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Using Differential Equations to Model a
Cockatoo on a Spinning Wheel as part of the

SCUDEM V Modeling Challenge

By Miles Pophal, Henry Bae, and Chenming Zhen

Abstract. For the SCUDEM V 2020 virtual challenge, we received outstanding distinction for modeling a

bird perched on a bicycle wheel utilizing the appropriate physical equations of rotational motion. Our

model includes both theoretical calculations and numerical results from applying the Heaviside function

for the swing motion of the bird. We provide a discussion on: our model and its numerical results, the

overall limitations and future work of the model we constructed, and the experience we had participating

in SCUDEM V 2020.

1 Introduction

As part of the SCUDEM V challenge, students are given three weeks to model real-
life scenarios in either the life sciences, social sciences, or the physical sciences using
differential equations. We selected the physics problem due to the team’s interest in
working on the unique modeling problem and our strengths in the physical sciences (for
the problem statement we selected, see Appendix 7, and for all problems, see [1]) . The
provided video [4] (also see Figure 1) shows a cockatoo with its claws latched onto the
outer edge of a bicycle wheel frame, it begins to fall down, then spin around and back up
by tucking in or extending its body. Our goal was to develop a mathematical equation
describing the motion of the bird on this wheel. Below in Figure 1 we see the cockatoo at
two positions on the bicycle wheel.
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2 Modeling a Cockatoo on a Spinning Wheel

(a) Cockatoo Extended (b) Cockatoo Tucked

Figure 1: Cockatoo in extended (left) and tucked (right) positions along the bicycle wheel.

The video [4] shows the Cockatoo starting at the apex (i.e., the top) of the wheel
and initializing a rotation with some movement. It maintains this form until it’s located
at the bottom of the wheel and then it tucks in until the apex again, where it repeats
this process/motion. In Section 2, we seek to explain the problem concisely and apply
natural assumptions for an effective model. In Subsection 2.1 we model the scenario with
equations of motion and then reduce our model to an idealized case. Then in Subsection
2.2, we obtain an equation for a numerical estimate for the maximal speed of the bird.
Next in Subsection 2.3, we demonstrate the model via simulations in MATLAB’s Simulink
software with Simscape libraries using different initial conditions and time intervals.
We discuss in Section 3 the limitations to our model as well as what future directions
we could take to improve our model. Finally in Section 4, we provide a discussion on
the overall virtual SCUDEM experience by giving personal testimonies from each team
member. The video of our presentation that received outstanding distinction for the
SCUDEM V challenge is available online at [2].

2 Bird Perched on a Bicycle Wheel

When the bird is on the wheel it maneuvers itself in order to continue its motion. We
can liken this to how a person swings on a swing, where we tuck and extend our legs
depending on our location. For our purposes, we consider an apparatus consisting of
a small mass and a piston which can extend and contract to change its center of mass,
thereby changing the moment of inertia of the system. It is important that our piston
changes state based on its position, as that mimics the swing we are familiar with, but
as we find out later this exact position is difficult to find based on time. In order to
model the system effectively we take the approach of using torques to derive our model’s
differential equations.
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Pophal, Bae, and Zhen 3

2.1 Assumptions and Our Model

The following are our assumptions for representing both the physical and the math-
ematical aspects of our model. First, we assume the wheel and apparatus are a rigid
body system (i.e., it does not deform during the physical motion of our system) and
we are only modeling the natural motion of the apparatus in the clockwise direction.
Second, we assume the time between piston states has a negligible impact on the motion
(i.e., the system exerts instantaneous transition). Next, we assume an external torque is
generated when the apparatus extends (e.g., the cockatoo in Figure 1), so there exists
forces acting against our system and some forces acting along with it at times, as shown
in the free body diagram of Figure 2 below.

Fai r +F f

FG

FG +Fai r +F f

θ

r

Figure 2: Free body diagram of mass on a wheel.

