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Are all Weakly Convex and Decomposable
Polyhedral Surfaces Infinitesimally Rigid?

By Jilly Kevo

Abstract. It is conjectured that all decomposable (that is, interior can be triangulated without adding

new vertices) polyhedra with vertices in convex position are infinitesimally rigid and only recently has it

been shown that this is indeed true under an additional assumption of codecomposability (that is, the

interior of the difference between the convex hull and the polyhedron itself can be triangulated without

adding new vertices). One major set of tools for studying infinitesimal rigidity happens to be the (negative)

Hessian MT of the discrete Hilbert-Einstein functional. Besides its theoretical importance, it provides

the necessary machinery to tackle the problem experimentally. To search for potential counterexamples

to the conjecture, one constructs an explicit family of so-called T-polyhedra, all of which are weakly

convex and decomposable, while being non-codecomposable. Since infinitesimal rigidity is equivalent to

a non-degenerate MT , one can let Mathematica search for the eigenvalues of MT and gather experimental

evidence that such a flexible, weakly convex and decomposable T-polyhedron may not exist.

1 Introduction

1.1 Structure of the paper

Already back in 1766, Leonhard Euler conjectured that “a closed spatial figure allows
no changes, as long as it is not ripped apart”. This lead to a lot of partial results, among
them the well-known theorem by Cauchy assuring us that convex “closed spatial figures”
are indeed all rigid, in a sense that will be made precise soon. However, the reason for
why nobody could prove Euler’s conjecture in its entirety turns out to be that it is simply
wrong, as Connelly [2] demonstrated by providing a counterexample and gifting the
world its first flexible and non-self-intersecting polyhedral surface in R3.

Since not all closed surfaces share rigidity, the natural question would be to seek
minimal conditions under which the latter holds. This lead to the following conjecture,
lying at the heart of this paper:

Main conjecture:
Every weakly convex and decomposable polyhedron is infinitesimally rigid.

Mathematics Subject Classification. 53,51F
Keywords. polyhedral geometry, infinitesimal rigidity
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2 Infinitesimal Rigidity of Weakly Convex and Decomposable Polyhedra

Let us remark that the motivation for studying the conjecture stems from Izmestiev
and Schlenker [11]. There it was shown that the statement is indeed true under the
additional assumption of codecomposability and it was left as an open problem to de-
termine whether this supplementary requirement is truly necessary. The conjecture
was however also mentioned in Connelly and Schlenker [4] as Question 1.1. and even
before that, in a paper by Schlenker [14] where it also originates from. The latter proves
that the conjecture holds for polyhedra P for which there exists an ellipsoid containing
no vertices of P but intersecting all its edges. Before continuing, we’ll first need some
definitions.

Definition 1.1. Let S be a triangulation of a compact, orientable surface with V denoting
the set of vertices and E the set of edges. A polyhedral surface or polyhedron is the
image of a map S −→R3 that is affine on each edge and non-degenerate on the faces.

Definition 1.2 (Izmestiev, 2011 [9]). Let P ⊂ R3 be a polyhedron with vertices V =
{p1, ..., pn}. An infinitesimal isometric deformation of P is a map q : V → R3 such
that

d

d t

∣∣∣
t=0

dist(pi + t qi , p j + t q j ) = 0, (1)

for all edges pi p j of P and where q(pi ) =: qi .

Definition 1.3. A polyhedron P ⊂R3 is said to be infinitesimally rigid if every infinitesi-
mal isometric deformation is trivial in first order, that is

qi = K(pi ),

for K a Killing field of R3. If there is a non-trivial infinitesimal isometric deformation, the
polyhedron is said to be infinitesimally flexible.

So, an infinitesimal deformation is just an assignment of vectors to each vertex of a
polyhedron P. If moving the vertices in the assigned directions induces a zero first-order
variation of the edge lengths, we speak of isometric infinitesimal deformation. Such a
deformation is trivial if the Euclidean distance between every pair of points is preserved,
that is, the motion is just a rigid motion in R3. Explicitly, one can verify that Equation (1)
is equivalent to

〈pi −p j , qi −q j 〉 = 0,

for all edges pi p j of P.

Definition 1.4. A polyhedron P ⊂ R3 is said to be weakly convex if every vertex v of P
has a supporting plane that intersects P at exactly v .

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024



Kevo 3

For instance, consider a cube having an additional vertex in the center of one of
its faces. This polyhedron is convex but not weakly convex. Such a vertex is called flat
vertex. That weak convexity is indeed a necessary condition for infinitesimal rigidity will
be illustrated in Section 3.3 by an example.

It should also be pointed out that weak convexity does not imply convexity. In-
deed, the Schönhardt polyhedron, as shown in Figure 2, already provides us with a
counterexample.

Definition 1.5. A triangulation of a polyhedron P is a partition of its interior into tetra-
hedra. Such a polyhedron is said to be decomposable if its interior can be triangulated
without adding new vertices and codecomposable if the interior of its complement, that
is, the difference between the convex hull of P and P itself, can be triangulated without
adding new vertices.

Let us remark that it is still an open problem to determine sufficient criteria a poly-
hedron has to satisfy in order to be decomposable. Note that in the discrete geometry
literature, one rather encounters the word tetrahedralizable instead of decomposable.

