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Eigenvalue Algorithm for Hausdorff Dimension
on Complex Kleinian Groups

By Jacob Linden and Xuqing Wu

Abstract. In this manuscript, we present computational results approximating the Hausdorff dimension

for the limit sets of complex Kleinian groups. We apply McMullen’s eigenvalue algorithm [5] in symmetric

and non-symmetric examples of complex Kleinian groups, arising in both real and complex hyperbolic

space. Numerical results are compared with asymptotic estimates in each case. Python code used to

obtain all results and figures can be found at https://github.com/WXML-HausDim/WXML-project, all

of which took only minutes to run on a personal computer.

1 Introduction and Background

To motivate the concept of Hausdorff dimension, we begin by recalling the ternary
Cantor set. Start with the unit interval I0 = [0,1]. Next, consider I1 = [0,1/3]∪ [2/3,1]
obtained by removing the middle third of this interval, leaving two intervals remaining.
In the next step, we remove the middle third from each of the previous two intervals;
proceeding iteratively in this manner, we obtain a family of sets {In}n∈N. The common
intersection of these sets,

C =
∞⋂

n=0
In ,

is the ternary Cantor set. This resulting collection of points has Euclidean length zero,
and is of topological dimension zero. In contrast, it can be shown that the Hausdorff
dimension of this set is log3(2) ≈ 0.631 (see [4]).

In general, most notions of the dimension of a set encode information about how
the size of that set changes as it is scaled. When the interval [−1,1] is scaled by a factor of
2, its length doubles. When the unit disk D is scaled by a factor of 2 along each axis, its
area quadruples. Generally, when the unit n-ball,

Bn = {x ∈Rn : |x| ≤ 1},

is scaled by 2, its volume scales by 2n . This exponent, n, is also the dimension of the
n-ball.

Mathematics Subject Classification. 53A35
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systems, algorithms.
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2 Eigenvalue Algorithm on Kleinian Groups
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Figure 1: Construction of the Cantor set by iterations I0, I1, ...

However, for fractal sets such as Cantor sets, dimension is far more difficult to cal-
culate, or to even define. In this paper, we use a notion of dimension called Hausdorff
dimension. This dimension agrees with the dimension that one would expect for non-
fractal sets, but can also be applied to fractal sets. On these fractal sets, we sometimes
have non-integral Hausdorff dimension.

Going back to the example of the Cantor set, it can be shown that scaling the Cantor
set by 2 scales its “volume" (more precisely, its Hausdorff measure) by a factor of 2log3(2).
Thus, Hausdorff dimension encodes information about volume-scaling, even for fractal
sets. In this example of the Cantor set, we are able to obtain a closed-form expression for
its Hausdorff dimension. However, for general fractal sets, this is difficult or impossible.

The fractals that we examine here are the limit sets of discrete subgroups of hyper-
bolic isometries (associated to both real and complex hyperbolic space, see §3 and §4
respectively). These groups, called Kleinian groups, are the subject of intense study
[1, 2, 5, 6, 7, 8]1. We start with such a Kleinian group, and iterate its action on a set in
hyperbolic space, resulting in a set with finer and finer structure. The limit set on the
boundary is obtained as we take the limit of this iteration process, yielding a set with
infinitely fine structure, i.e., a fractal.

In figure 2, we provide a visualization of this iteration process, for the “symmetric
pair of pants" Kleinian group from [5]. The darker region on the boundary, where circles

1We mention that the Kleinian groups considered in [5] and [6] are both referred to as Schottky groups,
although strictly speaking neither of the examples considered therein meet the definition of a Schottky
group.
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J. Linden and X. Wu 3

of very small radius are accumulating, is exactly the limit set whose dimension we are
computing.

Figure 2: The dynamics of the symmetric pair of pants, for the arc angle 2π/3.1. The limit
set of this group has Hausdorff dimension approximately equal to 0.82694.

In [5], McMullen provides an effective method for computing the Hausdorff dimen-
sion of limit sets arising from Markov partitions (more on this in §2). This algorithm
exhibits exponential convergence.

One type of Markov partition considered in this paper are those obtained by the
action of classical Kleinian groups, which are groups of certain Möbius transformations
(see §3 for details). Of particular interest are groups where each Möbius transformation
corresponds to a reflection through a circle in the plane. One can think of this as an
involution that fixes the circle, while continuously mapping its interior to its exterior,
and its exterior to its interior.

The symmetric pair of pants example is a classical Kleinian group. Specifically, it
is the group generated by reflections through a rotationally symmetric arrangement of
three circles. For this example, McMullen gives an explicit asymptotic approximation to
the Hausdorff dimension of its limiting set. Given a group of arc angle θ, the Hausdorff
dimension of its limit set is approximated by

α= log2

log12−2logθ
.

We compare this asymptotic estimate to numerical results obtained via the eigenvalue
algorithm in figure 4.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



4 Eigenvalue Algorithm on Kleinian Groups

We also consider a non-symmetric Kleinian group, and derive our own approximation
to the Hausdorff dimension. For a group of arc angle θ, an approximation α to the
Hausdorff dimension of the group’s limit set is given implicitly by

θ2α

2

(
2−4α+

√
23−6α+2−8α

)
= 1.

