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The Existence of Solutions to a System of
Nonhomogeneous Difference Equations

By Stephanie Walker and Alkin Huggins

Abstract. In this article we use a fixed point theorem to determine the existence of multiple positive

solutions for a type of system of nonhomogeneous even ordered boundary value problems on a discrete

domain. We first reconstruct the problem by transforming the system so that it satisfies homogeneous

boundary conditions. We then create a cone and an operator sufficient to apply the Guo-Krasnosel’skii

Fixed Point Theorem. The majority of the work involves developing the constraints needed to utilize the

theorem. The theorem is then applied three times, guaranteeing the existence of at least three distinct

solutions. Thus, solutions to this class of boundary value problems exist and are not unique.

1 Introduction

When first beginning the study of boundary value problems, the student usually deals
with standard differential equations such as the wave or heat equations. However, the
study of the existence and uniqueness of solutions for boundary value problems is an
amazingly rich field, branching into areas such as quantum mechanics and electrostatics.
This paper contributes to this highly applicable and widely researched field.

In [8], Marcos, Lorca, and Ubilla determined the existence of multiple solutions for
the fourth order differential equation u(4)(t) = λh(t ,u(t),u′′(t)) where t ∈ (0,1). Their
process involves a transformation technique that replaces the fourth order equation
with a system of second order equations. This technique served as motivation for
Henderson and Hopkins in [6], who utilized a fixed point theorem, namely the Guo-
Krasnosel’skii Fixed Point Theorem, to show the multiplicity of solutions to the fourth
order difference equation ∆4 u(t −2) = λh(t ,u(t ),∆2 u(t −1)) for t ∈ (0,N+2)Z. We have
adopted the process used by Henderson and Hopkins as a model for our work wherein
we establish the existence of multiple positive solutions to a particular type of system of
nonhomogeneous even ordered boundary value problems on a discrete domain. Other
works utilizing similar processes to different problems include [1], [2], and [7].

While we will explicitly state the Guo-Krasnosel’skii Fixed Point Theorem in Section
2, we informally describe a version of it here, as its result is central to our work. Concep-
tually, the Krasnosel’skii Fixed Point Theorem begins with a closed convex non-empty
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2 System of Difference Equations

subset C of a Banach space (X, || · ||). If we then have maps A and B from C into X which
satisfy

(i) Ax +By ∈ C for each x, y ∈ C,

(ii) A is continuous and AC is contained in some compact set,

(iii) B is a contraction with constant α< 1,

then there exists some z ∈ C such that Az +Bz = z. In other words, there is a fixed point
for the map A+B. This version of the theorem is a bit more intuitive than the form we
will present below where many of the above conditions will be replaced by the notion of
a cone. The version of the theorem we employ multiple times in our work is also used for
existence results on other types of problems. For instance, in [5] it is used to determine
the existence of positive solutions under various conditions of nonlinearity in terms of
parameter intervals, and in [4] it is used to determine the existence of positive solutions
of nonlinear fractional differential equations with integral boundary value conditions.

In the following sections, we will determine the existence of at least three positive
solutions to the system of second order discrete nonhomogeneous boundary value
problems having the form:

−∆2 un = λ f (t ,u1, . . . ,un), t ∈ (0,N+2)Z, (1)

−∆2 uk = gk (t ,u1, . . . ,un), k = 1, . . . ,n −1, t ∈ (0,N+2)Z, (2)

uk (0) = 0, uk (N+2) = ak , k = 1, . . . ,n, (3)

where a1, . . . , an ,λ≥ 0,
n∑

i=1
ai > 0 and f , gk : [0,N+2]Z×[0,∞)n → [0,∞) for k = 1, . . . ,n−1.

Our process begins in Section 2 with a transformation of the system of second order equa-
tions (1)–(3) into a system that satisfies homogeneous boundary conditions. We then
provide, given that solutions exist, the general form of the solutions to the homogeneous
system. As previously mentioned, this is also where we introduce the Guo-Krasnosel’skii
Fixed Point Theorem, construct a cone and operator that meet the criteria for the theo-
rem, and provide other necessary preliminary information. In Section 3, we state and
prove several lemmas that establish the inequalities necessary for the application of the
Guo-Krasnosel’skii Fixed Point Theorem. Finally, in Section 4, we combine this informa-
tion which allows us to apply the Guo-Krasnosel’skii Fixed Point Theorem three times to
yield our main result which establishes the existence of multiple positive solutions.