The structure of the paper is now as follows. In order to explore the conjecture,
we would like to explicitly test a certain family of weakly convex, decomposable and
non-codecomposable polyhedra for infinitesimal rigidity. This is done with the aid of
the Schönhardt polyhedron, which is known to be infinitesimally flexible as shown by
Izmestiev [9] for instance and the simplest non-decomposable polyhedron as demon-
strated by Schönhardt [15]. Albeit not being able to provide a counterexample to the
conjecture, we’ll suggest a recipe that enables one to decide with a computer whether a
given polyhedron is infinitesimally rigid or not. This is done throughout Sections 2 and 3
with explicit computations given in the appendix.

In Section 3, an elementary proof of the fact that the π/6-twisted Schönhardt polyhedron
is infinitesimally flexible is given. This is done by rederiving Wunderlich’s [17] formula
(Equation (3)) by purely geometric means. Lastly, we provide an example to illustrate
why weak convexity is a necessary condition for infinitesimal rigidity and conclude with
an outlook summarizing all of the experimental observations we collected so far. This
leads to a new conjecture that all polyhedra belonging to a certain family and satisfying
the assumptions of the main conjecture must be infinitesimally rigid. Moreover, we
collect experimental evidence that for any infinitesimally flexible polyhedron in that
family weak convexity and decomposability can not be achieved simultaneously.

1.2 Regge Calculus and the discretization of space

Before moving to the main part of the paper, we’ll take a small detour to motivate the
techniques that are used to study the infinitesimal rigidity of polyhedra.

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024



4 Infinitesimal Rigidity of Weakly Convex and Decomposable Polyhedra

In his paper “General relativity without coordinates” [13], Tullio Regge developed a
way to discretize N-dimensional Riemannian manifolds using a collection of N-dimensional
building blocks whose intrinsic geometry (their metric) is Euclidean (that is, flat). This
is known as Regge Calculus. Besides the original paper, see for example chapter 42 of
Misner et al. [12].

Apart from being interesting for gravitational physics by providing the necessary
tools to evaluate the curvature of Lorentzian manifolds in an intrinsic and manageable
way, it also constitutes one of the cornerstones of the mathematical formulation of
infinitesimal rigidity, considering that the N-dimensional building blocks mentioned
above are Euclidean simplices SN, as depicted in Figure 1.

Figure 1: A few Euclidean simplices

Joined facet to facet, the initially smooth manifold transforms into a discrete as-
sociation of simplices. What is particularly well-suited for computations is that the
characterization of any such discrete manifold skeleton only requires the specification of
the edge lengths of the simplices and the gluing rules for connecting them. By choosing
a collection of sufficiently small simplices, any smooth manifold can be approximated
to arbitrarily high precision with an assembly of that kind. The fact that edge lengths
suffice to specify the intrinsic geometry, has been exploited so far to conclude that

curvature lies concentrated into simplices of dimension N−2.

These simplices are the so-called bones (or, in the language of discrete geometry, the
1-skeleton) of the structure and turn out to be of uttermost value in our context. Given a
weakly convex polyhedron P ⊂R3 and a triangulation of its interior into S3 simplices such
that every vertex of every interior tetrahedron coincides with a vertex of the polyhedron,
we will restrain ourselves from moving the vertices of P (and therefore altering its bound-
ary lengths) and modify the metric inside of it. Before making all of this precise in the
next subsection, this is roughly speaking done by varying the lengths of the bones (which

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024
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are just S1 simplices) of P, that is the collection of all interior edges of the triangulation.
The edge lengths of the polyhedron itself are not altered, only the ones of the individual
tetrahedra. As a result, this induces a total angle of ωi around each such interior edge
that potentially differs now from 2π. This is done by summing up the individual angles of
the now modified tetrahedra that constituted the interior triangulation while respecting
the initial gluing. Defining the total curvature of an interior edge i as κi = 2π−ωi , Regge
Calculus enables us to express it in terms of edge lengths. In order to extend this to
infinitesimal rigidity, it is necessary to borrow another function from physics.

1.3 The discrete Hilbert-Einstein functional

Following Izmestiev [10], we briefly recall the most important results surrounding the
discrete Hilbert-Einstein functional.

Definition 1.6. Let P ⊂R3 be a polyhedron and T a triangulation of P with interior edges
e1, ...,en . Then DP ,T is defined as the collection of n-tuples of the form l := (l1, ..., ln) ∈
Rn
>0 which, for every simplex σ of T, are such that replacing the lengths of the edges of

σ which are interior edges of the triangulation by the corresponding l j ’s in l induces a
non-degenerate simplex.

Definition 1.7. Let e ′
1, ...,e ′

r denote the boundary edges of P, l ′j the length of the edge e ′
j

and α j the dihedral angle of P at e ′
j , for j ∈ {1, ...,r }. Moreover, for i ∈ {1, ...,n}, let ωi be

the total angle around the interior edge ei and κi := 2π−ωi the singular curvature along
it. In that case, the discrete Hilbert-Einstein functional is defined by

HE : DP ,T −→R

l 7−→
n∑

i=1
liκi +

r∑
j=1

l ′j (π−α j ).

Note that this functional can be viewed as the discrete analog of twice the total
scalar curvature of P plus half of the total mean curvature of ∂P, hence its name. In
combination with the 3-dimensional Euclidean Schläfli formula (which is valid for each
individual simplex), ∑

e
le dαe = 0,

where the sum runs over all edges of P, le denoting the length and αe the dihedral angle
at each edge, the first-order variation of the Hilbert-Einstein functional reduces to

dHE =
n∑

i=1
κi dli .

