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The Effect of Habitat Fragmentation on Plant
Communities in a Spatially-Implicit Grassland

Model

By Mika Cooney, Benjamin Hafner, Shelby Johnson, and Sean Lee

Abstract. The spatially implicit Tilman-Levins ODE model helps to explain why so many plant species

can coexist in grassland communities. This now-classic modeling framework assumes a trade-off between

colonization and competition traits and predicts that habitat destruction can lead to long transient de-

clines called “extinction debts.” Despite its strengths, the Tilman-Levins model does not explicitly account

for landscape scale or the spatial configuration of viable habitat, two factors that may be decisive for pop-

ulation viability. We propose modifications to the model that explicitly capture habitat geometry and the

spatial pattern of seed dispersal. The modified model retains implicit space and is in fact mathematically

equivalent to the Tilman-Levins model in the single species case. But its novel interpretation of a habitat

destruction parameter better quantifies seed loss due to edge effects in fragmented habitats and results

in different predictions than the Tilman-Levins model. In particular, the seed-loss model predicts that

species with strong dispersal traits may be most vulnerable to extinction in small habitat fragments.

1 Introduction

Urban development and agriculture have fragmented and reduced grassland ecosys-
tems, prompting mathematical models that describe plant populations after habitat
destruction. The Tilman-Levins model, hereafter referred to as the Tilman model, is a
spatially implicit collection of ordinary differential equations, developed by Levins as a
metapopulation model[4] and modified by Tilman to predict extinctions due to habitat
loss [10]. The Tilman model is based on a hierarchical framework that ranks species in
order from best local competitor (species 1) to worst local competitor (species n) based
on their ability to compete for a limiting resource, such as sunlight, soil nitrogen, or
water. The model shown below can be used for anywhere from one species’ response to
habitat destruction, to the generalized interactions among n species subject to habitat
destruction [5, 8].

Mathematics Subject Classification. 92D40
Keywords. Habitat fragmentation, extinction debt, spatially implicit, grasslands, ODE
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2 Spatially-Implicit Habitat Fragmentation
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c j p j pn

(1)

In equations (1), pi is the proportion of sites in a spatial habitat occupied by plant
species i . The parameters ci and mi control colonization and mortality rates respectively,
and the parameter D is the proportion of sites that have been destroyed and are therefore
no longer viable for any plant species to occupy.

The assumption built into the competitive hierarchy is that species i will always
displace species j when i < j . For example, species 2 can colonize any site in the habitat
that is unoccupied or occupied by species 3, 4, 5, ... n because it can outcompete
these poorer competitors for the limiting resource. But species 2 cannot colonize sites
that it already occupies, sites occupied by species 1, or sites that have been destroyed.
Therefore, the total proportion of sites that species 2 can colonize is 1−D − p1 − p2.
The lower a species is in the competitive hierarchy, the larger the number of superior
competitors that reduce its available sites to colonize and displace it from sites it already
occupies. Poorer competitors are only able to survive in this model through superior
colonization abilities (higher c values), which allow them to reach empty sites first and
fill the gaps left by the better competitors. Better colonizers often release more seeds that
travel farther compared to better local resource competitors [7]. This type of modeling
framework is known as a competition-colonization trade-off model [4]. It allows for
biodiversity in a habitat when a better competitor is a worse colonizer, and a worse
competitor survives by being a better colonizer.

One of the Tilman model’s important contributions to ecology is its ability to predict
how much habitat destruction, D, a species can withstand before it begins to suffer
deterministic extinction. The model also highlights the possibility that populations
decline slowly prior to extinction, a phenomenon known as an “extinction debt” [10].
The Tilman model predicts that the best local competitor is most vulnerable to extinction,
and will face extinction debt exactly when D is equal to the percentage of habitat it
occupies at equilibrium before any destruction occurs [9]. However, while the parameter
D is an important addition to the model, it does not account for the scale and geometry
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Cooney, Hafner, Johnson, and Lee 3

of the destroyed habitat, thus ignoring the impact of habitat fragmentation [1, 2]. For
example, Figure 1 displays two different habitat configurations where D = 0.5 for both
plots.