2 Preliminaries

To begin, note that given any set S ⊆R, SZ denotes the intersection of the set S with the
set of integers; that is

SZ = S ∩Z.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Walker and Huggins 3

Recall our original system,

−∆2 un = λ f (t ,u1, . . . ,un), t ∈ (0,N+2)Z,

−∆2 uk = gk (t ,u1, . . . ,un), t ∈ (0,N+2)Z,

uk (0) = 0, uk (N+2) = ak , k = 1, . . . ,n

where a1, . . . , an ,λ≥ 0,
n∑

i=1
ai > 0 and f , gk : [0,N+2]Z×[0,∞)n → [0,∞) for k = 1, . . . ,n−1.

To achieve our main result, we need to place the following requirements on the functions
f and gk for k = 1, . . . ,n −1:

(H0) f , gk : [0,N+2]Z× [0,∞)n → [0,∞) for k = 1, . . . ,n −1 are continuous functions
that are nondecreasing in the last n variables.

(H1) Suppose there is an α, β ∈ (0,N+2)Z, where α< β, such that given
(x1, . . . , xn) ∈ [0,∞)n , there is a k > 0 such that f (t , x1, . . . , xn) > k for t ∈ [α,β]Z.

(H2) Let z =
n∑

i=1
xi . Then lim

z→0+
f (t , x1, . . . , xn)

x1 +·· ·+xn
= 0 uniformly for t ∈ [0,N+2]Z.

(H3) Let z =
n∑

i=1
xi . Then lim

z→∞
f (t , x1, . . . , xn)

x1 +·· ·+xn
= 0 uniformly for t ∈ [0,N+2]Z.

(H4) There exists γk , q > 0 where
n−1∑
k=1

γk < 8

(N+2)2
, such that, for

(x1, . . . , xn) ∈ [0,∞)n with
n∑

i=1
xi < q , we have

gk (t , x1, . . . , xn) ≤ γk ·
n∑

i+1
xi for k = 1, . . . ,n −1 and t ∈ [0,N+2]Z.

(H5) There exists both a 0 < ηk < 8

(N+2)2
and a p1 > 0 such that, for

(x1, . . . , xn) ∈ [0,∞)n with
n∑

i=1
xi > p1, we have

gk (t , x1, . . . , xn) ≤ ηk ·
n∑

i=1
xi for k = 1, . . . ,n −1 and t ∈ [0,N+2]Z.

In order for (1)–(3) to satisfy homogeneous boundary conditions, we apply the fol-
lowing transformation. For t ∈ [0,N+2]Z and k = 1, . . . ,n, let uk (t ) = uk (t )−Ak t where

Ak = ak

N+2
, which yields

−∆2 un = λ f (t ,u1(t )+A1t , . . . ,un(t )+An t ), t ∈ (0,N+2)Z (4)

−∆2 uk = gk (t ,u1(t )+A1t , . . . ,un(t )+An t ), k = 1, . . . ,n −1, t ∈ (0,N+2)Z (5)

uk (0) = 0, uk (N+2) = 0, k = 1, . . . ,n. (6)

If we can show (4)–(6) has solutions, then (1)–(3) has solutions as well. Now that we have
a system subject to homogeneous boundary conditions (4)–(6), we know the solutions

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



4 System of Difference Equations

are of the form

un(t ) = λ
N+1∑
s=1

G(t , s) f (s,u1(s)+A1s, . . . ,un(s)+An s),

uk (t ) =
N+1∑
s=1

G(t , s)gk (s,u1(s)+A1s, . . . ,un(s)+An s), k = 1, . . . ,n −1

where G(t , s) denotes the Green’s function,

G(t , s) = 1

N+2

{
t (N+2− s), 0 ≤ t ≤ s ≤ N+1,

s(N+2− t ), 1 ≤ s ≤ t ≤ N+2.

