sase_p(i,v);
           
            Sase_n(i+1,v)   =   Sase_n(i,v)+dSase_n(i,v)*dzz;
            Sase_p(i+1,v)   =   Sase_p(i,v)+dSase_p(i,v)*dzz;
                        
            Sase(i+1,v)     =   (Sase_p(i+1,v)+Sase_n(i+1,v))*S_Flag;
        end
        
    end
    
    % computation of gamma for emission and absorption
    
    Ges(i)          =   sigse*2*pi*sum(N2(i,r_len:(r_len+r_temp)).*Is01(1,r_len:(r_len+r_temp)).*r(1:(r_temp+1))*r_step);
    Gas(i)          =   sigsa*2*pi*sum(N1(i,r_len:(r_len+r_temp)).*Is01(1,r_len:(r_len+r_temp)).*r(1:(r_temp+1))*r_step);
    
    Gep(i)          =   sigpe*2*pi*sum(N2(i,r_len:(r_len+r_temp)).*Ip01(1,r_len:(r_len+r_temp)).*r(1:(r_temp+1))*r_step);
    Gap(i)          =   sigpa*2*pi*sum(N1(i,r_len:(r_len+r_temp)).*Ip01(1,r_len:(r_len+r_temp)).*r(1:(r_temp+1))*r_step);
    
    %computation of differential power
    %i.e., change of power in the step
    
    dPp(i)          =   ((Gep(i)-Gap(i))*Pp(i));
    dPs(i)          =   ((Ges(i)-Gas(i))*Ps(i));
    
    %computation of power in the next step
    
    Pp(i+1)         =   (Pp(i)+dPp(i)*dzz);
    Ps(i+1)         =   (Ps(i)+dPs(i)*dzz);
    
%     if i>1
%         if Ps(i)<Ps(i-1)
%             switchintegral = 1;
%         end
%     end
 
end
 
t_sfe=toc;
formatSpec='Second forward execution concluded at %f seconds\n';
fprintf(formatSpec,t_sfe)
 
tic
x                   =   (1:1:L+1)/scale_factor_mm;
 
%% Figure 2 
figure(2)
plot(x,Pp,x,Ps)
legend('Pump','Signal')
title('Pump and Signal powers');
xlabel('Distance (m)');
ylabel('Power (mW)');
 
%% Figure 3
figure(3)
for i =1:1:L+1
Gain(i)=10*log10(Ps(i)/Ps(1));
end
x=(1:1:L+1)/scale_factor_mm;
plot(x,Gain)
title('Gain vs Length');
xlabel('Distance (m)');
ylabel('Gain (dB)');
 
%% Figure 4
figure(4)
% Lambda
lambda=[1400,1401,1402,1403,1404,1405,1406,1407,1408,1409,1410,1411,...
    1412,1413,1414,1415,1416,1417,1418,1419,1420,1421,1422,1423,1424,...
    1425,1426,1427,1428,1429,1430,1431,1432,1433,1434,1435,1436,1437,...
    1438,1439,1440,1441,1442,1443,1444,1445,1446,1447,1448,1449,1450,...
    1451,1452,1453,1454,1455,1456,1457,1458,1459,1460,1461,1462,1463,...
    1464,1465,1466,1467,1468,1469,1470,1471,1472,1473,1474,1475,1476,...
    1477,1478,1479,1480,1481,1482,1483,1484,1485,1486,1487,1488,1489,...
    1490,1491,1492,1493,1494,1495,1496,1497,1498,1499,1500,1501,1502,...
    1503,1504,1505,1506,1507,1508,1509,1510,1511,1512,1513,1514,1515,...
    1516,1517,1518,1519,1520,1521,1522,1523,1524,1525,1526,1527,1528,...
    1529,1530,1531,1532,1533,1534,1535,1536,1537,1538,1539,1540,1541,...
    1542,1543,1544,1545,1546,1547,1548,1549,1550,1551,1552,1553,1554,...
    1555,1556,1557,1558,1559,1560,1561,1562,1563,1564,1565,1566,1567,...
    1568,1569,1570,1571,1572,1573,1574,1575,1576,1577,1578,1579,1580,...
    1581,1582,1583,1584,1585,1586,1587,1588,1589,1590,1591,1592,1593,...
    1594,1595,1596,1597,1598,1599,1600,1601,1602,1603,1604,1605,1606,...
    1607,1608,1609,1610,1611,1612,1613,1614,1615,1616,1617,1618,1619];
% End Lambda
plot(lambda,sum(Sase))
title('Sase vs. Wavelengths');
xlabel('Wavelength (nm');
ylabel('Sase (mW)');
 