See figure 6 for a comparison with numerical results.
At this point, a fair amount of study has been devoted to classical Kleinian groups

associated to two-dimensional real hyperbolic space, and to the Hausdorff dimension of
their limit sets. We also consider the generalization of this to two complex dimensions
(see §4). In this setting, we consider the functions that act as analogues of a Möbius
transformation, and call the group generated by them a higher dimensional complex
Kleinian group. Comparatively less is known about such complex Kleinian groups, but
there are a few papers, including [6], that explore the topic.

Given a symmetric complex Kleinian group with 3 generators, Romaña and Ucan-Puc
[6] give an asymptotic estimate to the dimension of its limit set. For a group of arc angle
θ, the Hausdorff dimension is approximated by

α= log2

log12−4logsin(θ)
.

See figure 9.
We also consider a non-symmetric case. We derive our own approximation to the

Hausdorff dimension: for a group of arc angle θ, an approximation α to the Hausdorff
dimension of the group’s limit set is given implicitly by

sin4(θ)

2

(
2−2α+

√
23−2α+2−4α

)
= 1.

See figure 11.

1.1 Hausdorff Measure and Dimension

In order to define the Hausdorff dimension of a set, we must first define an asso-
ciated measure. Typically, one uses the Lebesgue measure to measure subsets of Rn .
This measure is equal to the n-dimensional volume that we expect for such sets. For
our purposes, we use a generalization of the Lebesgue measure, called the Hausdorff
measure. This measure is defined as a limit of pre-measures, in the following way.

Definition 1.1. Given a subset S of a metric space, and real numbers α,δ> 0, a Hausdorff
pre-measure for S is given by

Hδ
α(S) = inf

U

{ ∞∑
j=1

(diamU j )α
}

,

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



J. Linden and X. Wu 5

where the infimum is taken over all countable open covers U of S, and the open sets U j

of U satisfy diamU j < δ.

Definition 1.2. The α-dimensional Hausdorff measure of S is

Hα(S) = lim
δ→0

Hδ
α(S).

One can think of taking δ to 0 as capturing the roughness of the set S in increasing detail.
As the diameter of each open set U j is further restricted, the cover U becomes less
course.

Definition 1.3. Given a subset S of a metric space, the Hausdorff dimension of S is the
unique value α0 such that Hα(S) =∞ for α< α0, and Hα(S) = 0 for α> α0.

1.2 Dynamical Systems and Limit sets

Now that we have defined Hausdorff dimension, we say a bit more about the setting
in which the fractal sets of interest arise. What follows are a few definitions that will be
of use.

Definition 1.4. A dynamical system Γ on a set S is a collection of maps

γa : Ua → S,

where Ua ⊂ S is open.

The collection Γ need not be finite, or even countable. A dynamical system is said to
be conformal if each of its constituent maps γa is conformal, that is, angle-preserving.

A function γ is said to be a contraction on a metric space (X,d) if there exists some
constant ξ< 1 such that for any x1, x2 ∈ X,

d(γ(x1),γ(x2)) ≤ ξ ·d(x1, x2).

Given a subset U of a topological space V, x ∈ V is called a limit point of the set U if
every neighborhood of x contains a point in U that is different from x.

Given a dynamical system Γ, the orbit of a point x ∈ S is defined as

Γx = {γa(x) : γa ∈ Γ}.

Definition 1.5. Given a dynamical system Γ on a set S, its limit set Λ(Γ) is the set of limit
points of all orbits Γx , x ∈ S.

In this paper, we seek to estimate the Hausdorff dimension of the limit sets of dynam-
ical systems: specifically, the action of complex Kleinian groups on hyperbolic space. As
will be seen in the next section, if the generators of the Kleinian group act as contractions
on certain pieces of their domain, we can use McMullen’s eigenvalue algorithm to obtain
an accurate estimate of the Hausdorff dimension.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



6 Eigenvalue Algorithm on Kleinian Groups

2 The Eigenvalue Algorithm

2.1 Overview

McMullen’s eigenvalue algorithm was introduced in [5] to provide a method for
computing the Hausdorff dimension of fractal sets arising from a variety of problems
of geometric interest. Beginning with a conformal dynamical system, one iteratively
produces a sequence of matrices T. At each iteration, there exists an exponentα such that
the largest eigenvalue of Tα is 1. The value α at each stage provides a good approximation
to the true dimension. Specifically, N digits of accuracy are obtained in O (N) iterations.

2.2 Markov Partitions

A Markov partition is a nonempty collection {(Pi , fi )} of compact connected sets Pi

and maps fi defined on each Pi , satisfying a few properties. Denote the domain of Γ by
D =∪Pi . Given a conformal dynamical system Γ, a Γ-invariant density of dimension δ is
a finite, positive measure µ such that

µ( f (S)) =
∫

S
| f ′(x)|δdµ, (1)

whenever S ⊂ D is a Borel set such that f ∈ Γ is injective on S. Then, a Markov partition
is required to satisfy the following:

1. fi (Pi ) ⊃⋃
i 7→ j P j , where i 7→ j means that µ( fi (Pi )∩P j ) > 0.

2. When i 7→ j , there exists a neighborhood U of Pi ∩ f −1
i (P j ) such that fi is homeo-

morphic on U.

3. For all i , µ(Pi ) > 0.

4. For all i ̸= j , µ(Pi ∩P j ) = 0.

5. For each i , µ( fi (Pi )) =µ(
⋃

i 7→ j P j ).