Note that this expression takes in tangent vectors to DP ,T as input, so that it expresses
the first-order variation of the interior edge lengths of a triangulation T of a polyhedron P

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024



6 Infinitesimal Rigidity of Weakly Convex and Decomposable Polyhedra

with n interior edges. Most importantly, the Hessian ( ∂
2HE

∂li∂l j
) of HE is equal to the Jacobian

of the map (li )n
i=1 → (κi )n

i=1. Since differentiation eradicates the constant of 2π in the
curvature term, one has

MT :=
(
∂ωi

∂l j

)
=−

(
∂2HE

∂li∂l j

)
.

Observe moreover that MT must be symmetric, given that it equals minus the Hessian of
HE. This matrix plays an important role in the theory, as illustrated by the following two
results. Given that symmetric matrices are especially well suited for computations, it
also provides us with the necessary tools to tackle the problem experimentally.

Theorem 1.8. Let P be a convex polyhedron and T a triangulation admitting m interior
and k flat vertices. The dimension of ker(MT) is 3m+k and MT has m negative eigenvalues.

Proof. Izmestiev and Schlenker [11].

So, if the convex polyhedron in question can be triangulated without interior and
flat vertices, MT is positive definite. Another result that will be of great use to us is the
following:

Lemma 1.9. Let P be a polyhedron admitting a triangulation T without interior vertices.
Then P is infinitesimally rigid if and only if MT is non-degenerate.

Proof. Bobenko and Izmestiev [1].

While Izmestiev and Schlenker [11] proved Theorem 1.8, they obtained the following
result as a consequence:

Theorem 1.10. If a polyhedron is weakly convex, decomposable, and weakly codecompos-
able with triangular faces then it must be infinitesimally rigid.

Here, weakly codecomposable denotes any polyhedron P which sits inside a convex
polyhedron Q such that the vertices of P form a subset of the vertices of Q and the
complement of P in Q (that is, the difference between Q and P) can be triangulated
without adding new vertices. Recall that codecomposability is stronger in the sense that
the complement of the polyhedron with respect to its convex hull can be triangulated
without adding new vertices.

To see how Theorem 1.10 follows from Theorem 1.8, notice that for a weakly convex,
decomposable, and weakly codecomposable polyhedron P, there must exist a convex
polyhedron Pc such that Pc shares all its vertices with P, and a triangulation T of P that
is contained in a triangulation Tc of Pc , where the vertices of Tc are precisely those of
Pc . Now, it can be shown that MT must be a principal minor of MTc . Thus, by Theorem
1.8, MTc is positive definite and therefore MT must be as well. Since positive definite
matrices are invertible, Lemma 1.9 yields the desired result.

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024
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2 An empirical approach

2.1 The flexible Schönhardt polyhedron

Depicted in Figure 2 is the so-called Schönhardt polyhedron, a polyhedron named after
his discoverer Erich Schöhnhardt and having the special property of being weakly convex,
non-decomposable and (infinitesimally) flexible as shown by Izmestiev [9]. In fact, it is
the simplest (in the sense of fewest vertices) flexible polyhedron which doesn’t admit
a triangulation without interior vertices as was verified by Schönhardt [15], making it
the perfect footing onto which to construct polyhedra violating the codecomposability
assumption of Theorem 1.10. As a figurative example, consider a Schönhardt polyhedron

Figure 2: The Schönhardt polyhedron

with vertices

A = (1,0,1)

A′ = (
cos π6 , sin π

6 ,−1
) B = (

cos 2π
3 , sin 2π

3 ,1
)

B′ = (
cos 5π

6 , sin 5π
6 ,−1

) C = (
cos 4π

3 , sin 4π
3 ,1

)
C′ = (0,−1,−1),

in R3, having edges AA′, AC′, BB′, BA′, CC′ and CB′ and faces AA′C′, AA′B, BA′B′, BB′C,
CB′C′, CC′A, ABC and A′B′C′. Later on, we will have to remove faces ABC and A′B′C′

from the list since we’ll restrict ourselves to weakly convex polyhedra of genus one
with triangular faces (for the sake of simplicity) and admitting the Schönhardt polyhe-
dron as their complement (in the sense that their convex hull contains the Schönhardt
polyhedron).

In practice, the following three major steps will be employed to discern infinitesimally
rigid polyhedra from infinitesimally flexible ones:

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024



8 Infinitesimal Rigidity of Weakly Convex and Decomposable Polyhedra

1. Triangulate the polyhedron. This triangulation T will have n ∈N interior edges.

2. Calculate all the dihedral angles between the faces of the simplices making up T
and meeting at an interior edge of the triangulation of P. The total angle around
an interior edge will be the sum of all such dihedral angles.

3. Determine the eigenvalues of MT (a n ×n matrix). If zero is not an eigenvalue, P
must be infinitesimally rigid.

Let us remark that it is in practice not feasible to search for infinitesimal flexible polyhe-
dra through the linear system of equations (1) proposed in Definition 1.2. In fact, this
method would require one to stumble exactly upon the right polyhedron and would
involve many issues coming from rounding errors. However, when working with MT,
this is not the case since it suffices to just find two polyhedra having different signatures.
This would then be enough to conclude that a polyhedron with zero-determinant MT

(which would then be infinitesimally flexible) must exist between them, without having
to construct it explicitly.