Figure 1: Two habitat configurations with D = 0.5

Both of these habitats have the same amount of viable space, yet previous studies
[1] suggest that these habitats may lead to different population outcomes. Due to
the smaller fragments of available space, habitat B has more edge length, which can
lead to increased seed loss. When too many plants of a given species are near the
edge of the viable region, a significant portion their seeds many end up landing in the
destroyed region. This phenomenon effectively reduces the colonization ability of that
species, pushing it closer to extinction. Yet in the Tilman modeling framework, both of
these habitat configurations are mathematically equivalent, with the habitat destruction
parameter set at D = 0.5 for both. A resulting Tilman model of the form (1) would predict
the same dynamics for both plots.

In an attempt to better account for edge effects and habitat fragmentation, we adapt
the Tilman model to take into account the portion of seeds each species loses as a
result of landing outside the viable habitat. We use f to denote the fraction of a given
species’ seeds that are expected to land within the viable habitat. This seed retention
factor can be predicted based on the spatial pattern of seed dispersal for individual
species in combination with the geometry of viable habitat. By multiplying each species’
colonization ability ci by its seed retention factor fi , we develop a model that remains
spatially implicit and similar to the Tilman model, but accounts for habitat fragmentation
instead of simply destruction. In this paper, we describe the modified Tilman model,
which we call the “seed-loss model,” discuss the computation and ecological significance
of the new parameters, and include an example with plant data from the Cedar Creek
Ecosystem Science Reserve in Minnesota to predict the effects of habitat destruction
and fragmentation on Midwestern grassland species.

2 Seed-Loss Model

The seed-loss model is an n-species system of spatially implicit ordinary differential
equations that tracks the proportion of viable habitat occupied by each species with
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4 Spatially-Implicit Habitat Fragmentation

respect to time. We will discuss the one species case first and then generalize to an
arbitrary number of species.

2.1 Single Species

The seed-loss model is built on the foundation of the original Levins metapopulation
model [4]

d p

d t
= cp(1−p)−mp, (2)

which Tilman later modified with the addition of the habitat destruction parameter
D. We start by interpreting (2) in the case of a single habitat occupied by a single
plant species. In this case, p represents the fraction of total viable sites in the habitat
which are currently occupied. The rate of change of p consists of both propagation
into unoccupied sites (colonization) and plant deaths (mortality). The colonization
parameter c describes each plant’s ability to produce and disperse viable seeds. Thus,
cp represents the maximum colonization ability of all plants and 1−p represents the
fraction of seeds that land in unoccupied sites. The mortality parameter m describes
the per capita plant death rate. Together, the colonization and mortality terms define a
simple first-order, non-linear, ordinary differential equation with a stable equilibrium
p = 1−m/c. Because p < 1 at equilibrium, there is room for other species to live in
the remaining portion m/c of the habitat. This makes the Levins model well suited to
describing the coexistence of multiple species in one habitat, a strength retained by the
Tilman model and also by the seed-loss model.

The seed-loss model’s key point of departure from the Tilman model is its method for
quantifying habitat destruction. Whereas the Tilman model focuses on the percentage
of land destroyed D, the seed-loss model focuses on the percentage of seeds lost. The
highly fragmented landscapes that often result from habitat destruction can lead to a
significant portion of seeds landing on sites that are no longer viable. To quantify this
phenomenon, let f denote the fraction of seeds that land within the viable habitat. Then
1− f is the fraction of seeds that land in a destroyed region of the habitat that is no longer
viable or outside the original habitat altogether. We account for seed loss by multiplying
the species’ colonization ability c by its “seed retention factor” f :

d p

d t
= c f p(1−p)−mp. (3)

Note that c depends only on the viable seed production ability of the species in question,
whereas f depends on the interplay between the spatial dispersal pattern of those seeds
and the geometry of the site. For example, a species with seeds that often carry long
distances on the wind would be more prone to seed loss, meaning it might have a low
f value if constrained to too a small habitat. Generally speaking, a species will have a
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Cooney, Hafner, Johnson, and Lee 5

lower f value in a small or fragmented habitat and a higher f value in a large continuous
habitat. Hypothetically, an infinite habitat with no edges would achieve f = 1.

The single-species seed-loss model, as formulated in equation (3), is equivalent to
the Tilman model with the substitution f = 1−D and p = p̂/(1−D), where p corresponds
to the seed-loss model and p̂ corresponds to the Tilman model (see Appendix I). But
with multiple species, the correspondence between the seed-loss model and the Tilman
model becomes more tenuous.