Now that we know what solutions should look like, the question is whether they exist.
To show this, we will need some more information. We will start by showing that the

Green’s function, defined above, has an upper bound. Notice
N+1∑
s=1

G(t , s) = N+2

2
t − 1

2
t 2.

Consider φ(x) = N+2

2
x − 1

2
x2, where x ∈R. Then φ′(x) = N+2

2
−x, and φ′(x) = 0 when

x = N+2

2
. Thus x∗ = N+2

2
maximizes φ(x), since Q is quadratic and Q′′ < 0. In fact,

φ

(
N+2

2

)
=

(
N+2

2

)2

− 1

2

(
N+2

2

)2

= (N+2)2

8
.

Let t̂ =
[[

N+2

2

]]
where [[·]] denotes the greatest integer function. Therefore

N+1∑
s=1

G(t̂ , s) ≤
(N+2)2

8
, which will be useful in the following section. Furthermore, G(t , s) is clearly

nonnegative, and for k = 1, . . . ,n, uk must be positive since f and gk are assumed to be
nonnegative.

Set Y = {u(t) |u : [0,N+2]Z→ R} and let (X, || · ||) denote the Banach space X =
n∏

i=1
Y,

endowed with the norm ||(u1, . . . ,un)|| =
n∑

i=1
||ui ||∞, where ||u||∞ = max

t∈[0,N+2]Z
|u(t)|. Also,

let Ωr be the set Ωr = {(u1, . . . ,un) ∈ X | ||(u1, . . . ,un)|| < r }, which is open. Next define
C ⊂ X by

C = {(u1, . . . ,un) ∈ X | (u1, . . . ,un)(0) = (u1, . . . ,un)(N+2) = (0, . . . ,0) and ui is concave

for i = 1, . . . ,n}.

Note C is a cone as it is a nonempty, closed, convex subset of X that satisfies the following
properties:

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Walker and Huggins 5

1. If x ∈ C and λ> 0, then λx ∈ C.

2. If x,−x ∈ C, then x = 0.

Lastly, define T : X → X as the operator T(u1, . . . ,un) = (T1(u1, . . . ,un), . . . , Tn(u1, . . . ,un)),
where

Tn = λ
N+1∑
s=1

G(t , s) f (s,u1(s)+A1s, . . . ,un(s)+An s),

Tk =
N+1∑
s=1

G(t , s) gk (s,u1(s)+A1s, . . . ,un(s)+An s),

for i = 1, . . . ,n −1. Thus, T satisfies the following lemma.

Lemma 2.1. T is a completely continuous cone-preserving operator.

A standard Arzela-Ascoli argument can be used to show that T is completely continu-
ous, and the proof that T is cone-preserving is straight forward.

Finally, the following theorem will be used to obtain our main result:

Theorem 2.2 (Guo-Krasnosel’skii Fixed Point Theorem). Let (X, || · ||) be a Banach space
and C ⊂ X be a cone. Suppose Ω1 and Ω2 are open subsets of X satisfying 0 ∈Ω1 ⊂Ω1 ⊂Ω2.
If T : C∩ (Ω2 \Ω1) → C is a completely continuous operator such that either

1. ||Tu|| ≤ ||u|| for u ∈ C∩∂Ω1 and ||Tu|| ≥ ||u|| for u ∈ C∩∂Ω2, or

2. ||Tu|| ≥ ||u|| for u ∈ C∩∂Ω1 and ||Tu|| ≤ ||u|| for u ∈ C∩∂Ω2,

then T has a fixed point in C∩ (Ω2\Ω1).

3 Technical Results

In this section, we present four lemmas that, when combined, show T satisfies the
required inequalities of the Guo-Kasnosel’skii Fixed Point Theorem a total of three times.

Lemma 3.1. Suppose (H0) and (H1) hold and let ρ∗ > 0. Then there exists a Λ> 0 such
that, for every λ≥Λ and (a1, . . . , an) ∈ [0,∞)n ,

||T(u1, . . . ,un)|| ≥ ||(u1, . . . ,un)||,

where (u1, . . . ,un) ∈ C∩∂Ωρ∗ .