In the above conditions, note that the images of the Pi under the fi are restricted to the
domain D of Γ. The last of these conditions is a measure-preserving property.

A Markov partition is called expanding if there exists ξ> 1 such that | f ′
i (x)| ≥ ξ for

x ∈ Pi ∩ f −1
i (P j ). In particular, note that f −1

i is a contraction on P j if and only if fi is
expanding on Pi ∩ f −1

i (P j ). This leads us to the following convergence theorem:

Theorem 2.1 ([5]). Given an expanding Markov partition for a conformal dynamical
system, suppose that the limiting set of this system has Hausdorff dimension δ. Then,
the eigenvalue algorithm requires at most O (N) refinements to approximate δ to N digits
of accuracy.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



J. Linden and X. Wu 7

A classical Kleinian group is expanding when considered as a Markov partition.
However, complex Kleinian groups are not necessarily expanding. The following theorem
allows us to apply McMullen’s results to the complex case.

Theorem 2.2 ([6]). Given a Markov partition (Pi , fi ) corresponding to a complex Kleinian
group acting on H2

C
, suppose that there exists ξ > 1 and M ∈ N such that the matrix

defined by

JM
fi

(x1, x2, x3) =
{
∂M fi , j

∂xM
k

}
j ,k=1,2,3

satisfies
min

(x1,x2,x3)∈∪ j P j

∣∣∣det
(
JM

fi
(x1, x2, x3)

)∣∣∣≥ ξ,

where fi , j denotes the j -th entry of the map fi . Then, the results of theorem 2.1 hold.

2.3 McMullen’s Algorithm

Given a complex Kleinian group with sets Pi , let fi denote the reflection through
Pi . This forms a Markov partition Γ = ( fi ,Pi ), with some Γ-invariant density µ. Take
sample points xi ∈ Pi . Following [5], we write i 7→ j to mean that µ( f j (Pi )∩P j ) > 0. In our
particular case, this is equivalent to the requirement that f j (Pi ) ⊂ P j . It should also be
noted that reflections are involutions, so fi = f −1

i for every i . The steps of the algorithm
are as follows:

1. For each i , j such that i 7→ j , compute yi j such that fi (yi j ) = x j .

2. Compute and store the transition matrix T, where

Ti j =
{ 1

| f ′
i (yi j )| i 7→ j ,

0 otherwise.

3. Find α such that the largest eigenvalue in absolute value (the spectral radius) of
the element-wise exponentiated matrix Tα is λ(Tα) = 1.

4. Perform a refinement, replacing each Pi with its image under f j with i 7→ j . Define
the yi j as the new sample points xi . Repeat.

It should be noted that the maps fi do not change when a refinement is performed. Each
new set is assigned the reflection associated to the initial set in which it is contained.

We provide an argument as to why we might expect the exponent α in the above
algorithm to provide a good approximation to the true Hausdorff dimension δ of a given

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



8 Eigenvalue Algorithm on Kleinian Groups

limiting set. Define a vector m with entries mi =µ(Pi ). Then, by the measure-preserving
property,

mi =µ(Pi ) = ∑
j :i 7→ j

µ
(

f −1
i (P j )

)
.

Then (1) implies that

mi =
∑

j :i 7→ j

∫
P j

∣∣( f −1
i )′(x)

∣∣δ dµ.

Finally, using the inverse function theorem to obtain a crude approximation to each
integral, we obtain

mi ≈
∑

j
| f ′

i (yi j )|−δµ(P j ) =∑
j

Tδi j m j .

Thus m ≈ Tδm, so λ= 1 is an approximate eigenvalue of Tδ. It can be shown that this
is an upper bound for all other eigenvalues of Tδ. For an expanding Markov partition,
not only is this approximation good enough, but it actually leads to exponentially fast
convergence by theorem 2.1.

Instead of using Newton’s method to solve the eigenvalue problem in step (3) as in [5],
we use the bisection method. This comes at lower computational cost, but it is possible
that Newton’s method more effectively prevents the accumulation of small roundoff
errors.

Below is pseudocode for our implementation of the eigenvalue algorithm. Assume
that the function ref(i,j) has been defined as the reflection of the j -th sample point
under the i -th map, and that the function ref_ prime(i,j) defined similarly with
reflection derivatives. Assume also that a function bisec(T) has been defined, which
takes the transition matrix as input and outputs an approximation αP to the Hausdorff
dimension.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



J. Linden and X. Wu 9

Algorithm 1 The Eigenvalue Algorithm
r e f i nement s ← 0
num_r e f i nement s ← number of refinements
N ← number of disks
x ← sample points

while r e f i nement s < num_r e f i nement s do
y ← zeros(N,N)

Step 1:
for 0 ≤ i , j < N do

if i 7→ j then
y[i , j ] ← ref(i , j )

end if
end for

Step 2:
T ← zeros(N,N)
for 0 ≤ i , j < N do

if i 7→ j then
T[i , j ] ← 1/|ref_prime(i , j )|

end if
end for

Step 3:
αP = bisec(T)

Step 4:
x ← y
N ← length(x)
r e f i nement s ← r e f i nement s +1

end while

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



10 Eigenvalue Algorithm on Kleinian Groups

3 Classical Kleinian Groups

3.1 The Real Hyperbolic Plane

There are several different ways of modeling real hyperbolic space. We first consider the
Poincaré half plane model,

H2
R = {(x, y) ∈R2 : y > 0}.