Our next assumption is that the points of action of the forces acting on the mass
are close enough together to be counted as the same. We can see Figure 2 has forces
for gravity FG, air resistance Fai r and friction F f , which are all of the forces we consider
since the cockatoo generates motion from the force of gravity pulling the wheel down.
The right hand side of the dashed line shows a moment in time where the apparatus
is extended, with the force of gravity in a downward direction. On the left hand side of
the dashed line, at some other time, the apparatus tucks in as gravity goes against the
upward motion.
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4 Modeling a Cockatoo on a Spinning Wheel

Before we proceed to our model’s governing equation, we use the following equations
of motion from [3].

• Linear velocity v and acceleration a:

v = r (θ)
dθ

d t
, a = r (θ)

d 2θ

d t 2
= r (θ)α.

• Angular position θ(t ), measured from the vertical position as shown in Figure 2.

• Center of mass coordinate of the apparatus:

x(θ) = r (θ)sin(θ), y(θ) = r (θ)cos(θ).

Here, r (θ) is the distance from the axis of rotation (the axle) to the center of mass
of the whole system.

• General torque:

τ=~r ×~F ⇒|τ| = |r ||F|sin(θ).

We know from [3, p. 307] that the equation of motion we are interested in is∑
τi = Iα ⇐⇒ ∑

τi − Iα= 0, (1)

which allows us to recover a differential equation in θ(t) angle as a function of time.
Since the torques are from a cross product and the zero vector is the only vector uniquely
determined by its magnitude we can rewrite (1) as follows∑

sgni |τi |− I|α| = 0, (2)

where the sgn term represents the torque acting with or against our motion. Since most
of these torques are perpendicular to the the apparatus, we can deduce |τ| = |r ||F|. Now,
we characterize torques starting with the ones that always resist motion, such as the
coefficients for air resistance k and friction µ. Air resistance is usually proportional to
the square of linear velocity, or

|τai r | = r (θ)(kv2) = kr 3
(

dθ

d t

)2

.

Similarly, friction is taken to be proportional to the normal force Fn . Thus,

|τ f | =µr Fn =µmv2 = mµr 2
(

dθ

d t

)2

.
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Pophal, Bae, and Zhen 5

We consider a torque by gravity, but this changes depending on the the location of the
apparatus (see Figure 2). Therefore, we use the usual equation

|τg | = mg r sin(θ).

Finally, we calculate the net torque Iα by using the moment of inertia formula

Iα= I
d 2θ

d t 2
= mr 2 d 2θ

d t 2
,

where m represents the mass of the system. Now all that remains is to plug these
equations back into (2), hence,

−mr 2(θ)
d 2θ

d t 2
− [kr 3(θ)+mµr 2(θ)]

(
dθ

d t

)2

+mg r (θ)sin(θ) = 0.

Notice we still have not defined r (θ) yet, but we assume it is nonzero and reduce our
equation by one factor to get our second order ordinary differential equation (ODE) that
models our system:

−mr (θ)
d 2θ

d t 2
− [kr 2(θ)+mµr (θ)]

(
dθ

d t

)2

+mg sin(θ) = 0. (3)

By our assumption that the air resistance and friction in the system are negligible, since
our problem is just a bird on a bicycle wheel, we consider a simplified model in the
following ideal case when these terms (k and µ) vanish

r (θ)
d 2θ

d t 2
= g sin(θ). (4)

We discuss in Subsection 2.2 the maximal velocity in both equations (3) and (4), which
later helps determine our maximal speed as part of the SCUDEM problem. We expect
there to be no closed form solution as our ODE (3) is autonomous and nonlinear, al-
though homogeneous. With no general theory to solve this ODE type, we will later turn
to numerical results in Subsection 2.3. Finding the radius function is beyond the scope
of this paper (due to the complexity of variational calculus), but we can represent it by
the following Heaviside function

r (θ) = r1 + r2H(sin(θ)) =
{

r1 −1 ≤ sin(θ) ≤ 0,

r1 + r2 0 < sin(θ) ≤ 1,

where r1 and r2 are chosen such that r1 is the distance from the axle to the center of mass
for the contracted apparatus and r1 + r2 is the distance from the axle to the center of
mass for the extended apparatus. This Heaviside function represents the change in the

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



6 Modeling a Cockatoo on a Spinning Wheel

objects radius affecting energy on the descent by increasing the radius and minimizes
the energy lost on the ascent by decreasing the radius (the object ‘tucking in’) and is a
well defined function since sin has range [−1,1].