2.2 Multiple Species

The seed-loss model (3) generalizes to the n-species case in much the same way that the
Tilman model does:

d p1

d t
= c1 f1p1(1−p1)−m1p1

d p2

d t
= c2 f2p2(1−p1 −p2)−m2p2 − c1 f1p1p2

...

d pi

d t
= ci fi pi

(
1−

i∑
j=1

p j

)
−mi pi −

i−1∑
j=1

c j f j p j pi

...

d pn

d t
= cn fn pn

(
1−

n∑
j=1

p j

)
−mn pn −

n−1∑
j=1

c j f j p j pn

(4)

Species are ranked 1,2, · · · ,n according to their ability to compete locally for a limiting
resource, such as soil nitrogen or water. Like in the Tilman model, if species j produces
a seed that lands and sprouts in a site currently occupied by species i , species j will
successfully displace species i as long as j < i . This displacement is represented in (4)
as the interaction terms

∑i−1
j=1 c j f j p j pi . Conversely, if one of species i ’s seeds lands and

sprouts in a site already occupied by species j ≤ i , that seedling would not be able to
grow, since the existing plant of species j would not leave enough of the limiting resource.
This is reflected in (4) by the sum

∑i
j=1 p j inside the parenthesis, reducing species i ’s

available space for colonization.
Although the single-species seed-loss model is equivalent to the single-species

Tilman model with a simple substitution, this is only true in the multi-species case
if the seed retention factors fi are the same for every species (see Appendix I). In practice,
it is unlikely that every species would have the same seed retention factor, because f is
highly dependent on spatial seed dispersal patterns, which can differ significantly from
species to species. These differences are most pronounced in small or highly fragmented
habitats. For example, a species in a small habitat whose seeds typically travel long
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6 Spatially-Implicit Habitat Fragmentation

distances may retain only a tiny fraction of its seeds, whereas a species with very short
range seed dispersal could retain almost all of its seeds in the same habitat. In large
and continuous habitats, these differences in spatial seed dispersal patterns are less
important because every species’ seed retention factor is closer 1. This indicates that the
seed-loss model stands out most from the Tilman and Levins models in small or highly
fragmented habitats.

2.3 Computing Seed Retention Factors

In this section, we explain how to numerically estimate a species’ seed retention factor f
in a specific habitat. In order to accurately predict f , we need to know two things: the
spatial dispersal pattern of seeds, and the geometry of the viable habitat. The habitat
geometry, which we will operationalize as a region H ⊂R2, is relatively easy to determine
from a map or aerial photograph. But the spatial dynamics of seed dispersal are harder
determine. When a plant drops a seed, how far and in what direction will the wind carry
it? Where will it land?

The probability distribution describing where one plant’s seeds are most likely to
land is called that plant’s dispersal kernel. The dispersal kernel can be determined
experimentally by observing where most of a plant’s seeds end up, or it can be predicted
theoretically based on typical wind conditions, the aerodynamic properties of the seeds,
seed mass, and the height from which the seeds are released [7]. Mathematically, we
will treat the dispersal kernel as a two-dimensional probability density function g (x, y)
where the vector (x, y) is a seed’s horizontal displacement from the original location of
the plant that dropped it.

Assuming g (x, y) and H are both known, f can be computed in two steps:

1. Focus on a single plant located at (xp , yp ). Use the dispersal kernel to calculate
that specific plant’s seed retention factor, denoted fxp ,yp .

2. Average fxp ,yp over all possible plant locations (xp , yp ) ∈ H to estimate the species’
overall seed retention factor, f .

To accomplish the first step, integrate g over all viable sites (xs , ys) ∈ H where a seed
can land to get the probability that a given seed will stay within H .