%%
% Gain(L)
t_ffe=0;
t_fbe=0;
t_conclude=toc;
t_total=t_init+t_ffe+t_fbe+t_sfe+t_conclude;
formatSpec='Total Time needed is %f seconds\n';
fprintf(formatSpec,t_total)
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4th Order Runge-Kutta Model: 
Main Function: 
% tic
 
%%
clc
clear all
close all
 
%%
%Initial Conditions for Power
Pp(1)           =   5.397e-3;
Ps(1)           =   11e-6;
global Sase;
Sase(1)         =   0;
 
%%
%Scale Factors
sf_um           =   1e6;
sf_mm           =   1e3;                %step size
 
%fiber constants
h               =   6.636e-34;
ad              =   1.75e-6*sf_um;
rhoer           =   4.86e24*sf_um^-3;
tau             =   9e-3;
 
%cross-sections
sigpa           =   5.8e-25*sf_um^2;    %Pump Absorption CS     (um^2)
sigpe           =   0;                  %Pump Emission CS       (um^2)
sigsa           =   2.92309e-25*sf_um^2;%Signal Absorption CS   (um^2)
sigse           =   3.47566e-25*sf_um^2;%Signal Emission CS     (um^2)
 
%Constants
dzz             =   1e-3*sf_um;             %step size for Power
L               =   12*sf_mm;               %length of the fiber (mm)
 
%constants
lambdap         =   980e-9;             %Pump wavelength        %m
lambdas         =   1550e-9;            %Signal wavelength      %m
c               =   3e8;                %Speed of light         %m
nup             =   c/lambdap;          %Pump frequency         %Hz
nus             =   c/lambdas;          %Signal frequency       %Hz
 
%%
%bessel
r_step          =   0.1e-6*sf_um;           %radius step
r               =   0:r_step:10e-6*sf_um;
NA              =   0.2;                    %Numerical Aperture
lambda          =   [0.980e-6; 1.530e-6]*sf_um;%Re-defn for Bessel func.
V1              =   (2*pi*ad*NA)/lambda(1); %Fiber number V for L1
V2              =   (2*pi*ad*NA)/lambda(2); %Fiber number V for L2
 
v1              =   1.1428*V1-0.996;        %Approximation from
u1              =   (V1^2-v1^2)^0.5;        %Jeunhomme
v2              =   1.1428*V2-0.996;        %Single Mode Fiber Optics
u2              =   (V2^2-v2^2)^0.5;        %1983
 
%for r<ad
%choose the final value for i based on the value of the radius of the fiber
 
for i=1:1:18
    m(i)        =   (1/pi)*((v1/(ad*V1))*...
                    (besselj(0,(u1*r(i))/ad)/besselj(1,u1)))^2;
    n(i)        =   (1/pi)*((v2/(ad*V2))*...
                    (besselj(0,(u2*r(i))/ad)/besselj(1,u2)))^2;
end
 
%for r>ad
 
for i=19:1:101
    m(i)        =   (1/pi)*((u1/(ad*V1))*...
                    (besselk(0,(v1*r(i))/ad)/besselk(1,v1)))^2;
    n(i)        =   (1/pi)*((u2/(ad*V2))*...
                    (besselk(0,(v2*r(i))/ad)/besselk(1,v2)))^2;
end
 