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



6 System of Difference Equations

Proof. Let ρ∗ > 0 and take (u1, . . . ,un) ∈ C∩∂Ωρ∗ . Let α,β ∈ (0,N+2)Z with α< β and set

ri =
min

t∈[α,β]Z
ui (t )

||ui ||∞
,

for i = 1, . . . ,n. Also, let r = min{ri | i = 1, . . . ,n}. Note that, for i = 1, . . . ,n, min
t∈[α,β]Z

ui (t)

exists and min
t∈[α,β]Z

ui (t), ||ui ||∞ > 0 as ui is concave, ui (0) = ui (N + 2) = 0, and α,β ∈
(0,N+2)Z. This gives that ri exists and ri > 0 for i = 1, . . . ,n. Thus r exists, since i is finite,

and r > 0. Recall max
t∈(0,N+2)Z

N+1∑
s=1

G(t , s) ≥
N+1∑
s=1

G(t̂ , s) ≥
N+1∑
s=1

G(t , s) for all t ∈ (0,N+2)Z. Let

M = inf

{
f (t ,r z1, . . . ,r zn)

r · (z1 + . . .+ zn)
: t ∈ [α,β]Z, (z1, . . . , zn) ∈ (0,∞)n ,

n∑
i=1

zi = ρ∗
}

and

Λ=
[

r M
β∑

s=α
G

(
t̂ , s

)]−1

.

Under (H1), since t ∈ [α,β]Z, (z1, . . . , zn) ∈ (0,∞)n ,
n∑

i=1
zi = ρ∗ ≥ 0 and r > 0, we know

∃k > 0 such that
f (t ,r z1, . . . ,r zn) > k > 0.

Furthermore, given
n∑

i=1
zi = ρ∗, notice

r · (z1 + . . .+ zn) = r ·ρ∗ > 0

as r, ρ∗ > 0. Since f (t ,r z1, . . . ,r zn) > k > 0, and r · (z1 + . . .+ zn) > 0, M > 0. Recall

G(t , s) = 1

N+2

{
t (N+2− s), 0 ≤ t ≤ s ≤ N+1,

s(N+2− t ), 1 ≤ s ≤ t ≤ N+2.

Note G(t , s) > 0 for any t , s ∈ (0,N+2)Z, so
β∑

s=α
G(t , s) > 0 for any t ∈ (0,N+2)Z. Now, since

r,M,
β∑

s=α
G(t̂ , s) > 0, Λ> 0. Let λ≥Λ. Then

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Walker and Huggins 7

||T(u1, . . . ,un)|| = ||T1(u1, . . . ,un)||∞+ . . .+||Tn(u1, . . . ,un)||∞
≥ sup

t∈[0,N+2]Z
|Tn(u1, . . . ,un)(t )|

= sup
t∈[0,N+2]Z

∣∣∣∣∣λN+1∑
s=1

G(t , s) f (s,u1(s)+A1s, . . . ,un(s)+An s)

∣∣∣∣∣
≥

∣∣∣∣∣λN+1∑
s=1

G(t̂ , s) f (s,u1(s)+A1s, . . . ,un(s)+An s)

∣∣∣∣∣
≥ λ

β∑
s=α

G(t̂ , s) f (s,u1(s)+A1s, . . . ,un(s)+An s)

≥ λ
β∑

s=α
G(t̂ , s) f (s,r ||u1||∞, . . . ,r ||un ||∞)

= λrρ∗
β∑

s=α
G(t̂ , s)

f (s,r ||u1||∞, . . . ,r ||un ||∞)

r ·ρ∗

≥ λr ||(u1, . . . ,un)||
β∑

s=α
G(t̂ , s) ·M

≥Λr M||(u1, . . . ,un)||
β∑

s=α
G(t̂ , s)

=
[

r M
β∑

s=α
G

(
t̂ , s

)]−1

r M||(u1, . . . ,un)||
β∑

s=α
G(t̂ , s)

= ||(u1, . . . ,un)||.

Lemma 3.2. Fix Λ> 0 and suppose (H0) and (H1) hold. Then, ∀λ≥Λ and (a1, . . . , an) ∈
[0,∞)n with

n∑
i=1

ai > 0, there is a ρ1 = ρ1(Λ, a1, . . . , an) such that, ∀ρ≤ ρ1, we have

||T(u1, . . . ,un)|| ≥ ||(u1, . . . ,un)||,

for (u1, . . . ,un) ∈ C∩∂Ωρ.