Though this is a real space, it will sometimes be convenient to write points in this
space as z = x + i y . Euclidean space is imbued with a familiar metric, lending itself
to a notion of distance that is calculated using the Pythagorean theorem in Cartesian
coordinates. In hyperbolic space, the metric is quite different. With this metric, the
orientation-preserving isometries of H2

R
are exactly the elements of

PSL(2,R) =
{(

a b
c d

)
∈R2×2 : ad −bc = 1

}/
{±I},

considered as Möbius transformations. Specifically, to map elements of PSL(2,R) to
Isom(H2

R
), we use the natural mapping(

a b
c d

)
7→ az +b

cz +d
.

It can be shown that this map is an isomorphism.
We can also realize this map in homogeneous (or projective) coordinates. Define the

equivalence class of (z1, z2) ∈C2 as

[z1 : z2] = {
(w1, w2) ∈C2\{0} | (w1, w2) = (αz1,αz2),α ∈C}

The complex projective line is defined as

P1
C =

{
[z1 : z2] | (z1, z2) ∈C2\{0}

}
= {

[z : 1] |z ∈C}∪ {[1 : 0]
}
.

Then, a Möbius transformation acts on P1
C

by

[z : 1] 7→ [az +b : cz +d ] =
[

az +b

cz +d
: 1

]
This is simply the equivalence class of(

a b
c d

)(
z
1

)
.

This is helpful in the sense that it allows a Möbius transformation to be applied directly
via matrix multiplication.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



J. Linden and X. Wu 11

The maps that we are interested in are reflections through circles that meet the
boundary of hyperbolic space orthogonally. In the setting of the half plane, this is
ensured by requiring that the center of the circle lies on the boundary, Im(z) = 0.

It is a classical result that every Möbius transformation with ad −bc ̸= 0 fixes some
circle in the plane. If we require that a Möbius transformation fixes a given circle of
radius r and center a ∈R, we obtain the reflection(

a/r −(r 2 +a2)/r
1/r −a/r

)
∼= az − (r 2 +a2)

z −a
.

Simplification on the right side yields the maps

ρ(z) = a − r 2

z −a
. (2)

In some contexts, it is more convenient to instead use the Poincaré disk model of
hyperbolic space. In this case, the real hyperbolic plane is identified with the open unit
disk instead of the upper half-plane, that is, HR2 =D. In this case, the boundary is simply
the unit circle. We can map from the disk model to the half plane with the Möbius
transformation

ϕ(z) =−i · z +1

z −1
,

and from the half plane model to the disk with its inverse

ϕ−1(z) = z − i

z + i
.

In the disk model, there is a somewhat different metric from the half plane, yielding
a different set of isometries. Specifically, the isometries of the disk model are given by

PU(1,1) =
{(

u v
v u

)
∈C2×2 : |u|2 −|v |2 = 1

}/
{±I}. (3)

When a point in the disk is represented as a complex number z, these isometries are
applied as Möbius transformations, as in the half plane model.

We also again wish to obtain reflections through circles that meet the boundary
orthogonally. In the case of the disk model, the requirement that a circle be centered
on the boundary fails to produce this result. Given a point c ∈C\D1, the unique circle
centered at c that intersects S1 orthogonally is the circle of radius

√
|c|2 −1.

3.2 Classical Kleinian Groups

A discrete subgroup of PSL(2,C) is called a classical Kleinian group. In particular, a
classical Kleinian group is called a Fuchsian group if it is a discrete subgroup of PSL(2,R).

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



12 Eigenvalue Algorithm on Kleinian Groups

Thus the elements of Fuchsian groups are isometries of hyperbolic space in the half-
plane model. Since PU(1,1) is a subgroup of PSL(2,C), discrete subgroups of PU(1,1)
are classical Kleinian groups.

In both models of H2
R

, we will further require that the generators of these groups are
involutions, and that they fix a circle that lies orthogonal to the boundary ∂H2

R
. We will

refer to these throughout as “reflections", due to their action of mirroring points across
circles in hyperbolic space.

When operating in the disk model, we will often define a group in terms of the angle
of the center of a circle, denoted θ, and the angle between the two points where the circle
intersects S1, denoted φ. Assuming that a circle intersects S1 orthogonally, with a bit of
computation we obtain the following formulas for the radius and center of a circle in
terms of angles:

r = tan

(
φ

2

)
, c = sec

(
φ

2

)
eiθ. (4)

Since φ> 0 in order for r to be nonzero, we have that |c| > 1. Additionally, solving for r
in terms of c gives us

r =
√
|c|2 −1.

The reflection through the circle of central angle θ and arc angle φ can be written
explicitly in terms of this data, as in the half-plane. By requiring that the reflection fixes
a given circle with θ ∈ [0,2π) and φ ∈ (0,π), we obtain the parameters u and v by

u = i csc

(
φ

2

)
, v = i cot

(
φ

2

)
e−iθ.

Combining this with (4), we can also write u and v in terms of the center and radius of
the associated disk:

u = i
|c|
r

, v = i
c

|c|r . (5)

3.3 The Symmetric Pair of Pants

The symmetric pair of pants, as in [5], is defined in the disk model by first taking
three disks of identical radii, such that the circle bounding each disk lies orthogonal to
the boundary, the disks are pairwise disjoint, and the arrangement of disks is symmetric
under rotation by 2π/3. The symmetric pair of pants is then defined to be the classical
Kleinian group generated by the reflections through these circles.