[Step 1] fxp ,yp =
Ï

(xs ,ys )∈H
g (xs −xp , ys − yp )d xsd ys

Note that the dispersal kernel g has been centered on the location of the single plant
at (xp , yp ), so fxp ,yp represents the fraction of that particular plant’s seeds expected to
stay within H . Towards step 2, we assume that every plant produces the same number of
seeds and that plants are evenly distributed in H . Then the species’ total seed retention
factor f is the average of each individual plant’s seed retention factor fxp ,yp . This average
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xp

Viable (H)
Not Viable (H c)

Step 1

Step 2

Figure 2: A visual demonstration of computing f in the one dimensional case. The curve
in Step 1 represents the dispersal kernel for a single plant at xp . This dispersal kernel can
be integrated over the viable habitat H to find that particular plant’s seed retention factor
fxp . In Step 2, the seed retention factors are averaged over all possible plant locations
xp ∈ H , resulting in the total fraction f of all seeds that land within the viable habitat.

can be computed by integrating fxp ,yp over all (xp , yp ) ∈ H and then dividing by the total
area A of H .

[Step 2] f = 1

A

Ï
(xp ,yp )∈H

Ï
(xs ,ys )∈H

g (xs −xp , ys − yp )d xsd ysd xp d yp (5)

While this integral is intractable analytically for all but the most basic g and H , it is
relatively easy to approximate using numerical methods. For the example in the following
section, we employ Wolfram Mathematica 12’s NIntegrate function. The code we used
to approximate the integral, along with code for modeling the ordinary differential
equations (4), is included with the online version of this paper.

Once the habitat geometry and a given species’ dispersal kernel are known, (5) gives
that species’ seed retention factor. The seed retention factors for all the species, in
combination with colonization and mortality rates, fully parameterize the ordinary
differential equations (4), which can then be used to model the population dynamics of
the system. Figure 3 illustrates this process.

3 Illustrative Example

As a demonstration of the seed-loss model, we investigate a hypothetical two-species
scenario. Suppose big bluestem (Andropogon geradii) and common milkweed (Asclepias
syriaca) both occupy a small grassland habitat in which soil nitrogen is the limiting
resource. Big bluestem is a very good nitrogen competitor, so it will be species 1 in the

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022



8 Spatially-Implicit Habitat Fragmentation

Ordinary Differential 
Equations (4)

Seed Retention Factors
fi

Colonization Parameters
ci

Mortality Parameters
mi

Habitat Geometry
H

Dispersal Kernels
gi(x,y)

Predicted Populations
pi(t)

Figure 3: The seed-loss model requires parameters ci , mi , and fi for each species i . We
describe a method for computing the seed retention factors fi from the habitat geometry
H and the species’ dispersal kernels gi (x, y). Methods for computing the colonization
and mortality parameters ci and mi are beyond the scope of this paper.

seed-loss model’s competitive hierarchy. As species 2 in the model, milkweed must rely
on its superior colonization traits to survive. Specifically, milkweed produces signifi-
cantly more seeds than big bluestem. In order to capture this difference, we choose
colonization parameters c1 = 1.0 years−1 for big bluestem and c2 = 5.0 years−1 for milk-
weed. For the mortality parameters, we let m1 = m2 = 0.5 years−1. Although these precise
parameter values are somewhat arbitrary, from a qualitative perspective, this scenario
does capture the colonization-competition trade-off of these two common grassland
species.

Beyond these rough estimates for c1, c2, m1, and m2, the only parameters left to
estimate are the seed retention factors f1 and f2. We will compute the seed retention
factors exactly as described in section 2.3. First, each species’ dispersal kernel must
be determined. For this example, we will assume that both species have bivariate
normal dispersal kernels. A “fat tailed” distribution like the inverse Gaussian or Laplace
distribution, or even an asymmetric distribution (to account for prevailing winds) may
be more realistic, but for the sake of simplicity, we consider only the bivariate normal
distribution:

g (x, y) = 1

2πσ2
exp

(
−x2 + y2

2σ2

)
.

The standard deviationσ should be larger for species whose seeds travel longer distances
and smaller for species whose seeds travel shorter distances. Since milkweed’s seeds
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(ii) Initial Habitat

(iii) Reduced Habitat A (iv) Reduced Habitat B

f-Values: f1 = 0.88  f2 = 0.47
Equilibrium: p1 = 0.43  p2 = 0.19

f-Values: f1 = 0.82  f2 = 0.30
Equilibrium: p1 = 0.39  p2 = 0.06

f-Values: f1 = 0.65  f2 = 0.16
Equilibrium: p1 = 0.24  p2 = 0.00

(v) Transition from H0 to HA (vi) Transition from H0 to HB

Scenario A Scenario B

p1
p2

Time since habitat reduction (years) Time since habitat reduction (years)