Proof. Suppose (H0) and (H1) hold, Λ> 0, and (u1, . . . ,un) ∈ C. Let (a1, . . . , an) ∈ [0,∞)n

with
n∑

i=1
ai > 0. Givenα> 0,

(
α

N+2 a1, . . . , α
N+2 an

)
= (αA1, . . . ,αAn) ∈ [0,∞)n , since (a1, . . . , an) ∈

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



8 System of Difference Equations

[0,∞)n . Then by (H1), ∃k > 0 such that

f (t ,αA1, . . . ,αAn) > k

for t ∈ [α,β]Z where α,β ∈ (0,N+2)Z. Let t ∈ [α,β]. Under (H0), since f is nondecreasing,

f (t ,u1(t )+A1t , . . . ,un(t )+An t ) ≥ f (t , A1t , . . . , An t )

≥ f (t ,αA1, . . . ,αAn).

That is f (t ,u1(t)+ A1t , . . . ,un(t)+ An t) > k. Take ρ1 = Λk
β∑

s=α
G(t̂ , s). Note ρ1 > 0 as

Λ,k > 0 and G(t , s) > 0 for all t , s ∈ (0,N+2)Z, so
β∑

s=α
G(t̂ , s) > 0. Let ρ≤ ρ1 and λ≥Λ. Then

∀(u1, . . . ,un) ∈ C∩Ωρ,

||T(u1, . . . ,un)|| ≥ λ
β∑

s=α
G(t̂ , s) f (s,u1(s)+A1s, . . . ,un(s)+An s)

≥ λ
β∑

s=α
G(t̂ , s) f (s,αA1, . . . ,αAn)

≥Λk
β∑

s=α
G(t̂ , s)

≥Λk
ρ

ρ1

β∑
s=α

G(t̂ , s)

>Λk
||(u1, . . . ,un)||

ρ1

β∑
s=α

G(t̂ , s)

= ||(u1, . . . ,un)||.

Lemma 3.3. Suppose (H0), (H2), (H4) hold and fix ρ∗ > 0. Then, given λ> 0, there is a

ρ2 ∈ (0,ρ∗) and a δ> 0, such that for every (a1, . . . , an) ∈ [0,∞)n , with 0 <
n∑

i=1
ai < δ,

||T(u1, . . . ,un)|| ≤ ||(u1, . . . ,un)||,

for (u1, . . . ,un) ∈ C∩∂Ωρ2 .

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



Walker and Huggins 9

Proof. Suppose (H0), (H2), (H4) hold and fix ρ∗ > 0. Given λ> 0, pick ε> 0 so that λε<
4

(N+2)2
. Then there is a ρ2 ∈ (0,ρ∗) such that, for

n∑
i=1

xi = ρ2 with (x1, . . . , xn) ∈ [0,∞)n

and
n∑

i=1
Ri ≤ ρ2, we have that

f (t , x1 +R1, . . . , xn +Rn)

(x1 +R1)+ . . .+ (xn +Rn)
< ε

as
f (t , x1 +R1, . . . , xn +Rn)

(x1 +R1)+ . . .+ (xn +Rn)
converges uniformly by (H2) for t ∈ [0,N+2]Z. It follows

that

f (t , x1 +R1, . . . , xn +Rn) < ε ·
n∑

i+1
(xi +Ri )

for t ∈ [0,N+ 2]Z. Take (u1, . . . ,un) ∈ C ∩ ∂Ωρ2 and suppose
n∑

i=1
ai < ρ2. Then, for t ∈

[0,N+2]Z,

Tn(u1, . . . ,un)(t ) = λ
N+1∑
s=1

G(t , s) f (s,u1(s)+A1s, . . . ,un(s)+An s)

≤ λ
N+1∑
s=1

G(t , s) f (s, ||u1||∞+a1, . . . , ||un ||∞+an)

< λ
N+1∑
s=1

G(t , s) ·ε ·
n∑

i=1
( ||ui ||∞+ai )

= λε

[
||(u1, . . . ,un)||+

n∑
i=1

ai

]
N+1∑
s=1

G(t , s)

< λε
[ ||(u1, . . . ,un)||+ρ2

]N+1∑
s=1

G(t , s)

= 2λε ||(u1, . . . ,un)||
N+1∑
s=1

G(t , s)

≤ 2λε ||(u1, . . . ,un)|| (N+2)2

8

= λε (N+2)2

4
||(u1, . . . ,un)||.