(a) Contraction (b) Extension

Figure 3: Apparatus extension illustration.

To visualize the motion of the apparatus contraction and extension we used MATLAB
Simulink software with the help of Simscape libraries. To model our system in Simulink
we created a gravity field, a revolving wheel with internal friction damping, and an ex-
tendable rectangular block. The block follows the motion described in the Heaviside
function with a force proportional to angular velocity squared simulating the air resis-
tance. With the built-in ODE solver, the motion of the rectangular block simulating the
bird does match our expectations. In Figure 3, with one frame per second superimposed,
we illustrate the apparatus contraction and extension. In (a) one can see the rectangular
block’s shadow decelerates on ascent by contracting and in (b) accelerates on descent by
extending. As the system gains energy with every new revolution, we are confident in
our assumptions and the overall model, which we justify with numerical simulations in
Subsection 2.3.

2.2 Maximal Speed

In this section we investigate whether a maximum speed is reached on the time interval
[0, t ]. We know a maximal angular speed is reached on this interval with θ(t) being
continuous on a compact set. The maximum must occur on either the boundary or the
interior, where the derivative (angular acceleration) is 0. In our problem statement there
was no final time requested to approximate the maximal speed and we have to define
the velocity at t = 0 as an initial condition for our ODE. Since we can set the angular
acceleration to 0 in the interior, we solve for angular velocity as

−[kr 2(θ)+mµr (θ)]

(
dθ

d t

)2

+mg sin(θ) = 0,

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



Pophal, Bae, and Zhen 7

and with some rearranging, we have

dθ

d t
=±

√
mg sin(θ)

kr 2(θ)+mµr (θ)
.

Although this quantity can be a negative value we are only interested in the magnitude,
and hence we only consider its positive value. Furthermore, we include the radius factor
for linear velocity as

v = r (θ)
dθ

d t
= r (θ)

√
mg sin(θ)

kr 2(θ)+mµr (θ)
=

√
mg r 2(θ)sin(θ)

kr 2(θ)+mµr (θ)
,

which simplifies down to

v =
√√√√mg sin(θ)

k + mµ
r (θ)

.

In order to maximize the speed, we take sin(θ) = 1 and maximize r (θ) to get

vmax =
√

mg

k + mµ
r1+r2

. (5)

We would like to mention that vmax in equation (5) applied to the ideal model of equation
(4) causes the denominator to be 0, which we would expect from the ideal physical
model (i.e., that the speed is unbounded). We obtain a bound on the speed in the
next section from the conditions we set and the formulas derived in this section (i.e.,
vmax = 16.8575m/s).

2.3 Numerical Estimates

In this section we test our model with numerical simulations. First, we define the
following conditions:

• r1 = 0.7m

• r2 = 0.1m

• m = 5kg

• g = 9.8ms−2

• k = 0.001kgm−1

• µ= .01

• θ(0) = 0rad

• dθ
d t (0) = 4rads−1

and initially let 0 ≤ t ≤ 2 seconds. We also consider a longer time interval of 0 ≤ t ≤ 4.
We choose the initial velocity at 4rads−1 to illustrate the divergence in the full model

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



8 Modeling a Cockatoo on a Spinning Wheel

and ideal the model. To ensure close numerical estimates coming from our conditions
we used a fourth order Runge-Kutta method to simulate our system. We plot θ(t ) as the
time ranges across the two intervals, as shown in Figure 4 below.

(a) Shorter time interval (b) Longer time interval

Figure 4: Comparison of time intervals for the full model (blue) and the ideal model
(red).

