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An Introduction to Fractal Analysis

By Lucas Yong

Abstract. Classical analysis is not able to treat functions whose domain is fractal. We
present an introduction to analysis on a particular class of fractals known as post-critically
finite (PCF) self-similar sets that is suitable for the undergraduate reader. We develop
discrete approximations of PCF self-similar sets, and construct discrete Dirichlet forms
and corresponding discrete Laplacians that both preserve self-similarity and are com-
patible with a notion of harmonic functions that is analogous to a classical setting. By
taking the limit of these discrete Laplacians, we construct continuous Laplacians on
PCF self-similar sets. With respect to this continuous Laplacian, we also construct a
Green’s function that can be used to find solutions to the Dirichlet problem for Pois-
son’s equation.

1 Motivation

The study of differential equations, which is concerned with the relationship between
functions and their derivatives, is often motivated by its applications to physical phe-
nomena such as vibration, flow, and heat distribution. As an example of a classical
differential operator, let Ω⊆Rd , and let u : Ω→R be twice-differentiable. The Laplacian
of u is defined by

(∆u)(x) :=
d∑

i=1

∂2u

∂x2
i

,

where the summands are the second-order partial derivatives of u. The values of these
partial derivatives at x ∈Ω depend on the behaviour of u near that point, so x must be
an interior point for u to be differentiable at x. More precisely, u is differentiable at x if
for some r > 0, the open ball

Br (x) := {
y ∈Ω ∣∣ ‖x − y‖ < r

}
is contained in Ω. Functions that are differentiable (at least once) over all of Ω are
sometimes called smooth functions.
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2 An Introduction to Fractal Analysis

Since differential equations are associated with physical phenomena, it is reason-
able to hope that such phenomena can studied on functions defined on “real-world
domains” such as trees, mountains, and rivers. However, such domains do not contain
interior points in the sense of open balls described above. We encourage the reader to
contemplate this for a moment: observe a nearby tree or plant, and notice that they are
characterized by a certain “roughness”. They do not contain “interior points”, and as
such there cannot be any smooth functions defined on them. Since the classical notion
of the derivative is not suitable for studying the dynamical properties of objects found in
nature, an analysis of these objects would require a theory of differential operators that
do not depend on the (classical) derivative.

Developing an analysis on fractals is a first step in this direction. In [3], Benoit Man-
delbrot characterizes fractals as subsets of metric spaces whose Hausdorff dimension is
noninteger. The Hausdorff dimension is, informally, a measure of roughness: “smooth”
objects, like cubes and spheres, have integer Hausdorff dimension (the same value as
their topological dimension), while fractals do not. The curious reader may refer to [1,
Chapter 6] for more background on the Hausdorff dimension. Mandelbrot argues that
the geometry of objects in nature possess a “fractal face”. For example, he interprets
coastlines as approximate fractal curves. If the study of fractal geometry is linked to the
static properties of nature in this manner, then fractal analysis is analogously linked to
its dynamical aspects.

This paper presents an introduction to analysis on a particular class of fractals known
as post critically finite (PCF) self-similar sets. Informally, self-similar sets are fractals
whose parts are comprised of smaller versions of the whole. The prefix “PCF” roughly
means that the set has a boundary consisting of a finite number of points. A ubiquitous
example (see [2, 4]) of a PCF self-similar set is the Sierpiński gasket, or SG for short.
Referring to Figure 1, notice that if we appropriately zoom in to some portion of SG, we
see a smaller version of its entirety.

Figure 1: The Sierpiński gasket.

For i ∈ {1,2,3}, let pi ∈C be the vertices of an equilateral triangle, and define fi : C→C
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Lucas Yong 3

by fi (z) = z+pi
2 . Then SG ⊆C is the unique nonempty compact subset satisfying

3⋃
i=1

fi (SG) = SG.

It is not trivial that such a nonempty compact subset exists, or that it is unique – this will
be made rigorous (for self-similar sets in general) in the next section.

Since SG does not have interior points (with respect to the Euclidean metric), func-
tions defined on SG are not differentiable in the usual way, so we are not able to define
classical differential operators like the Laplacian on functions u : SG → R. In this pa-
per we will define, for general PCF self-similar sets K, a Laplacian ∆µ with respect to a
measure µ on functions on K that does not rely on the classical notion of the derivative.
Broadly, the idea is to define finite approximations Vm of K, along with associated dis-
crete Laplacians Hm . With respect to a measure µ, a Laplacian on K is the limit of the
discrete operators Hm .