Since we will explicitly construct P (instead of studying random polyhedra), step one
is not something we will have to worry about much. What is of greater importance is
to find a way to determine the total angle around the interior edges ei , for i = 1, ...,n,
of P as a function of the edge lengths li of the ei (remember, the entries of MT are the
derivatives of total angle around each edge with respect to edge length). This is not as
straightforward as it sounds at first since expressing dihedral angles of tetrahedra as a
function of edge lengths is sometimes quite cumbersome and unnecessary complicates
the process even further (for example, using trigonometry and Heron’s formula requires
calculating the areas of the faces, which we neither need nor want). A more efficient
method to obtain the desired dihedral angles turns out to be through Cayley-Menger
determinants.

2.2 The Cayley-Menger determinant

A sextuple of the form S = (e12,e13,e14,e23,e24,e34) determines a non-degenerate Eu-
clidean tetrahedron (that is, not all points of S are lying in the same plane) if and only if
the following two conditions are satisfied:

1. All face triplets of S are of the form F = (ei j ,ei k ,e j k ), where F satisfies ei j < ei k+e j k ,
ei k < ei j +e j k and e j k < ei j +ei k ;

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024
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Figure 3: A tetrahedron

2. The determinant D of the following matrix is strictly greater than 0:

CM :=


0 e2

12 e2
13 e2

14 1
e2

12 0 e2
23 e2

24 1
e2

13 e2
23 0 e2

34 1
e2

14 e2
24 e2

34 0 1
1 1 1 1 0


The first condition simply states that the tetrahedron has four faces with non-

negative edge lengths satisfying the triangle inequality. The determinant D is the Cayley-
Menger determinant. Its geometric significance becomes apparent when considering
how it relates to the volume V of the tetrahedron, that is,

D = 288V2.

See Fiedler [5] for a proof. In order to compute dihedral angles, it is necessary to look at
a specific minor of the matrix CM. Given any edge ei j of the tetrahedron, the term e2

i j
appears twice in CM, namely in the two rows and columns i and j . To obtain the desired
cofactor, defined by

Di j := (−1)k+l · (k, l ) - minor of CM,

it suffices to localize the two terms e2
i j in CM and delete row k and column l which

does not contain the term e2
i j , evaluate the determinant and multiply by (−1)k+l . It is

important that the 5th row and column of CM does not take part in this excision process.
As an example, in order to obtain D12, delete row 3 and column 4 of CM (or, equiva-

lently, row 4 and column 3), calculate the determinant of this smaller matrix and multiply
it by minus one, since 3+4 = 7.

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024



10 Infinitesimal Rigidity of Weakly Convex and Decomposable Polyhedra

Denoting the interior dihedral angle at the edge ei j by αi j , the following relationship
between D and αi j can be derived:

αi j = arccos

 Di j√
2e2

i j D+D2
i j

 (2)

There are many ways to prove this, see for instance Fiedler [5].

3 Rotational flexibility

3.1 When, how and why does a certain polyhedron twist?

The first part of this section is devoted to the Schönhardt polyhedron. In particular, we
would like to understand which properties discern it from other, infinitesimally rigid,
polyhedra. Let us therefore start by recalling

Cauchy’s rigidity theorem: If two convex polyhedra inR3 have pairwise congruent faces,
then the two polyhedra must themselves be congruent.

What is meant by requiring congruence is that the two faces (or sets of points in general)
can be transformed into each other by means of isometries, that is, rigid motions in R3

which are combinations of translations, rotations and reflections, with no changes in size
allowed. Even though the untwisted and twisted states of the Schönhardt polyhedron
have the same polyhedral net, they form a pair of incongruent octahedra. Yes, two
corresponding faces are congruent to each other and two corresponding edges have the
same convexity character (one concave edge in each side), however, the twisted and
untwisted states of the Schönhardt polyhedron do not constitute convex polyhedra and
hence Cauchy’s theorem is not applicable to begin with. As is shown in Figure 4, the

Figure 4: Cardboard model of the Schönhardt polyhedron

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024
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untwisted Schönhardt polyhedron is not an upright triangular prism, but a so-called
concave, triangular gyroprism. Let us also remark that the two states of the Schönhardt
polyhedron can not be continuously deformed into each other. This means in particular
that if the model depicted in Figure 4 was made of a perfectly stiff material, one wouldn’t
be able to twist it from one state to the other without disassembling and rebuilding
it. Now, if one were to play around with it for a while, one would make the following
experimental observation (EO):

EO1: There is no flex of the Schönhardt polyhedron that does not involve a twist.

Even though this seems to be a trivial statement, it is far from being a superfluous
one.

Figure 5: Twisting the Schönhardt polyhedron

Still and all, this is not the end of the story. Observe how the motion of untwisting
the Schönhardt polyhedron induces a height augmentation ∆h of the structure and that
every vertex of the top triangle is prescribed to move on a cylinder (while the bottom
basis is kept in a fixed position). It is then natural to believe that this∆h can be expressed
in terms of some of the vital polyhedral characteristics (such as height, angle and edge
lengths of the two equilateral triangles). Moreover, one can easily convince oneself, by
trying to construct a model for instance, that the polyhedral net must not be made out
of a perfect rectangle but rather a parallelogram. We can denote this little overhang by
m, as depicted in Figure 6.