The results of our simulation are what we would expect, where as time increases
there are more resisting forces on the full model compared to the ideal model. At longer
time intervals our numerical scheme becomes less reliable, which we discuss in more
detail in Section 3. This unreliability is further supported by a plot of cos(θ(t )) and time,
which gives an indication of the y−coordinate of motion, as seen in Figure 5.

Figure 5: Numerical estimates of cos(θ) for the full model (blue) and the ideal model
(red).

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



Pophal, Bae, and Zhen 9

At t = 4 we begin to see a decline in the peak of the ideal model y-coordinate, where
the peak corresponds to the extension of the apparatus, this is unexpected behavior and
validates that longer time estimates become unreliable. One explanation may be the
imperfect correspondence of the angle θ(t ) keeping track of revolutions while cos(θ(t ))
loses this information. We also tested the possibility of regaining motion from different
starting positions and initial velocities, as outlined in Figure 6 (a) and (b).

(a) θ(0) =π rad, dθ
d t (0) = 8rads−1. (b) θ(0) = 0.2rad, dθ

d t (0) = 0.

Figure 6: Different initial conditions comparison.

In Figure 6 (a) we observe the expected increase after increasing the initial velocity
from 4rads−1 to 8rads−1. In Figure 6 (b) we observe slower motion by removing initial
velocity to 0, hence, the simulation failed to perform a full revolution. We note that the
apex point of the wheel [θ(t) = 0] is unstable as a slight deviation in either direction
starts motion. In order to ensure our apparatus only starts motion with nonzero initial
conditions we tested the scheme with no initial displacement or velocity. Here we expect
no motion at all where both models should be a single point at the top of the wheel, and
as we expect, Figure 7 illustrates the axis of rotation (axle), and the position remaining
unchanged.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022



10 Modeling a Cockatoo on a Spinning Wheel

Figure 7: Stationary test case at θ(t ) = 0.

3 Limitations and Future Directions

There are various limitations to our model. First, the actual friction coefficient and
air resistance coefficient can only be obtained through repeated experimentation, not
by our simulation. Second, longer intervals cause our numerical estimates to become
unreliable because we used a fourth-order scheme with local error O(h4). For example,
when we doubled our interval length we potentially introduced up to 16 times the error.
Third, the center of gravity and the moment of inertia of the system was assumed to be
piecewise constant (from our Heaviside function) but in reality the bird would change its
radial weight distribution. Lastly, the bird tucks and extends based on position and not
its velocity. This is a limitation as when the bird can not make a full rotation, our model
does not act to gain the energy in order to compensate for the failed rotation. For future
directions, data collection from experiments and including them into our simulations
would produce a more accurate simulation to test our model. We are also interested in
how different numerical schemes, which offer more robust approximations over longer
intervals, would compare to the 4th order Runge-Kutta scheme.

4 Personal Testimonies

“This wasn’t my first time participating in the SCUDEM challenge, and one thing I love is
the absolute freedom you have in how you approach the problem. Last year, I tackled
a problem with a discrete difference equation instead of a differential equation. This
year there were many options, for instance, I initially thought about approaching our
problem with a work-energy approach but that would have resulted in integrals all over
the place, but when my teammates suggested working with torques, our model popped
into my head and I realized they suggested the perfect approach to the problem. After

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022
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that, everything clicked and the natural progression felt great. The SCUDEM challenge
during the pandemic was an interesting experience because we didn’t have to travel to
present our model, but we had to work through presenting in an online environment.
It’s harder to give body language in the form of support or an indication for progression
between my team and the audience while presenting online. We still made it work
and I’m glad we took part in the SCUDEM challenge. It’s such a great feeling to have
your model on your mind constantly. I found myself thinking about what it might miss
or might capture incorrectly and I enjoyed thinking about it, knowing it wasn’t some
homework for class. You can gain great appreciation for real work, look back, and be
proud of what you did.”