For concreteness, we briefly explain this process for the Sierpiński gasket SG. Let

V0 = {p1, p2, p3},

and recursively define the mth approximation of SG to be

Vm =
3⋃

i=1
fi (Vm−1)

for m ∈N. See Figure 2 for a visualization of these approximations.

V0 V1 V2

Figure 2: Approximations of SG for m = 0,1,2.

In Figure 2, points p, q ∈ Vm that are joined by an edge satisfy an equivalence relation,
p ∼

m
q . The relation ∼

m
, which is known as the neighbor relation, will be made precise in

Section 3, but for now the reader may think of it as a description of “closeness” between
points in the discrete approximations of SG. Next, define Hm : `(Vm) → `(Vm) by

(Hmu)(p) =
(

5

3

)m ∑
p∼

m
q

(
u(q)−u(p)

)
,
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4 An Introduction to Fractal Analysis

where `(Vm) is the set of all real-valued functions on Vm . It is not obvious why this defini-
tion includes a factor of

(5
3

)m
on the right-hand side – this is known as a renormalization

factor, and its neccesity will be explained in Section 3. We may then define a Laplacian
∆µ on functions u : SG →R by taking the limit,

(∆µu)(p) = lim
m→∞

3

2
5m

∑
p∼

m
q

(
u(q)−u(p)

)
.

In the literature, ∆µ written above is known as the standard Laplacian on the SG. Note
that it is not the only Laplacian that can be defined on SG. As we will see in the proceed-
ing sections, the definition of Laplacians ∆µ of this kind on general self-similar sets K
depends on the underlying sequence of discrete Laplacians Hm , as well as the choice of
measure µ on K. In Section 4, we will show that ∆µ is deserving of the name “Laplacian”
by giving an example of the unit interval [0,1] defined as a self-similar set, and that for
a suitable choice of discrete Laplacians and measure µ, ∆µ on [0,1] coincides with the
classical Laplacian on [0,1].

The structure of the paper is as follows. In Section 2, we prove the existence and
uniqueness of a self-similar set K with respect to contraction mappings f1, . . . , fN, for
some N ∈N. We also develop the notion of a boundary V0 on K, and define a sequence Vm

of discrete approximations of K. In Section 3, we develop a Dirichlet form for functions
Vm →R. From this Dirichlet form we construct a discrete Laplacian Hm on Vm . In Section
4, we show that for certain functions one can take the limit of the discrete Laplacians
Hm to define a continuous Laplacian ∆µ on functions K → R. Finally, we consider the
Dirichlet problem for Poisson’s equation for functions K →R in Section 5, and construct
a Green’s function that can provide a solution.

2 Self-Similar Structures and Shift Space

Throughout this section, let (M,d) be a complete metric space, and let S := {1, . . . ,N}. We
will prove the existence and uniqueness of self-similar sets K, which are defined with
respect to contractions fi : M → M for i ∈ S. We also define discrete approximations
Vm of K for m ∈N, recursively defined via the boundary V0 of K. We then give a precise
definition of post critically finite (PCF) self-similar sets, which are, roughly speaking,
self-similar sets whose boundary consists of a finite number of points. The exposition in
this section is based on [2, Chapter 1].

Definition 2.1. A function f : M → M is Lipschitz continuous if

Lip( f ) := sup
x,y∈M,x 6=y

d( f (x), f (y)

d(x, y)
<∞.

If Lip( f ) < 1, f is called a contraction and Lip( f ) is called its contraction ratio.
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Lucas Yong 5

Given contractions { fi }i∈S , our first goal will be to show that there exists a unique
nonempty compact set K ⊆ M satisfying

F(K) := ⋃
i∈S

fi (K) = K.

Theorem 2.2 (Banach–Caccioppoli). Let (M,d) be a complete metric space, and let
f : M → M be a contraction.

(i) There exists a unique x0 ∈ M such that f (x0) = x0,

(ii) If x0 is the fixed point of f , then the sequence { f n(x)} converges to x0 for all x ∈ M,
where f n is the nth iteration of f .

The proof of the above “fixed point theorem” is fun, and is left as an exercise to the
reader.