As already remarked, we can keep the bottom basis fixed and imagine an infinitesimal
flex. During that process, all edge lengths are kept at constant lengths and so the vertex
A (for instance) of the top basis is not only constrained to move on a cylinder of radius r ,
but also on a circle of radius c , (corresponding to the edge length EA). Figure 7 describes
how the (infinitesimal) twist is done:

Proposition 3.1. With notation as in Figures 6 and 7, the difference of the square of the

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024



12 Infinitesimal Rigidity of Weakly Convex and Decomposable Polyhedra

Figure 6: The Schönhardt polyhedron’s net with top and bottom faces removed

heights of the twisted and untwisted Schönhardt polyhedron denoted, respectively, by h
and h′, is given by

h2 −h′2 = 2r 2 sin
(ω

2

)
. (3)

Proof. Note that this formula already appears in Wunderlich [17], albeit derived by
different means. Here we present a purely geometric proof using Figure 7. Hollow points
indicate that they do not belong to the set of vertices of the Schönhardt polyhedron.

Now, since ABC is an equilateral triangle, all its angles must be equal to π/3. Thus,
by construction, the two segments of length r cos

(
π
6

)
and r cos

(
ω
2

)
are parallel and their

difference is equal to m, that is,

m = r cos
(ω

2

)
− r cos

(π
6

)
= r

(
cos

(ω
2

)
−cos

(π
6

))
.

With the fact that cosine is bounded by 1 and 1−cos
(
π
6

)= 1−p
3/2 ≈ 0.134, we find that

the overhang m must satisfy
0 ≤ m ≤ 0.134 · r.

On the other hand, observe that

distance(P,P′) = 2r sin
(ω

2

)
.

Constructing the blue circle of radius h and center P gives birth, upon projecting
the point A′ onto the blue circle and connecting it to the line that passes through the
points P and P′, to the right angled triangle PA′′P′′. In order to find the distance between
P and P′′, we can extend the line segment connecting O and P by a length of 2r sin

(
ω
2

)
.

The trick consists in taking 2r sin
(
ω
2

)+ r to be the diameter of a new circle. This circle
(depicted in red) has of course radius

(
2r sin

(
ω
2

)+ r
)

/2 (which is the arithmetic mean
of 2r sin

(
ω
2

)
and r ) and intersects the segment h at the point S which, by the geometric

properties of semi-circles, is at a distance of
√

2r 2 sin
(
ω
2

)
from the point P. The length

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024



Kevo 13

Figure 7: Twisting the Schönhardt polyhedron

of
√

2r 2 sin
(
ω
2

)
corresponds to the geometric mean of 2r sin

(
ω
2

)
and r . The only thing

that is left to do is to notice that

distance(P,P′′) = distance(P, S)

and apply the Pythagorean theorem to the triangle PA′′P′′

h2 = h′2 +
(√

2r 2 sin
(ω

2

))2

,

that is,

h2 −h′2 = 2r 2 sin
(ω

2

)
.

It remains to show that the Schönhardt polyhedron is indeed infinitesimally flexible.

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024



14 Infinitesimal Rigidity of Weakly Convex and Decomposable Polyhedra

Theorem 3.2. The π/6-twisted Schönhardt polyhedron is infinitesimally flexible.

Proof. By Definition 1.3, we know that a polyhedron is infinitesimally rigid if every iso-
metric infinitesimal deformation is trivial in first order, so that each motion corresponds
to a rigid body motion. If ν= {v1, ..., vn} denotes the set of vertices of the polyhedron P,
any such motion can be expressed through a map q : ν→R3 satisfying

d

d t

∣∣∣
t=0

distance(vi + t q(vi ), v j + t q(v j )) = 0 (4)

for every edge vi v j of P. This is equivalent to

〈vi − v j , qi −q j 〉 = 0 (5)

because (4) forces 2(vi +t q(vi )qi +2(v j +t q(v j )q j = 0 which, at t = 0, is just vi qi +v j q j =
0. So, in order to show infinitesimal flexibility, we need to find at least one infinitesimal
isometric deformation that is non-trivial in first order.

In the case of the Schönhardt polyhedron, ν= {A,B,C,D,E,F}. Assume furthermore
that the top basis is twisted by an angle of θ=π/6 with respect to the bottom basis. Here,
θ denotes the total rotation, that is, the angle ω (as depicted in Figure 7) and the smaller
angle stemming from the overhang m added together. The reason for choosing the
particular value of π/6 is that this corresponds to the unique choice of “twisting angle” θ
that makes the polyhedron infinitesimally flexible.

To see why, assume for simplicity that the side lengths of the equilateral triangles
ABC and DEF are equal to 1 and apply the Pythagorean theorem to the triangle AFE such
to obtain

AF2 = 12 +
(√

sin(π/3+θ)

cos(π/6)

)2

and

AF2 = 1+ 2p
3

sin(π/3+θ).

This function hits its maximum at θ= π/6 and therefore forces its derivative to have a
zero at that value. In other words, the edge length AF does not change (up to first order)
with respect to θ, or, by imagining that the twist is executed in a uniform and symmetric
manner, AF is kept constant with respect to time (similar holds of course for the other
diagonals BD and CE). Of course, this will then be used to study infinitesimal isometric
deformations.