More explicitly, we construct a symmetric arrangement of circles by letting θ1 =π/2,
θ2 = 7π/6, and θ3 = 11π/6 be the angles of the center of each circle in the group. We then
define φ ∈ (0,2π/3) to be the angle of the arc contained in each disk. This arrangement is
shown in figure 3.

Denote the reflection through the j -th circle by ρ j . We would next like to derive an
asymptotic estimate for the dimension of the limiting set of this group, as in Theorem 3.5

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



J. Linden and X. Wu 13

Figure 3: The symmetric pair of pants for φ=π/3, with the unit circle shown in blue.

of [5]. For small anglesφ, since the reflections ρ j are nearly linear on Pi∩ρi (P j ), we obtain
a close estimate to the true dimension in just one refinement. We estimate the entries of
the transition matrix T, and solve for α in the equation λ(Tα) = 1 (exponentiation applied
element-wise).

Consider the reflection of the j -th disk in the group through the i -th disk, with
i ̸= j . We approximate the entries of T by evaluating ρ′i at z j = eiθ j . This point z j is the
center of the arc of the unit circle contained in the j -th disk. Note in particular that
for the symmetric group that we are considering, θ j = θi ± 2π

3 . We will also make the

approximation ri ≈ φ
2 . By differentiating (3) and making the substitution in (4), we find

that

|ρ′i (z j )| =
∣∣∣∣ 1

(v z j +u)2

∣∣∣∣
≈ r 2

i

|ci z j −1|2

≈ r 2
i

|e±2πi /3 −1|2

≈ φ2

12
.

Then, the entries of the transition matrix are given by

Tαi j =


(
φ2

12

)α
i ̸= j ,

0 i = j .

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



14 Eigenvalue Algorithm on Kleinian Groups

The spectral radius of Tα is 2 ·φ2α/12α, and setting this equal to 1 yields the asymptotic
formula

α= log2

log12−2logφ
.

Using the eigenvalue algorithm, we computed the Hausdorff dimension of the limit-
ing set, for a variety of arc anglesφ. We took three refinements in the algorithm. In figure
4, we compare the numerically computed dimension with the asymptotic estimate from
above. The dimension is near zero for small angles, and is near 1 for angles close to
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Figure 4: Numerically computed Hausdorff dimension (blue) and dimension estimated
by the asymptotic formula (orange).

2π
3 . This corroborates with expectation: a Kleinian group with generators of zero radius

would have only the centers of the group as its limiting set, while the group of arc angle
2π
3 has the entire unit circle as its limiting set. The asymptotic is highly accurate for small

angles, but starts to diverge from the numerically computed dimension for larger angles,
as we would expect.

3.4 Non-Symmetric Examples

The first non-symmetric example we consider is that with disks centered at angles
θ1 =π/2, θ2 =π, and θ3 = 3π/2. For this group, it is necessary that the arc angle φ lies in
(0,π/2), since we require that the disks be disjoint. The group is shown in figure 5.

We now derive an asymptotic estimate using a method similar to that used in
§3.3. The situation is slightly different from the symmetric case, in that the distances
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Figure 5: A non-symmetric Kleinian group, with φ=π/3.

between the disks are not all identical. Thus, the structure of the transition matrix
will not be as simple. We first consider pairs of adjacent disks, that is, those with
(i , j ) ∈ {(1,2), (2,1), (2,3), (3,2)}. In this case, if ρi denotes the reflection through the
i -th disk, we have that

|ρ′i (z j )| ≈ r 2
i

|ci z j −1|2

≈ r 2
i

|e±iπ/2 −1|2

≈ φ2

8
,

where as before, we have used the approximation ri ≈ φ
2 . For the non-adjacent disks,

where (i , j ) ∈ {(1,3), (3,1)}, we have

|ρ′i (z j )| ≈ r 2
i

|e±iπ−1|2

≈ φ2

16
.
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16 Eigenvalue Algorithm on Kleinian Groups

Hence, we approximate the transition matrix as

T ≈ φ2

8

 0 1 1/2
1 0 1

1/2 1 0

 .

The largest eigenvalue of Tα is then

φ2α

2

(
2−4α+

√
23−6α+2−8α

)
= 1. (6)

This equation is quite difficult to solve analytically, but a numerical solution can be
obtained quickly via root finding methods. Thus, we can use the solution to the above
equation as an asymptotic estimate for dimension. We computed the Hausdorff dimen-
sion for a variety of angles φ for the Kleinian group, taking three refinements. These
numerical values are compared with the asymptotic estimate, in figure 6.
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Figure 6: Numerically computed Hausdorff dimension (blue) and dimension estimated
by asymptotic formula (orange).
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4 Complex Kleinian Groups

4.1 The Complex Hyperbolic Plane and the Heisenberg Group

In complex hyperbolic space, we use the Siegel upper half-space model. This is analogous
to the Poincaré half-plane model in the real case (see §3.1). First, defineC2,1 as the vector
space C3 with the Hermitian form

〈z1

z2

z3

 ,

w1

w2

w3

〉
= (

z1 z2 z3
)0 0 1

0 1 0
1 0 0

w1

w2

w3

 (7)

= (
z1w3 + z2w2 + z3w1

)
To obtain the Siegel upper half-space, we use homogeneous coordinates as in the
Poincaré half-plane (see §3.2). To do this, set z3 ≡ 1. We then define complex hyperbolic
space with the following convention:

H2
C =


z1

z2

1

 ∈C2,1 : Re(z1) <−|z2|2
2


This convention, and many of the others we follow, is similar to that used in [6]. We will
call the coordinates (z1, z2) affine coordinates.