Thus,

||Tn(u1, . . . ,un)||∞ = sup
t∈[0,N+2]Z

|Tn(u1, . . . ,un)| ≤ λε (N+2)2

4
||(u1, . . . ,un)||.

Rose-Hulman Undergrad. Math. J. Volume 24, Issue 2, 2023



10 System of Difference Equations

Now consider the remaining Tk ’s. By (H0), the gk ’s are nondecreasing in the last n
variables. Furthermore, by (H4), there is a γk for k = 1, . . . ,n −1 such that

0 <
n−1∑
k=1

γk < 8

(N+2)2

and a q such that, for (x1 +R1, . . . , xn +Rn) ∈ [0,∞)n with
n∑

i=1
(xi +Ri ) < q , we have

gk (t , x1 +R1, . . . , xn +Rn) ≤ γk ·
n∑

i=1
(xi +Ri ),

for k = 1, . . . ,n −1 and t ∈ [0,N+2]Z. Pick ρ2 such that ρ2 < q

2
. Notice

n∑
i=1

( ||ui ||∞+ai ) = ||(u1, . . . ,un)||+ (a1 +·· ·+an) < 2ρ2 = q.

for t ∈ [0,N+2]Z. Let δ′ < 1 and set δ = δ′ρ2. Take (u1, . . . ,un) ∈ C∩∂Ωρ2 and suppose
n∑

i=1
ai < δ. Then, for k = 1, . . . ,n −1 and t ∈ [0,N+2]Z, we have
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Tk (u1, . . . ,un)(t ) =
N+1∑
s=1

G(t , s) gk (s,u1(s)+A1s, . . . ,un(s)+An s)

≤
N+1∑
s=1

G(t , s) gk (s, ||u1||∞+a1, . . . , ||un ||∞+an)

≤
N+1∑
s=1

G(t , s)γk ·
n∑

i=1
( ||ui ||∞+ai )

= γk

[
||(u1, . . . ,un)||+

n∑
i=1

ai

]
N+1∑
s=1

G(t , s)

< γk [ ||(u1, . . . ,un)||+δ ]
N+1∑
s=1

G(t , s)

= γk
[ ||(u1, . . . ,un)||+δ′ρ2

]N+1∑
s=1

G(t , s)

= γk
[ ||(u1, . . . ,un)||+δ′||(u1, . . . ,un)||]N+1∑

s=1
G(t , s)

= γk
(
1+δ′) ||(u1, . . . ,un)||

N+1∑
s=1

G(t , s)

≤ γk
(
1+δ′) (N+2)2

8
||(u1, . . . ,un)||.

Thus, for k = 1, . . . ,n −1,

||Tk (u1, . . . ,un)||∞ = sup
t∈[0,N+2]Z

Tk (u1, . . . ,un) ≤ γk
(
1+δ′) (N+2)2

8
||(u1, . . . ,un)||.

So, taking
n∑

i=1
ai < δ and (u1, . . . ,un) ∈ C∩∂Ωρ2 gives

||T(u1, . . . ,un)|| = ||T1(u1, . . . ,un)||∞+·· ·+ ||Tn(u1, . . . ,un)||∞

≤ γ1
(
1+δ′) (N+2)2

8
||(u1, . . . ,un)||+ · · ·+ γn−1

(
1+δ′) (N+2)2

8
||(u1, . . . ,un)||

+ λε (N+2)2

4
||(u1, . . . ,un)||

=
(
γ1

(
1+δ′) (N+2)2

8
+·· ·+ γn−1

(
1+δ′) (N+2)2

8
+ λε (N+2)2

4

)
||(u1, . . . ,un)||

= (N+2)2

8

[(
1+δ′)n−1∑

k=1
γk +2λε

]
||(u1, . . . ,un)||.
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12 System of Difference Equations

Thus, choosing δ′ and ε small enough so that
(
1+δ′)n−1∑

k=1
γk +2λε≤ 8

(N+2)2
, we will have

||T(u1, . . . ,un)|| ≤ (N+2)2

8

[(
1+δ′)n−1∑

k=1
γk +2λε

]
||(u1, . . . ,un)||

= ||(u1, . . . ,un)||.