Let q(D) = q(E) = q(F) = 0 or, equivalently, keep the bottom basis of the polyhedron
at a fixed position and apply a non-zero velocity vector (pointing to the outside of the
polyhedron) to the remaining vertices such that q(A) is orthogonal to the plane AEF
and q(B) and q(C) are the images of q(A) under rotation by an angle of 2π/3 and 4π/3
around the axis of the cylinder of radius r . Clearly, the edge lengths of the triangle ABC
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are kept constant since no transformation is applied to its vertices. Since q(A) is just an
infinitesimal rotation around the edge EF of the vertex A, the side lengths of the triangle
EAF are preserved up to first order.

By symmetry, q(B) and q(C) have a similar effect on the vertices B and C and thus
the side lengths of the triangles DFB and CDE are also infinitesimally preserved. Taking
our particular choice of θ=π/6 into account, the planes AEF, BDF and CDE must pass
through the center of the triangle ABC and so q(A), q(B) and q(C) are tangent to the
cylinder of radius r and axis passing through the center of ABC. This on its own means,
by taking the symmetry of the motion into consideration, that ABC does indeed twist
around the axis of the cylinder and therefore naturally preserves its side lengths.

Hence, we have found a non-trivial infinitesimal isometric transformation (corre-
sponding to a twist) and can conclude that this Schönhardt polyhedron (of angle θ=π/6)
is indeed infinitesimally flexible.

Remember, our initial goal is to build a weakly convex and decomposable structure
violating the codecomposability hypothesis of the main conjecture and, in the (quite
utopian) best-case scenario, obtain an infinitesimally flexible polyhedron that will there-
fore disprove it.

Now, the absence of a suitable triangulation for the Schönhardt polyhedron is due
to the fact that any such tetrahedron would have vertices contained in the top and
bottom basis of the latter and therefore edges that coincide with the diagonals of the
Schönhardt polyhedron. However, the Schönhardt polyhedron has no internal diagonals
and so any simplex of a potential triangulation could never lie entirely inside, thus the
impossibility to decompose it.

Before investigating more complicated arrangements, it will prove useful to set up
some terminology.

3.2 Some weakly convex, non-codecomposable polyhedra

Let us start by remarking that whenever we mention notions of rigidity and flexibility in
what follows, we are referring to infinitesimal rigidity and infinitesimal flexibility.

Since we would like to examine the family of weakly convex, decomposable polyhedra
having the Schönhardt polyhedron as its complement, we set up some terminology and
refer to them as T-polyhedra, T standing for twist (even though most of them will be
perfectly rigid), Every such polyhedron can be partitioned into three regions:

The cover at the top and bottom, the Schönhardt hull lying in the middle of the
structure and the exterior hull, a polygonal ring connected to the cover. Notice how
vertices belonging to the cover must necessarily be connected to vertices of the Schön-
hardt hull. Of course, nothing prevents the exterior hull from being trivial (in the sense
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16 Infinitesimal Rigidity of Weakly Convex and Decomposable Polyhedra

Figure 8: A T-polyhedron

of nonexistent) such that all vertices of the upper cover are immediately connected to
the bottom cover. However, polyhedra of that kind will not be of great use to us since
they most certainly will never twist. To see why, observe the following:

EO2: Any potential infinitesimal twist of a T-polyhedron will preserve the geometry
of the cover, that is, the cover can only perform an infinitesimal rigid body motion.

In other words, the distance between vertices of the cover and vertices of the Schönhardt
hull to which they are connected remains constant during any potential twist. Thus, if
the exterior hull is trivial, the rigidity of the cover will prevent the polyhedron from twist-
ing. One could speak of induced rigidity stemming from the exterior hull and spreading
onto the whole T-polyhedron. In that spirit:

EO3: If the exterior hull is rigid (can not be twisted), then the T-polyhedron is itself
rigid (can not be twisted either).

So, in the case of convex exterior hulls, it is not necessary to calculate any eigenval-
ues or Cayley-Menger determinants since EO3 allows us to immediately conclude that
the polyhedron is rigid, which already rules out quite a few candidates. All right, but
there is even more.

With EO1 in mind, note how the rotational flexibility of the Schönhardt polyhedron
forces the exterior hull to not only have rotational flexibility as well, but to rotate in one
and the same manner. For instance, constructing a T-polyhedron with an exterior hull
that rotates to the right and a Schönhardt hull that twists to the left would produce a
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perfectly rigid structure even though the individual “building pieces” are not. The same
is (probably?) true for exterior hulls that would potentially flex in some other way that
does not involve a twist.

In the spirit of the discussion from the previous section, recall how the motion of un-
twisting the Schönhardt polyhedron induces a height augmentation ∆h of the structure.
This implies that any exterior hull giving rise to a flexible T-polyhedron would have to
vary in height by the same amount ∆h. Thus:

EO4: A flexible T-polyhedron is characterized by the height variation ∆h of the Schön-
hardt hull. Any rotational motion of the exterior hull must not only be performed in the
same direction as the one of the Schönhardt hull, but vary in height by the same amount
of ∆h.