Definition 2.3. Let X,Y ⊆ M be compact. Define

δ(X,Y) := inf
{
r > 0

∣∣ Ur (X) ⊇ Y and Ur (Y) ⊇ X
}

,

where
Ur (X) := {

x ∈ M
∣∣ d(x, y) ≤ r for some y ∈ X

}=∪y∈XBr (y).

The map δ is known as the Hausdorff metric.

Let C (M) := {
X ⊆ M

∣∣ X is nonempty and compact
}
. We do not belabor the details

here, but invite the reader to check that δ is a metric on C (M). To show the existence of
K, we will show that (C (M),δ) is a complete metric space, then apply Theorem 2.2 by
viewing F =∪i∈S fi as a function on C (M).

Definition 2.4. Let X ⊆ M.

(i) A finite set A ⊆ X is called a finite r -net of X for r > 0 if Ur (A) =∪x∈ABr (x) ⊇ X.

(ii) We say X is totally bounded if there exists a finite r -net of X for any r > 0.

Lemma 2.5. Every compact set X ⊆ M is totally bounded.

Proof. Let r > 0, and consider the open cover
{
Br (x)

∣∣ x ∈ X
}

. By compactness, there are
finitely-many such balls that cover X, and the set A containing all points that are the
centers of these balls is a finite r -net of X, so X is totally bounded.

The following important proposition shows that (C (M),δ) is itself a complete metric
space.

Proposition 2.6. (C (M),δ) is a complete metric space.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



6 An Introduction to Fractal Analysis

Proof. Let X,Y,Z ∈C (M). The following properties show that δ is a metric on C (M).

(i) (Identity of indiscernibles) For any r > 0, Ur (X) ⊇ X, so we have δ(X,X) = 0. Con-
versely, assume δ(X,Y) = 0. Then for any n ∈N, U1/n(Y) ⊇ X. For all x ∈ X, and we
can choose xn in Y such that d(x, xn) ≤ 1

n . As n →∞, d(x, xn) → 0. Compactness of
Y means that the sequence {xn} has a subsequence that converges in Y, so x ∈ Y, i.e.
X ⊆ Y. By a similar argument, Y ⊆ X, so X = Y.

(ii) (Symmetry) δ(X,Y) = inf
{
r > 0

∣∣ Ur (X) ⊇ Y and Ur (Y) ⊇ X
}= δ(Y,X).

(iii) (Triangle inequality) Let r > δ(X,Y) and s > δ(Y,Z). Then Ur+s(X) ⊇ Z and Ur+s(Z) ⊇
X, so r + s ≥ δ(X,Z), implying δ(X,Y)+δ(Y,Z) ≤ δ(X,Z).

It remains to show that (C (M),δ) is complete. Let {An}n≥1 be a Cauchy sequence in
(C (M),δ). Define Bn :=∪k≥n Ak . We will first show that Bn is compact for n ≥ 1. Since
Bn+1 ⊆ Bn and Bn is closed for n ≥ 1 by definition, it is sufficient to show that B1 is
compact (since a closed subset of a compact set is itself compact). Let r > 0, and choose
m ∈N such that Ur /2(Am) ⊇ Ak for all k ≥ m. Since Am ∈C (M), Lemma 2.5 tells us that
it is totally bounded, so there exists a finite r /2-net P of Am . Then it follows that

Ur (P) ⊇ Ur /2(Am) ⊇∪k≥m Ak .

Since Ur /2(P) is the finite union of closed balls, it is a closed set, and we can see that
P is an r -net of Bm . Adding r -nets of A1, . . . , Am−1 to P, we obtain an r -net of B1, so B1

is totally bounded. Further, B1 is complete because it is a closed subset of M, which is
complete by assumption. Since B1 is both totally bounded and complete, it is compact,
and so Bn is compact.

Since {Bn} is a monotonically decreasing sequence of nonempty compact sets, A =
∩n≥1Bn is compact and nonempty. For any r > 0, we can choose m so that Ur (Am) ⊇ Ak

for all k ≥ m. Then Ur (Am) ⊇ Bm ⊇ A. On the other hand, Ur (A) ⊇ Bm ⊇ Am for suf-
ficiently large m. Hence Am → A as m → ∞ (with respect to δ), so (C (M),δ) is com-
plete.

Recall that F(X) = f1(X)∪ ·· · ∪ fN(X), where the maps fi are contractions for i ∈ S.
The following two lemmas show that F viewed as a function C (M) → C (M) is itself a
contraction with respect to the Hausdorff metric δ.