The boundary of H2
C

, denoted ∂H2
C

, is of special interest. In particular, if we definez1

z2

1

=
−|ζ|2 + i vp

2ζ
1

,

then Re(z1) =− |z2|2
2 for all ζ ∈ C and v ∈ R. When considered in the coordinate system

(ζ, v) ∈C×R, the boundary ∂H2
C

has the geometry of the Heisenberg group, H . Through-
out, we will consider ∂H2

R
∼=H . Points in ∂H2

C
are imbued with the group operation

(ζ1, v1)∗ (ζ2, v2) =
(
ζ1 +ζ2, v1 + v2 +2Im(ζ1ζ2)

)
. (8)

Since the second coordinate is non-commutative, this is a non-abelian group.
There is also a notion of distance in the Heisenberg group: it is called the Korányi

gauge, defined by

|(ζ, v)|0 =
∣∣|ζ|2 + i v

∣∣1/2
.

The Korányi gauge is also sometimes referred to as the Cygan norm, although strictly
speaking it is not quite a norm, since it is not defined on a vector space.
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18 Eigenvalue Algorithm on Kleinian Groups

Using this distance, we can define a metric on H , called the Cygan distance:

dc y g ((ζ1, v1), (ζ2, v2)) = |(ζ1, v1)∗ (ζ2, v2)−1|0
=

∣∣∣|ζ1 −ζ2|2 + i (v1 − v2 −2Im(ζ1ζ2)
∣∣∣1/2

This is a right-invariant metric on H .
The non-affine coordinate system we have constructed thus far is extended to all of

H2
C

as follows: we write z1

z2

1

=
−|ζ|2 −u + i vp

2ζ
1

 ,

with

u :=−Re(z1)− |z2|2
2

.

We refer to the coordinates (ζ,u, v) ∈ C×R+×R as modified horospherical coordinates.
These are obtained from horospherical coordinates, as defined by Goldman and Parker
in [3], via a linear fractional change of variable from affine coordinates. This choice helps
to simplify notation.

Note that onH2
C

, we have Re(z1) <−1
2 |z2|2, so u > 0. The set u = 0 coincides exactly

with ∂H2
C

. We can now extend the definition of Cygan distance to the interior of complex
hyperbolic space by defining

dc y g ((ζ1,u1, v1), (ζ2,u2, v2)) =
∣∣∣|ζ1 −ζ2|2 +|u1 −u2|+ i (v1 − v2 −2Im(ζ1ζ2)

∣∣∣1/2
.

With this new notion of distance, we can define the objects which play a role analogous
to the one circles played in the real case. The Cygan sphere of center (ξ, x, t ) and radius r
in the closure of H2

C
is

Sλ(ξ, x, t ) =


−|ζ|2 −u + i vp
2ζ
1

 ∈H2
C

: dc y g ((ζ,u, v), (ξ, x, t )) = r

 .

Note that these spheres are different from spheres defined with respect to the standard
distance on H2

C
. Because we are primarily concerned with points in the boundary, since

that is where the limit set will accumulate, we only consider spheres that are centered on
the boundary of the space, i.e. by setting x = 0. Then, we take the intersection of such a
sphere with the boundary. Writing the restriction of modified horospherical coordinates
to ∂H2

C
as (ζ, v) ∈ C×R, we define the Cygan sphere of center (ξ, t) and radius r in the

boundary of H2
C

as

Sλ(ξ, t ) =


−|ζ|2 + i vp
2ζ
1

 ∈ ∂H2
C : dc y g ((ζ, v), (ξ, t )) = r

 .
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These are the objects through which we will be taking reflections.
Next, we discuss the isometries of H2

C
. The unitary group for the Hermitian form (7)

is
U(3,C) = {A ∈C3×3 : A∗BA = B},

where

B =
0 0 1

0 1 0
1 0 0


is the Hermitian form matrix. Then the orientation-preserving isometries ofH2

C
are given

in affine coordinates by

Isom(H2
C

) = PU(3,C),

the unitary group quotiented by ±I.
For the rest of this section, we will work exclusively in the boundary ∂H2

C
. There are a

few isometries that we are particularly interested in. A (right) Heisenberg translation by
a point (ξ, t ) ∈H is given by

T(ξ,t ) =

1 −p2 ξ −|ξ|2 + i t
0 1

p
2ξ

0 0 1


These are isometries for all (ξ, t ). A complex dilation by λ ∈C is given by

Dλ =
|λ|2 0 0

0 λ 0
0 0 1

 ,

which is an isometry if and only if |λ| = 1. Note that, since the parameterλ is complex, this
class of isometry corresponds to rotations about the z1 axis. In modified horospherical
coordinates, they are rotations about the v axis. Lastly, the Korányi inversion is an
isometry defined by

ι=
0 0 1

0 −1 0
1 0 0

 .