Viable
Not Viable

Axes represent 
distance in meters

HB

HA

H0

HB

HBHB

(i)

Figure 4: In this 2-species example, the model parameters shown in panel (i) are chosen
to approximate the traits of big bluestem (species 1) and common milkweed (species 2).
Three different habitat geometries, H0, HA, and HB , are shown in panels (ii), (iii), and
(iv). Initially, the two plant populations occupy H0 in a stable equilibrium (p1 = 0.43,
p2 = 0.19). Then, at t = 0, the viable habitat is reduced from H0 to either HA or HB in
Scenario A or B respectively. The resulting decrease in seed retention factors causes
the plant populations to decline to reduced equilibria, as shown in panels (v) and (vi).
Note that the same percentage of habitat area is destroyed in both scenarios, but the
consequences are more severe in scenario B, where milkweed will eventually go extinct.
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10 Spatially-Implicit Habitat Fragmentation

are very light and have parachute-like plumes to catch the wind, they tend to travel
much farther than big bluestem’s heavier plume-less seeds. Qualitatively, it follows that
σ1 < σ2. To quantify this, we turn to a 2018 mechanistic seed dispersal study, which
estimated mean seed dispersal distances of several common grassland plant species [7].
Based on average seed mass, terminal velocity, release height, and wind conditions at
the typical release date, [7] predicts mean seed dispersal distances of roughly µ1 = 3 m
and µ2 = 15 m for big bluestem and common milkweed, respectively. Using the relation
µ=p

π/2σ (see Appendix II for derivation), we conclude that

σ1 =
p

2/π (3 m) ≈ 2.4 m

σ2 =
p

2/π (15 m) ≈ 12 m.

The parameters mentioned so far (colonization rates, mortality rates, and dispersal
kernels) are summarized in panel (i) of Figure 4. All that remains to define is the habitat
geometry H . We begin with a small 30 m square of area 900 m2, shown in panel (ii),
which we call H0. We then consider two hypothetical habitat destruction scenarios. In
panel (iii), the outermost 5 m along each of the square’s edges is destroyed, leaving a
20 m square, HA. In panel (iv), a cross shape is destroyed, fragmenting the habitat into
four isolated 10 m squares, HB . These scenarios could represent the construction of new
roads, the expansion of agricultural fields, or some other sudden reduction in viable
habitat. Note that in both scenarios, 500 m2 are destroyed, leaving a reduced habitat of
area 400 m2. We juxtapose these two scenarios in order to demonstrate the importance
of habitat geometry, not just total habitat area, for species population dynamics after
destruction.

Numerically computing the seed retention factors using equation (5) yields lower
f -values in HA and HB than in H0 for both big bluestem and milkweed, as expected
from habitat destruction. But, there is a significant difference between HA and HB ,
despite their equal area. In HA, big bluestem and milkweed’s f -values are 0.82 and 0.30,
respectively, while in HB they are 0.65 and 0.16. As a result of these lower seed retention
factors, the transition from H0 to HB in scenario B causes a more severe decline in plant
populations than the transition from H0 to HA in scenario A. In scenario A, both species
survive at reduced equilibrium populations, whereas in scenario B, only big bluestem
survives. Milkweed’s equilibrium population in scenario B is zero, so the species suffers
what Tilman calls an “extinction debt,” meaning its population will deterministically
decline to zero barring further intervention, shown in panel (vi) of Figure 4. This example
demonstrates that the geometry of the habitat, not just its area, can be decisive for
population viability.

We conclude that small and fragmented habitats like HB make species more vulner-
able to seed loss, putting them at greater risk of extinction. In general, we found that
continuous habitats with minimal edge length retained the most seeds and resulted in
the fewest extinctions.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 2, 2022
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Transition from H0 to HB

Time since habitat reduction (years)

p1

p2

Figure 5: Revisiting the illustrative example from section 3, we increase the mean dis-
persal distance of big bluestem (species 1) from 3 meters to 5 meters while holding all
other parameters constant. Big bluestem’s seed retention factor drops from 0.65 to 0.47
in HB and its population crashes, leaving room for milkweed’s population to rebound.
Comparing panel (vi) of Figure 2 with the model’s new prediction above shows a drastic
reversal.