Lemma 3.4. Suppose (H0), (H3), (H5) hold and let (a1, . . . , an) ∈ [0,∞)n satisfy 0 <
n∑

i=1
ai <

δ, where δ> 0 is given. Then, for every λ> 0, there is a ρ3 = ρ3(δ,λ) such that ∀ρ≥ ρ3,

||T(u1, . . . ,un)|| ≤ ||(u1, . . . ,un)||,

where (u1, . . . ,un) ∈ C∩∂Ωρ.

Proof. Suppose (H0), (H3), (H5) hold and let (a1, . . . , an) ∈ [0,∞)n satisfy 0 <
n∑

i=1
ai < δ,

where δ> 0 is given. Let λ> 0. By (H0), gk is nondecreasing in the last n variables for
k = 1, . . . ,n, and by (H5), there are

0 < ηk < 8

(N+2)2

for k = 1, . . . ,n −1 and a p1 > 0 such that for (x1 +R1, . . . , xn +Rn) ∈ [0,∞)n with
n∑

i=1
(xi +

Ri ) > p1, we have

gk (t , x1 +R1, . . . , xn +Rn) ≤ ηk ·
n∑

i=1
(xi +Ri ),

for t ∈ [0,N+2]Z. Let η= max{ηk |k = 1, . . . ,n −1}. Let ε> 0 and choose q1 large enough
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so that q1 +
n∑

i=1
Ri > p and ε> ηδ

q1
, which gives η< q1ε

δ
. Then

gk (t , x1 +a1, . . . , xn +an) ≤ ηk ·
n∑

i=1
(xi +ai )

≤ η ·
n∑

i=1
(xi +ai )

< η ·
n∑

i=1
xi + q1ε

δ
·

n∑
i=1

ai

< η ·
n∑

i=1
xi + q1ε

δ
·δ

= η ·
n∑

i=1
xi +q1ε

≤ η ·
n∑

i=1
xi +ε ·

n∑
i=1

xi

= (η+ε)
n∑

i=1
xi ,

for t ∈ [0,N+2]Z. Therefore, for any (u1, . . . ,un) ∈ C∩∂Ωq1 ,

Tk (u1, . . . ,un)(t ) =
N+1∑
s=1

G(t , s) gk (s,u1(s)+A1s, . . . ,un(s)+An s)

≤
N+1∑
s=1

G(t , s) gk (s, ||u1||∞+a1, . . . , ||un ||∞+an)

<
N+1∑
s=1

G(t , s) (η+ε) · ( ||u1||∞+ . . .+||un ||∞ )

= (η+ε)||(u1, . . . ,un)||
N+1∑
s=1

G(t , s)

≤ (η+ε)(N+2)2

8
||(u1, . . . ,un)||,

for t ∈ 0,N+2]Z and k = 1, . . . ,n −1. Thus, for k = 1, . . . ,n −1,

||Tk (u1, . . . ,un)||∞ ≤ (η+ε)(N+2)2

8
||(u1, . . . ,un)||.

Next, consider Tn(u1, . . . ,un). Let δ′ > 0. Then, by (H3) there is a p2, q2 > 0 such that,
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14 System of Difference Equations

for (x1 +R1, . . . , xn +Rn) ∈ [0,∞)n with
n∑

i=1
(xi +Ri ) ≥ q2 +

n∑
i=1

Ri ≥ p2, we have that

f (t , x1 +R1, . . . , xn +Rn)

(x1 +R1)+ . . .+ (xn +Rn)
< δ′

as
f (t , x1 +R1, . . . , xn +Rn)

(x1 +R1)+ . . .+ (xn +Rn)
converges uniformly by (H3) for t ∈ [0,N+2]Z. It follows

that

f (t , x1 +R1, . . . , xn +Rn) < δ′ ·
n∑

i=1
(xi +Ri )

for t ∈ [0,N+2]Z. Let q3 = max{q2,δ}. Then, for any (x1, . . . , xn) ∈ [0,∞)n with
n∑

i=1
xi ≥ q3,

f (t , x1 +R1, . . . , xn +Rn) < δ′ ·
n∑

i=1
(xi +Ri )