These transformations are applied to a point in affine coordinates by left matrix multipli-
cation, and normalization in the third coordinate in the case of the Korányi inversion.

We will also use the complex dilation above to transform from the unit Cygan sphere
to other spheres, of possibly non-unit radius. For this purpose, we will take λ ∈R+, since
the argument of the parameter λ has no effect on the geometry of the sphere. Under this
restriction, no non-trivial dilation Dλ is an isometry.
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20 Eigenvalue Algorithm on Kleinian Groups

Each of the above transformations can also be written in modified horospherical
coordinates:

T(ξ,t )(ζ, v) =
(
ζ+ξ, v + t +2Im(ζξ)

)
,

Dλ(ζ, v) = (λζ, |λ|2v),

ι(ζ, v) =
(

ζ

|ζ|2 − i v
,− v

|ζ|4 + v2

)
.

From our definition of the Heisenberg group in (8), Heisenberg translations are applied
through right multiplication by elements of the group. It should be noted that it is also
common for translations to be defined through left multiplication.

Each Cygan sphere has a one-dimensional object associated to it, known as a chain.
For a Cygan sphere of center (ξ, t ) and radius λ> 0, its associated chain is defined as

C = T(ξ,t )DλC0,

where C0 = S1 ×0 is the standard chain. We call C the chain of center (ξ, t ) and radius λ.

Figure 7: The unit Cygan sphere, centered at the origin (blue), and the standard chain
(red), in ∂H2

C
. Compared to the Euclidean sphere, this sphere has a flatter top and bottom.

For a given Cygan sphere in ∂H2
C

, its associated chain contains all the same data,
in the sense that the information about its center and radius are preserved. However,
chains are generally easier to work with, and in particular, much easier to parameterize.
Thus, we will speak of reflections through Cygan spheres in ∂H2

C
and reflections through

chains interchangeably.
In the real case, we expressed reflections through circles as isometries on H2

R
. The

complex analogues of these circles are Cygan spheres, and their associated chains, in
∂H2

C
. For a chain C of center (ξ, t) and radius λ, the complex reflection through it is

defined by the composition of transformations,

ιC = T(ξ,t )DλιDλ−1 T(−ξ,−t ). (9)
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Taking λ= 1 and (ξ, t ) = (0,0), we find that the Korányi inversion is the complex reflection
through the standard chain, C0.

4.2 Complex Kleinian Groups

Here, we consider a generalization of the classical Kleinian groups described in §3.2.
A higher dimensional complex Kleinian group, or simply a complex Kleinian group,
is a discrete subgroup of PSL(n + 1,C) which acts on Pn

C
with a nonempty region of

discontinuity.
Before discussing specific examples, we develop a few important concepts. In the

real hyperbolic case, we used the derivatives of the reflections to compute the entries of
the transition matrix T. In the complex case, we instead use the square rooted determi-
nant of the Jacobian matrix. The following is an essential result for implementing this
computationally:

Lemma 4.1 ([6]). If ιC is the complex reflection through the chain of center (ξ, t) and
radius λ, let JC denote the Jacobian matrix of ιC with respect to the real variables x, y, v
with x + i y = ζ. Let JC(ζ0, v0) denote the Jacobian evaluated at a particular point in H ,
and let | · | denote the absolute value of the determinant. Then√∣∣JC(ζ0, v0)

∣∣= λ4

dc y g ((ζ0, v0)(ξ, t ))4
.

Proof. We will compute the Jacobian determinant for the component functions of ιC in
(9), then apply the chain rule. For the Korányi inversion, we have in real variables that

ι(x, y, z) =
(

x(x2 + y2)− y v

(x2 + y2)2 + v2
,

y(x2 + y2)+xv

(x2 + y2)+ v2
,− v

(x2 + y2)2 + v2

)
.

Then, the Jacobian determinant of ι at (x0 + i y0, v0) ∈H is√∣∣JC0 (ζ0, v0)
∣∣= 1

(x2
0 + y2

0)2 + v2
0

= 1

dc y g ((x0 + i y0, v0), (0,0))4
.

So, the claim holds for C = C0. Now, we compute that√∣∣T(ξ,t )(ζ0, v0)
∣∣= 1,√∣∣Dλ(ζ0, v0)
∣∣= λ2.
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22 Eigenvalue Algorithm on Kleinian Groups

Both of these are constant on H . So, by the chain rule,√∣∣JC(ζ0, v0)
∣∣=√∣∣∣JT(ξ,t ) · JDλ

· Jι
(
Dλ−1 ◦T(−ξ,−t )(ζ0, v0)

) · JDλ−1 · JT(−ξ,−t )

∣∣∣
=

√∣∣∣Jι (λ−1(ζ0 −ξ), λ−2
[
v0 − t +2Im(ζ0ξ)

])∣∣∣
= 1

dc y g (
(
λ−1(ζ0 −ξ), λ−2

[
v0 − t +2Im(ζ0ξ)

])
, (0,0))4

= λ4

dc y g ((ζ0, v0)(ξ, t ))4
.

It will also be useful to know, given a complex reflection and a chain, where that
chain is mapped to under the reflection. This is important both in tracking the Cygan
spheres in each refinement, and in checking the condition i 7→ j in the algorithm.

Define η : H →C by
η(ζ, v) = |ζ|2 + i v.

Then
dc y g

(
(ζ1, v1), (ζ2, v2)

)2 = ∣∣η((ζ1, v1)∗ (ζ2, v2)−1)∣∣ .