-Miles Pophal, Applied Mathematics Major

“I have participated in last year’s competition and both times I worked on the physics
related problems. Both problems really interested me, but comparing to the last year’s
asteroid landing problem, the birding perching on a bicycle wheel is more down to
earth. We could have even just found a bicycle wheel and experimented our model if
the time permitted. What amazes me the most about the SCUDEM challenge is that a
wide variety of applications are brought to students’ attention and the participants get a
feel of doing applications. Since I am pursuing an Aerospace Engineering degree as my
second major, the asteroid landing problem piqued my interest, therefore, I was excited
to participate again in the SCUDEM challenge. What I enjoy about SCUDEM the most is
how I use what I’ve learned in my classes to solve problems that are practical in real life
and interesting to me, which are more rich than textbook problems.”

-Chenming Zhen, Mathematical Science/Aerospace Engineering Major

“I loved the teamwork aspect of the SCUDEM Challenge. Modeling a problem to-
gether is a transformative experience compared to independent problem solving as done
in many traditional classrooms. Having the chance to work with familiar teammates we
already knew each others strengths and weaknesses. For instance, Miles was familiar
with LATEX for formatting the presentation while Chenming was familiar with Simulink
for modeling the motion of the bird. It was also an advantage for us to be in the same
area, and Florida Tech was generous enough to allow us to work together in a quiet
area for extended periods of time. My favorite aspect of working on this problem was
having discussions about approaching and modeling the problem. Every step of the
way, we would have each one of us present their ideas to the group. We would then
challenge each others ideas, then conclude which one of them we thought would work
best. This was an effective process to check for any mistakes in our thinking and correct
any major errors. I loved how I learned to be a better problem solver by having my
previous methods challenged by my peers who have intuition on this problem. ”

-Henry Bae, Mathematical Science Major
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12 Modeling a Cockatoo on a Spinning Wheel
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7 Appendix

SCUDEM V 2020 Problem B - Spinning a Wheel

A popular video [4] has been shared in various social media forums of a bird that likes to
perch on the edge of a bicycle wheel and move its body so that the wheel spins through a
full revolution. The movement of the bird is similar to the way a person can change their
position on a swing in a way that can increase the amplitude of their oscillations. The
bird can do this from a still start but is starting while at the top of the wheel.

Can you replicate and model this phenomenon? Assume that you have a bicycle
wheel mounted vertically, and a small device is mounted on the wheel. The device can
move a small mass attached to the wheel and hence the wheel. Is it possible to find a
way to move the mass so that the wheel and the mass can rotate? Is it possible to do this
if the mass only moves in the tangential direction or can you also do so with a radial
component as well?
Your results should include the following:

• A complete description of your apparatus and assumptions.

• A complete description of how it moves.

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022
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• A complete description of how it moves.

• Describe the equations of motion.

• Describe the necessary initial conditions to increase the amplitude of any oscilla-
tions. For example, can this occur if the apparatus is initially completely still with
the weight at the bottom, or do you have to impart some initial rotational velocity
or a specific position?

• Does the motion of the object have to change as the wheels angular velocity
changes?

• Describe the maximum speed that the wheel can spin.

Miles Pophal
Florida Institute of Technology
mpophal2018@my.fit.edu

Henry Bae
Florida Institute of Technology
hbae2017@my.fit.edu

Chenming Zhen
Florida Institute of Technology
czhen2017@my.fit.edu

Rose-Hulman Undergrad. Math. J. Volume 23, Issue 1, 2022


	Using Differential Equations to Model a Cockatoo on a Spinning Wheel as part of the SCUDEM V Modeling Challenge
	Recommended Citation

	Using Differential Equations to Model a Cockatoo on a Spinning Wheel as part of the SCUDEM V Modeling Challenge
	Cover Page Footnote

	Introduction
	Bird Perched on a Bicycle Wheel
	Assumptions and Our Model
	Maximal Speed
	Numerical Estimates

	Limitations and Future Directions
	Personal Testimonies
	Acknowledgement
	References
	Appendix