%flipping the values
m_new           =   fliplr(m);
n_new           =   fliplr(n);
m_new           =   m_new(1:end-1);
n_new           =   n_new(1:end-1);
 
%Modes
%concantenation of the two arrays to create the total mode
Ip01            =   (1.55/0.878236845791598)*[m_new,m];
Is01            =   (1.55/0.592829910946522)*[n_new,n];
 
%%
%Function Handles
 
dPp             =   @(dzz,Pp,Ps)(Gp('E',Pp,Ps,r,Is01,Ip01)-...
                    Gp('A',Pp,Ps,r,Is01,Ip01))*Pp;
 
dPs             =   @(dzz,Pp,Ps)(Gs('E',Pp,Ps,r,Is01,Ip01)-...
                    Gs('A',Pp,Ps,r,Is01,Ip01))*Ps;
 
%%
for i=1:1:L
    
    k1Pp       =   dPp(dzz,   Pp(i),              Ps(i));
    k1Ps       =   dPs(dzz,   Pp(i),              Ps(i));
    
    k2Pp       =   dPp(dzz,   Pp(i)+dzz/2*k1Pp,   Ps(i)+dzz/2*k1Ps);
    k2Ps       =   dPs(dzz,   Pp(i)+dzz/2*k1Pp,   Ps(i)+dzz/2*k1Ps);
    
    k3Pp       =   dPp(dzz,   Pp(i)+dzz/2*k2Pp,   Ps(i)+dzz/2*k2Ps);
    k3Ps       =   dPs(dzz,   Pp(i)+dzz/2*k2Pp,   Ps(i)+dzz/2*k2Ps);
    
    k4Pp       =   dPp(dzz,   Pp(i)+dzz*k3Pp,     Ps(i)+dzz*k3Ps);
    k4Ps       =   dPs(dzz,   Pp(i)+dzz*k3Pp,     Ps(i)+dzz*k3Ps);
    
    A(i)       =   dzz/6  *  (k1Pp  +  2*k2Pp  +  2*k3Pp  +  k4Pp);
    B(i)       =   dzz/6  *  (k1Ps  +  2*k2Ps  +  2*k3Ps  +  k4Ps);
        
    Pp(i+1)    =   Pp(i)  +  A(i);
    Ps(i+1)    =   Ps(i)  +  B(i);
        
end
 
%%
z               =   (1:1:L+1)/sf_mm;
 
for i=1:1:L+1
    Gain(i)     =   10*log10(Ps(i)/Ps(1));
end
 
% %%
% figure(1)
% plot    (z,Pp,z,Ps)
% legend  ('Pp = Pump','Ps = Signal')
% title   ('Pump and Signal powers');
% xlabel  ('Distance (m)');
% ylabel  ('Power (mW)');
% 
%%
figure(2)
plot    (z,Gain)
legend  ('Gain')
title   ('Gain vs. Length');
xlabel  ('Distance (m)');
ylabel  ('Gain (dB)');
 
%%
Gain_Max        =   max(Gain);
 
formatSpec='\nMax Gain is                      :%fdB\n';
fprintf(formatSpec,Gain_Max)
 
Gain_End        =   Gain(i);
 
formatSpec='\nGain at the end of the fiber is  :%fdB\n';
fprintf(formatSpec,Gain_End)
 
% total_t         =   toc;
% 
% formatSpec='\nTime for execution               :%fseconds\n';
% fprintf(formatSpec,total_t)

Gs.m
function G      =   Gs(P,Pp,Ps,r,Is01,Ip01)
 
sf_um           =   1e6;
 
%fiber constants
h               =   6.636e-34;
ad              =   1.75e-6*sf_um;
rhoer           =   4.86e24*sf_um^-3;
tau             =   9e-3;
 
%constants
lambdap         =   980e-9;             %Pump wavelength        %m
lambdas         =   1550e-9;            %Signal wavelength      %m
c               =   3e8;                %Speed of light         %m
nup             =   c/lambdap;          %Pump frequency         %Hz
nus             =   c/lambdas;          %Signal frequency       %Hz
 