With some computation, we obtain the following:

Proposition 4.1. Let C denote the chain of center (ξ, t ) and radius λ, and let C′ denote
the chain of center (µ, x) and radius ρ. Let α and (β,γ) denote the radius and center of
the image of C under the reflection through C′. Define

ν= 1

ρ2 −η(
(ξ, t )∗ (µ, x)−1

) .

Then

α= λ2ρ |ν|,
β= ξ+λ2ν(ξ−µ),

γ= t −2λ2 Im
[
ξν(ξ−µ)

]
+λ4ν2

(
t −x −2Im(ξµ)

)
.

4.3 A Symmetric Example

In this example, we consider a symmetric Kleinian group of variable size, as deter-
mined by a real parameter θ ∈ (0,π/3). The generators of this group consist of reflections
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through three Cygan spheres with identical radii, centered in the ζ-plane. Denote the
third roots of unity by

(w0, w1, w2) = (1,e2πi /3,e4πi /3).

The spheres of this group have radii equal to tan(θ), and centers at (sec(θ),0), (w1 sec(θ),0),
and (w2 sec(θ),0) in H . This group is symmetric under rotation by 2π/3 about the v axis.
For s ∈ [0,2π), the associated chains are parameterized by

C1 =
(
sec(θ)+ tan(θ)ei s , −2sin(s) tan(θ)sec(θ)

)
,

C2 =
(
w1 sec(θ)+ tan(θ)ei s , −2(

p
3cos(s)− sin(s)) tan(θ)sec(θ)

)
,

C3 =
(
w2 sec(θ)+ tan(θ)ei s , 2(

p
3cos(s)+ sin(s)) tan(θ)sec(θ)

)
.

The group is plotted in figure 8. We next want to obtain an asymptotic estimate for the

Figure 8: The Cygan spheres of the symmetric group with θ=π/4, plotted in red, green,
and blue.

dimension of the limiting set of this group. Let (ξi , ti ) denote the center of the i -th chain.
Using lemma 4.1, for i ̸= j we obtain√

det
(
JCi (ξ j , t j )

)= tan4(θ)

dc y g ((ξi , ti ), (ξ j , t j )4

= tan4(θ)

(
p

3sec(θ))4 + (
p

3sec2(θ))2

= sin4(θ)

12
.
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24 Eigenvalue Algorithm on Kleinian Groups

The transition matrix is thus given by

T = sin4(θ)

12

0 1 1
1 0 1
1 1 0

 .

Then, we desire α such that the largest eigenvalue of Tα is 2
(

sin4(θ)
12

)α = 1. Solving for α,

we obtain

α= log(2)

log(12)−4log(sin(θ))
.

This estimate is more accurate for small θ. Now, we present numerical results. Using the
eigenvalue algorithm, we computed the Hausdorff dimension of the limiting set of the
symmetric Kleinian group, for various choices of θ. We took three refinements in the
algorithm. In figure 9, we compare these results with the asymptotic estimate.
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Figure 9: Numerically computed Hausdorff dimension (blue) and dimension estimated
by the asymptotic formula (orange).

4.4 A Non-Symmetric Example

Next, we consider a non-symmetric Kleinian group of variable size, as determined by
a real parameter θ ∈ (0,9π/40). Here the maximum angle, 9π/40, is chosen so that the
Cygan spheres of the group do not intersect. Two of the spheres are centered at opposite
points on the v axis, at (0,sec2(θ)) and (0,−sec2(θ)) The third sphere is centered in the
ζ-plane at (−i sec(θ),0). All three spheres have radius tan(θ). The chains in this group
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are parameterized by

C1 =
(
tan(θ)ei s , sec2(θ)

)
,

C2 =
(
tan(θ)ei s , −sec2(θ)

)
,

C3 =
(
tan(θ)ei s − i sec(θ), −2tan(θ)sec(θ)cos(s)

)
,

for s ∈ [0,2π). The group is plotted in figure 10. Now, we obtain an asymptotic estimate

Figure 10: The Cygan spheres of the non-symmetric group with θ=π/5, plotted in red,
green, and blue.

for the dimension in this case. Since this group is non-symmetric, the structure of the
transition matrix will not be as simple as in §4.3. Let (ξi , ti ) denote the center of Ci . For
i ̸= j , the entries of the transition matrix are given by

Ti j =
√

det(JCi (ξ j , t j ))

= tan4(θ)

dc y g ((ξi , ti ), (ξ j , t j ))4

=
{

1
4 sin4(θ) (i , j ) ∈ {(1,3), (3,1)},
1
2 sin4(θ) otherwise.

Then

T = 1

2
sin4(θ)

 0 1 1/2
1 0 1

1/2 1 0

 .
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26 Eigenvalue Algorithm on Kleinian Groups

A bit of computation shows that the largest eigenvalue of Tα is then given by

sin4(θ)

2

(
2−2α+

√
23−2α+2−4α

)
= 1.

As in §3.4, this problem is difficult to solve analytically, but we can obtain a numerical
solution via root finding. We computed the Hausdorff dimension of the limit set for
this group, with 3 refinements. Figure 11 provides a comparison between the computed
dimension and the asymptotic dimension.
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Figure 11: Numerically computed dimension (blue) and dimension estimated by asymp-
totic formula.
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