< δ′ ·
n∑

i=1
xi +δ′ ·δ

≤ δ′ ·
n∑

i=1
xi +δ′ ·q3

= 2δ′
n∑

i=1
xi ,

for t ∈ [0,N+2]Z. It follows that

Tn(u1, . . . ,un)(t ) = λ
N+1∑
s=1

G(t , s) f (s,u1(s)+A1s, . . . ,un(s)+An s)

≤ λ
N+1∑
s=1

G(t , s) f (s, ||u1||∞+a1, . . . , ||un ||∞+an)

< λ
N+1∑
s=1

G(t , s) ·2δ′(||u1||∞+ . . .+||un ||∞)

= 2δ′λ||(u1, . . . ,un)||
N+1∑
s=1

G(t , s)

≤ δ′λ(N+2)2

4
||(u1, . . . ,un)||,

for t ∈ [0,N+2]Z, giving

||Tn(u1, . . . ,un)||∞ ≤ δ′λ(N+2)2

4
||(u1, . . . ,un)||.
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Therefore,

||T(u1, . . . ,un)|| ≤ (n −1)(η+ε)(N+2)2

8
||(u1, . . . ,un)||+ δ′λ(N+2)2

4
||(u1, . . . ,un)||

= ((n −1)(η+ε)+2δ′λ)(N+2)2

8
||(u1, . . . ,un)||.

Thus, choosing δ′ and ε small enough so that (n −1)ε+2δ′λ≤ 8

(N+2)2
− (n −1)η, we will

have

||T(u1, . . . ,un)|| ≤ ((n −1)(η+ε)+2δ′λ)(N+2)2

8
||(u1, . . . ,un)||

≤ (N+2)2

8

[
(n −1)η+ 8

(N+2)2
− (n −1)η

]
||(u1, . . . ,un)||

= ||(u1, . . . ,un)||.

4 Main Result

Theorem 4.1. Let f and gk satisfy (H0)–(H5) for k = 1, . . . ,n −1. Then, there exists a Λ> 0
such that, given any λ ≥ Λ, there is a δ > 0 such that, for every a1, . . . , an ≥ 0 satisfying

0 <
n∑

i=1
ai < δ, the system (4)–(6) has at least three positive solutions.

Proof. Suppose f and g1, . . . gn−1 satisfy (H0)–(H5) . Fix ρ∗ > 0. By lemma 3.1, there is a
Λ> 0 such that for every λ≥Λ and a1, . . . , an ≥ 0,

‖T(u1, . . . ,un)‖ ≥ ‖(u1, . . . ,un)‖, for (u1, . . . ,un) ∈ C∩∂Ωρ∗ .

Now, fix λ ≥Λ. Lemma 3.2, lemma 3.3, and lemma 3.4 give that there is a δ > 0 and
ρ1,ρ2,ρ3 > 0, with ρ1 < ρ2 < ρ∗ < ρ3, such that for (a1, . . . , an) ∈ [0,∞)n , satisfying 0 <

n∑
i=1

ai < δ, we have

‖T(u1, . . . ,un)‖ ≥ ‖(u1, . . . ,un)‖, for (u1, . . . ,un) ∈ C∩∂Ωρ1 ,

‖T(u1, . . . ,un)‖ ≤ ‖(u1, . . . ,un)‖, for (u1, . . . ,un) ∈ C∩∂Ωρ2 ,

‖T(u1, . . . ,un)‖ ≤ ‖(u1, . . . ,un)‖, for (u1, . . . ,un) ∈ C∩∂Ωρ3 .

Therefore, by appealing to the Guo-Krasnosel’skii Fixed Point Theorem, there exist three
positive solutions, (x1, . . . , xn), (y1, . . . , yn), (z1, . . . , zn) ∈ C of (4)–(6) such that,

ρ1 < ‖(x1, . . . , xn)‖ < ρ2 < ‖(y1, . . . , yn)‖ < ρ∗ < ‖(z1, . . . , zn)‖ < ρ3.
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