%cross-sections
sigpa           =   5.8e-25*sf_um^2;    %Pump Absorption CS     (um^2)
sigpe           =   0;                  %Pump Emission CS       (um^2)
sigsa           =   2.92309e-25*sf_um^2;%Signal Absorption CS   (um^2)
sigse           =   3.47566e-25*sf_um^2;%Signal Emission CS     (um^2)
 
r_step          =   0.1e-6*sf_um;       %radius step
R               =   length(Ip01);
 
for i=1:1:R
    
    Rpa(i)      =   (sigpa*Pp*Ip01(1,i))/(h*nup);
    Rpe(i)      =   (sigpe*Pp*Ip01(1,i))/(h*nup);
    Wsa(i)      =   (sigsa*Ps*Is01(1,i))/(h*nus);
    Wse(i)      =   (sigse*Ps*Is01(1,i))/(h*nus);
    
    N2(i)       =   rhoer*(Rpa(i)+Wsa(i))/...
                    (Rpa(i)+Rpe(i)+Wsa(i)+Wse(i)+(1/tau));
    N1(i)       =   rhoer*(Rpe(i)+Wse(i)+(1/tau))/...
                    (Rpa(i)+Rpe(i)+Wsa(i)+Wse(i)+(1/tau));
 
end
 
 
if(P=='E')
     Gs         =   sigse*2*pi*...
                    sum(N2(101:121).*Is01(1,101:121).*r(1:21)*r_step);
end
 
if(P=='A')
     Gs         =   sigsa*2*pi*...
                    sum(N1(101:121).*Is01(1,101:121).*r(1:21)*r_step);
end
 
G=Gs;

Gp.m
function G      =   Gp(P,Pp,Ps,r,Is01,Ip01)
 
sf_um           =   1e6;
 
%fiber constants
h               =   6.636e-34;
ad              =   1.75e-6*sf_um;
rhoer           =   4.86e24*sf_um^-3;
tau             =   9e-3;
 
%constants
lambdap         =   980e-9;             %Pump wavelength        %m
lambdas         =   1550e-9;            %Signal wavelength      %m
c               =   3e8;                %Speed of light         %m
nup             =   c/lambdap;          %Pump frequency         %Hz
nus             =   c/lambdas;          %Signal frequency       %Hz
 
%cross-sections
sigpa           =   5.8e-25*sf_um^2;    %Pump Absorption CS     (um^2)
sigpe           =   0;                  %Pump Emission CS       (um^2)
sigsa           =   2.92309e-25*sf_um^2;%Signal Absorption CS   (um^2)
sigse           =   3.47566e-25*sf_um^2;%Signal Emission CS     (um^2)
 
r_step          =   0.1e-6*sf_um;       %radius step
R               =   length(Ip01);
 
for i=1:1:R
    
    Rpa(i)      =   (sigpa*Pp*Ip01(1,i))/(h*nup);
    Rpe(i)      =   (sigpe*Pp*Ip01(1,i))/(h*nup);
    Wsa(i)      =   (sigsa*Ps*Is01(1,i))/(h*nus);
    Wse(i)      =   (sigse*Ps*Is01(1,i))/(h*nus);
    
    N2(i)       =   rhoer*(Rpa(i)+Wsa(i))/...
                    (Rpa(i)+Rpe(i)+Wsa(i)+Wse(i)+(1/tau));
    N1(i)       =   rhoer*(Rpe(i)+Wse(i)+(1/tau))/...
                    (Rpa(i)+Rpe(i)+Wsa(i)+Wse(i)+(1/tau));
 
end
 
 
if(P=='E')
     Gp         =   sigpe*2*pi*...
                    sum(N2(101:121).*Ip01(1,101:121).*r(1:21)*r_step);
end
 
if(P=='A')
     Gp         =   sigpa*2*pi*...
                    sum(N1(101:121).*Ip01(1,101:121).*r(1:21)*r_step);
end
 
G=Gp;
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