We also noticed that even small changes in dispersal distance can significantly affect
the predicted outcome. For instance, increasing the mean dispersal distance of big
bluestem from 3 meters to 5 meters while holding all other parameters constant leads
to drastically different behavior in Scenario B. This change reduces big bluestem’s seed
retention factor from 0.65 to 0.47 in habitat HB , pushing it to extinction and leaving
room for milkweed to make a dramatic comeback, as shown in Figure 5. In Scenario A,
big bluestem’s seed retention factor changes from 0.82 to 0.71 and both species persist
on the landscape, as before.

4 Discussion

The example in section 3 illustrates another prediction of the seed-loss model about
which species are most vulnerable after habitat destruction. Specifically, the model
predicts that species whose seeds travel the farthest are most prone to seed loss. For
instance, in the example in section 3, milkweed has a lower seed retention factor than
big bluestem in all three habitats because its larger dispersal kernel results in more seeds
landing outside the viable habitat. Species like milkweed with larger dispersal kernels
tend to be on the colonization side of the competition-colonization trade-off, so the
seed-loss model generally predicts that the best colonizers are most prone to seed loss
after habitat destruction. However, this does not necessarily mean the best colonizer
always goes extinct first, since the population of each species depends not just on its
seed retention factor but also on colonization, mortality, and competitive interactions
with other species in the model. In some cases the best colonizer goes extinct (see Figure
4), in other cases the best competitor goes extinct (see Figure 5), and in still other cases
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12 Spatially-Implicit Habitat Fragmentation

multiple species or a species in the middle of the colonization-competition spectrum go
extinct.

These results differ significantly from the predictions of the Tilman model. In the
Tilman model, the first species to go extinct as the habitat destruction parameter D is
increased is always the best competitor, species 1. Furthermore, Tilman predicts that the
critical value of D beyond which species 1 goes extinct is always D = 1−m1/c1, which
also happens to be species 1’s equilibrium population when D = 0 [9]. The seed-loss
model, in contrast, is less sensitive to the exact percentage of habitat area destroyed and
more sensitive the geometry and scale of the habitat, which interacts with the geometry
and scale of each species’ dispersal kernel. This difference between the seed-loss model
and the Tilman model is due to the spatially explicit computation of seed retention
factors, which allows the ordinary differential equations (4) to capture some of the two
dimensional dynamics of seed dispersal while remaining spatially implicit.

This two dimensional geometric interaction between habitat and dispersal kernel,
specifically the ratio of dispersal distance to habitat size, has also emerged as a key
predictor of species extinction in spatially explicit models of plant population dynamics,
including a Markov model of colonization and competition on an integer lattice [6] as
well as a single-species PDE on a one-dimensional habitat [3].

Several simplifying assumptions in the seed-loss model could be revisited for greater
realism. The seed-loss model assumes that the sole mechanism for plant reproduc-
tion is seed dispersal. However, vegetative reproduction is especially common among
grassland plants. The seed-loss model also assumes that seeds disperse only by wind,
which ignores the impacts of insects, animals, and humans as seed dispersers. Another
simplifying assumption, mentioned in section 2.3, is that plants are evenly distributed
throughout the habitat. A more realistic model might allow for some species to prefer
the middle of the habitat, others to prefer the edges, and still others to prefer the upwind,
downwind, north, or south sides. Finally, precise estimation of colonization and mor-
tality parameters is quite difficult. For example, it is not clear exactly how plants die, or
how to classify a plant as dead, particularly in the case of vegetative plants. Because of
this, the seed-loss model is more valuable as a qualitative tool than a quantitative one.

Despite these limitations, spatially implicit ODE models such as the seed-loss model
have an advantage in their simplicity and analytic tractability. This can allow the same
qualitative insights as more complex models through much simpler calculations of
equilibria. The seed-loss model has already produced qualitatively supported results
[3, 6] that are relevant to conservation strategies and we are excited to continue to explore
more habitat geometries and analyze intervention strategies like reseeding or habitat
restoration.
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5 Conclusion

In this paper we introduce the seed-loss model, which accounts for seed loss in small
and fragmented habitats. We do this by introducing a seed retention parameter f , which
denotes the fraction of a plant species’ seeds that land within viable habitat. Given the
spatial dispersal pattern of a species’ seeds and the geometry of a habitat, the seed-
loss model can predict species dynamics and deterministic extinction. One interesting
implication of the seed-loss model is that it is no longer straightforward which species
will go extinct first in a habitat with multiple species. Extinction depends on the dispersal
kernel of each species and the specific geometry of the given habitat. The seed-loss
model can be used to give a nuanced, qualitative picture of what is possible when it
comes to habitat destruction, biodiversity loss, and attempts to mitigate deterministic
extinction of plant species.