Being equipped with EO4 and the contrapositive of EO3, a natural choice of T-polyhedra
to test would be the ones obtained by replacing the exterior hull by a second Schönhardt
polyhedron. After all, we can be assured that the exterior hull has the same “rotational
properties” as the Schönhardt hull and calibrating the edge lengths of the equilateral
triangles constituting it with respect to the height of the twisted exterior hull (such that
to verify EO4), this would supply us with a nice and flexible polyhedron. See Figure 9,
with top and bottom cover removed for a better visualization.

Figure 9: Nested Schönhardt polyhedra

Even though this might seem like we completed our task by finding a flexible T-
polyhedron (and the thought does indeed admit quite a compelling attraction), we are
unfortunately anything but done. The problem lies in the sole fact that our promising
candidate is actually not a T-polyhedron!

To see why, remember that T-polyhedra are by construction assumed to be decom-
posable and that calculating eigenvalues of MT requires us to find a triangulation of
the polyhedron as a preliminary. Since there must exist some simplex of any potential
triangulation of the preceding polyhedron that would have to share one of its faces with
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18 Infinitesimal Rigidity of Weakly Convex and Decomposable Polyhedra

Figure 10: Resulting non-decomposable polyhedron

one of the triangular faces of the Schönhardt hull, the remaining fourth vertex of the
simplex would be forced to lie on a vertex of the exterior hull, creating thereby forbidden
intersections. Since the possibly easiest choice of exterior hull that permits rotations did
not provide us with the result we sought, it is time to look at more complicated (and less
obvious) examples with the help of a computer. This purely computational approach
will however not be explored in depth here (see Appendix).

3.3 Seemingly incompatible assumptions

It proves not to be particularly difficult to find counterexamples to variations of the main
conjecture obtained by dropping one of the assumptions. To see why weak convexity is
necessary, consider the polyhedron in Figure 11a. Since it is decomposable via a certain
triangulation T, one can calculate the eigenvalues of the associated matrix MT. Of course,
such a computation is not needed in this particular case since Cauchy’s Rigidity Theorem
assures us that due to its convexity, the polyhedron must be rigid. As a check, it can be
computationally confirmed that MT does indeed admit only positive eigenvalues.

Things look quite different when investigating the polyhedron obtained by "pushing"
the top vertex of the previous one towards the interior. Even though the triangulations
of both polyhedra admit the same number of simplices, the first one is (weakly) convex
whereas the second one is definitely not. In the latter case, we find that MT admits a neg-
ative real and zero as eigenvalues, which implies, using Lemma 1.9, that the polyhedron
is not infinitesimally rigid, hence infinitesimally flexible. So, weak convexity is not an
assumption that should be dropped from the main conjecture.

Coming back to T-polyhedra, it is indeed the case that the triangulation issue we
encountered before can be resolved, and that by shifting the Schönhardt hull to an
appropriate height (for a given exterior hull, there are two possible choices for the height
of the Schönhardt hull that would make its ∆h be identical to the ∆h of the exterior hull).

Unfortunately, this process makes the polyhedron lose weak convexity and admit-
tedly, it does seem just like flexibility forces us to choose between decomposability
or weak convexity, an exclusive or. Thus, let us make one final (and quite reckless)
experimental conjecture:
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(a) A convex polyhedron (b) Pushing the red vertex inside

(c) View from above (d) Weak convexity is lost

Figure 11: A non weakly convex example

Figure 12: Resolving non-decomposability
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20 Infinitesimal Rigidity of Weakly Convex and Decomposable Polyhedra

EC1: There is no T-polyhedron that twists, that is, any weakly convex, decomposable
polyhedron having the Schönhardt polyhedron as its complement is infinitesimally rigid.

3.4 Conclusions and outlook

As the reader may have remarked, the conducted Mathematica-calculations (although
very interesting) did not provide us with any additional information. Taking into account
that the polyhedra studied in this paper were rather small (none of them exceeded 18
vertices) and predictable, most of the computations could have been replaced by a
straightforward application of a certain theorem and we were not able to develop the
powerful formalism involving MT to its full potential. This could of course be achieved
by writing a better program that allows to test millions of more complicated exam-
ples. Maybe such an expanded and more sophisticated search would lead towards the
almighty one that might disprove the main conjecture.

We hope that this note will be considered helpful then.

A Finding the eigenvalues of MT with Mathematica

In order to demonstrate how Mathematica extracts the eigenvalues of MT, it is best to
study a simple example. The first step consists in defining the combinatorics of the
polyhedron. For instance, an octahedron can be encoded as:

Q =

Polyhedron[{A1 = {1,0,0}, A2 = {-1,0,0}, A3 = {0,1,0},

A4 = {0,-1,0}, A5 = {0,0,1}, A6 = {0,0,-1}},

{{1,3,5},{2,5,4},{4,1,5},{6,1,3},

{3,6,2},{2,6,4},{4,6,1},{3,2,5}}]

Since this octahedron can be triangulated by means of four equivalent simplices
only one dihedral angle needs to be determined, the remaining ones being identical in
this case. Thus, we choose the vertices A2, A4, A5, and A6, and compute the resulting
Cayley-Menger determinant:

CM1 =

Det[{{0,EuclideanDistance[A2,A5]^2, EuclideanDistance[A5,A4]^2,

EuclideanDistance[A5,A6]^2,1},

{EuclideanDistance[A2,A5]^2, 0, EuclideanDistance[A2,A4]^2,

EuclideanDistance[A2,A6]^2, 1},

{EuclideanDistance[A5,A4]^2, EuclideanDistance[A2,A4]^2,

0, EuclideanDistance[A4,A6]^2, 1},

{EuclideanDistance[A5,A6]^2, EuclideanDistance[A2,A6]^2,

Rose-Hulman Undergrad. Math. J. Volume 25, Issue 1, 2024



Kevo 21

EuclideanDistance[A4,A6]^2, 0,1},

{1,1,1,1,0}}]

Now, in order to use Equation (2), one starts by computing the minor of the matrix CM1
associated to the edge length of the simplex that corresponds to the interior edge length
of the triangulation. Concretely, this is the edge between vertices A5 and A6. Then,

De2 =

Det[{{0, EuclideanDistance[A5,A4]^2, EuclideanDistance[A5,A6]^2,1},

{EuclideanDistance[A2,A5]^2, EuclideanDistance[A2,A4]^2,

EuclideanDistance[A2,A6]^2, 1},

{EuclideanDistance[A5,A4]^2, 0, EuclideanDistance[A4,A6]^2, 1},

{EuclideanDistance[A5,A6]^2, EuclideanDistance[A4,A6]^2, 0,1}}]

in combination with Equation (2) and

ArcCos[De2/(Sqrt[2 * EuclideanDistance[A5,A6]^2 * CM + (De2)^2])]

yields the expected dihedral angle of α0 :=π/2. This is the initial dihedral angle.
Of course, the total angle around the edge A5, A6 is the sum of the individual dihedral

angles. Since they are all equal, we obtain 4 ·π/2 = 2π, which is not much of a surprise.
In particular, since we haven’t deformed the metric inside of the polyhedron yet, every-
thing is nice and Euclidean and dihedral angles naturally sum up to 2π, a useful fact to
remember.

Recalling that the entries of MT are the derivatives of the total angle around each
edge with respect to the corresponding edge length, we are faced with a complication
since differentiating the expression obtained by Equation (2) slows the calculations down
considerably. Thus as a first step and in order to facilitate computations, we’ll make the
following approximation:

∂ωi

∂l j
≈ ωi f −ωi 0

l j f − l j 0
.

In other words, the interior edge lengths of the triangulation receive a tiny length vari-
ation, say ϵ (of course, ϵ > 0), which (eventually) induces a change in the total angle
around the modified edge and all the remaining interior edges as well. As remarked
earlier, prior to the change of interior edge lengths the geometry is perfectly Euclidean.
Hence ωi 0 = 2π, even without calculating any CM determinants. In that vein, we can
reformulate the approximated derivative as

ωi f −ωi 0

l j f − l j 0
= ωi f −2π

l j 0 +ϵ− l j 0
= ωi f −2π

ϵ
,

which gains evermore on accuracy the smaller the ϵ is. The only quantity that is left to be
determined is now ωi f . Coming back to our example, we can pick ϵ= 0.00000001 and
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22 Infinitesimal Rigidity of Weakly Convex and Decomposable Polyhedra

repeat the process from before while taking care that the edge length between vertices
A5 and A6 has now gained on length (all the other edge lengths are kept constant). The
Cayley-Menger determinant in this case is

CM2 =

Det[{{0, EuclideanDistance[A2,A5]^2, EuclideanDistance[A5,A4]^2,

(EuclideanDistance[A5,A6] + 0.00000001)^2, 1},

{EuclideanDistance[A2,A5]^2, 0, EuclideanDistance[A2, A4]^2,

EuclideanDistance[A2,A6]^2, 1},

{EuclideanDistance[A5,A4]^2, EuclideanDistance[A2, A4]^2,

0, EuclideanDistance[A4,A6]^2, 1},

{(EuclideanDistance[A5,A6] + 0.00000001)^2,

EuclideanDistance[A2,A6]^2, EuclideanDistance[A4, A6]^2, 0, 1},

{1,1,1,1,0}}]

and with the appropriate minor

De3 =

Det[{{0, EuclideanDistance[A5,A4]^2,

(EuclideanDistance[A5,A6] + 0.00000001)^2,1},

{EuclideanDistance[A2,A5]^2, EuclideanDistance[A2,A4]^2,

EuclideanDistance[A2,A6]^2, 1},

{EuclideanDistance[A5,A4]^2, 0, EuclideanDistance[A4,A6]^2, 1},

{(EuclideanDistance[A5,A6] + 0.00000001)^2,

EuclideanDistance[A4,A6]^2,0,1}}]

one can use once again Equation (2) to obtain

ArcCos[De3/(Sqrt[2 * EuclideanDistance[A5, A6]^2 * CM2 + (De3)2])]

= 1.5708.

With this, the matrix MT becomes

MT =
(
ωi f −2π

ϵ

)
=

(
ωi f −2π

0.00000001

)
=

(
4 ·1.5708−2π

0.00000001

)
= (1469.28) .

It being a 1×1 matrix in this example, the eigenvalues are easily read off and we can
conclude, with the aid of Lemma 1.9, that the polyhedron is indeed infinitesimally rigid.

Since this particular polyhedron is convex, it is true that we could have just applied
Cauchy’s theorem to conclude the same, and that without having to do any calculations.
However, the purpose of this example was to give a simple outline of the method, nothing
more and nothing less.
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