6 Appendix I

Here we show that the seed-loss model is equivalent to the Tilman model with the
substitution f = 1−D and a re-scaling of p in the one-species case. For clarity, we denote
the plant population variable as p̂ for the Tilman model and as p for the seed-loss model.
We begin with the Tilman model

d p̂

d t
= cp̂(1−D − p̂)−mp̂ (6)

and then make the substitution p̂ = p(1−D). Concretely, p̂ represents the occupied sites
as a fraction of total habitat (viable and destroyed), whereas p represents the occupied
sites as a fraction of only the viable habitat. With this change of variables, (6) becomes

d((1−D)p)

d t
= c(1−D)p(1−D − (1−D)p)−m(1−D)p

(1−D)
d p

d t
= cp(1−D)2(1−p)−m(1−D)p

d p

d t
= cp(1−D)(1−p)−mp.

Finally, we can substitute f = (1−D) to obtain the seed-loss model

d p

d t
= c f p(1−p)−mp

as claimed.
The same substitution works in the multi-species case, with the important caveat

that all species must have equal seed retention factors fi . Consider the differential
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equation for species i in the multi-species Tilman model

d p̂i

d t
= ci p̂i

(
1−D −

i∑
j=1

p̂ j

)
−mi p̂i −

i−1∑
j=1

c j p̂ j p̂i

with the substitution p̂i = pi (1−D).

d(pi (1−D))

d t
= ci pi (1−D)

(
1−D −

i∑
j=1

p j (1−D)
)
−mi pi (1−D)−

i−1∑
j=1

c j p j (1−D)pi (1−D)

(1−D)
d pi

d t
= ci pi (1−D)

(
1−D − (1−D)

i∑
j=1

p j

)
−mi pi (1−D)− (1−D)

i−1∑
j=1

c j p j pi (1−D)

d pi

d t
= ci pi

(
1−D − (1−D)

i∑
j=1

p j

)
−mi pi −

i−1∑
j=1

c j p j pi (1−D)

d pi

d t
= (1−D)ci pi

(
1−

i∑
j=1

p j

)
−mi pi −

i−1∑
j=1

c j p j pi (1−D)

At this point, the equality of the seed retention factors is required in order to make the
substitution f = (1−D), resulting in

d pi

d t
= ci f pi

(
1−

i∑
j=1

p j

)
−mi pi −

i−1∑
j=1

c j f p j pi

as desired.

7 Appendix II

In section 3, we claimed that the mean distance distance from the origin of the bivariate
normal distribution

g (x, y) = 1

2πσ2
exp

(
−x2 + y2

2σ2

)
is µ=p

π/2σ. To show this is true, it suffices to evaluate the integral

µ=
∫ ∞

−∞

∫ ∞

−∞
g (x, y)

√
x2 + y2 d x d y.

Substituting the bivariate normal function for g (x, y) and switching to polar coordinates
yields

µ=
∫ 2π

0

∫ ∞

0

1

2πσ2
e−r 2/2σ2

r 2 dr dθ

µ=
∫ ∞

0

1

σ2
e−r 2/2σ2

r 2 dr.
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Now change variables to t = r /(
p

2σ), yielding

µ=
∫ ∞

0
2
p

2σe−t 2
t 2 d t

and integrate by parts with u =p
2σt and d v = 2te−t 2

d t . This means du =p
2σd t and

v =−e−t 2
. The result is

µ= (
p

2σt )(−e−t 2
)
∣∣∣t=∞

t=0
−

∫ ∞

0
(−e−t 2

)(
p

2σd t )

The first term vanishes at both t = 0 and t =∞, leaving only

µ=p
2σ

∫ ∞

0
e−t 2

d t .

This integral is exactly half of the famous Gaussian integral∫ ∞

−∞
e−t 2

d t =p
π

so we have

µ=p
2σ

p
π

2
=
p
π/2σ

as claimed.
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