Lemma 2.7. For X1,X2,Y1,Y2 ∈C (M),

δ (X1 ∪X2,Y1 ∪Y2) ≤ max{δ(X1,Y1),δ(X2,Y2)} .

Proof. Let r = max{δ(X1,Y1),δ(X2,Y2)}. Then Ur (X1) ⊇ Y1 and Ur (X2) ⊇ Y2, so Ur (X1 ∪
X2) ⊇ Y1∪Y2. By a similar argument, Ur (Y1∪Y2) ⊇ X1∪X2, and hence r ≥ δ(X1∪X2,Y1∪Y2),
as desired.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Lucas Yong 7

Lemma 2.8. Let f : M → M be a contraction with ratio r . For any X,Y ∈C (M),

δ( f (X), f (Y)) ≤ rδ(X,Y).

Proof. Let δ(X,Y) = s. Then Ur s( f (X)) ⊇ f (Us(X)) ⊇ f (Y). Similarly,

Ur s( f (Y)) ⊇ f (Us(Y)) ⊇ f (X),

so δ(d( f (X), f (Y)) ≤ r s.

We are now ready to show the existence and uniqueness of a self-similar set K with
respect to contractions { fi : M → M}i∈S .

Theorem 2.9. Let (M,d) be complete, and let { fi : M → M}i∈S be contractions. Define

F: C (M) −→C (M)

X 7−→∪i∈S fi (X)

Then there exists a unique K ∈C (M) such that F(K) = K. Moreover, for any X ∈C (M), the
sequence {Fn(X)} converges to K in (C (M),δ) as n →∞, where Fn(X) is the nth iteration of
F.

Proof. Using Lemma 2.7 repeatedly, we have that for all X,Y in C (M),

δ(F(X),F(Y)) = δ(∪i∈S fi (X),∪i∈S fi (X)) ≤ max
i∈S

δ( fi (X), fi (Y)).

By Lemma 2.8, δ( fi (X), fi (Y)) ≤ riδ(X,Y), where ri is the contraction ratio of fi . Let
r = maxi∈S{ri }, and note that δ(F(X),F(Y)) ≤ rδ(X,Y). As such, F is a contraction with
ratio r (with respect to δ). By Proposition 2.6, (C (M),δ) is complete, so Theorem 2.2
tells us that there exists a unique K ∈C (M) satisfying the desired conditions.

Definition 2.10. We refer to the 3-tuple L := (K,S, { fi }i∈S) as a self-similar structure.

Definition 2.11. Recall that S = {1, . . . ,N}, where N ∈N, and let m ≥ 1. Define the follow-
ing sets of words with N symbols.

(1) Wm := {
w1 . . . wm

∣∣ wi ∈ S
}
,

(2) W∗ :=∪m≥0Wm ,

(3) Σ := {
w1w2 . . .

∣∣ wi ∈ S for i ∈N}
,

(4) For any w ∈Σ,

Σw := {
w ′ = w ′

1w ′
2 · · · ∈Σ

∣∣ w ′
1w ′

2 . . . w ′
m = w1w2 . . . wm

}
.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



8 An Introduction to Fractal Analysis

In [2], Σ is called the shift space.

Proposition 2.12. The shift spaceΣ is a metric space, with respect to δr : Σ×Σ→R defined
by

δr (w,τ) =
{

0, if w = τ;

r s(w,τ), otherwise.

where 0 < r < 1, and
s(w,τ) = min

{
m

∣∣ wm 6= τm
}−1,

i.e. the last position where the two words agree.

The proof is left as an exercise for the reader. For the rest of this section, let L =
(K,S, { fi }i∈S be a self-similar structure, and let w = w1w2 · · · ∈Σ. For brevity, we will write

fw := fw1 ◦ fw2 ◦ . . . ,

and
Kw := fw (K).

Definition 2.13. Define the following maps on Σ.

σk : Σ−→Σ

w1w2 . . . 7−→ kw1w2 . . .

and
σ : Σ−→Σ

w1w2 . . . 7−→ w2w3 . . .

Proposition 2.14. The map π : Σ→ K defined by

{π(w)} =∩m≥1Kw1w2...wm = Kw1 ∩Kw1w2 ∩·· ·∩Kw1w2w3...

is well-defined, i.e. the set on the left-hand side contains only one element. Further, π is a
continuous surjection, and for any i ∈ S, π◦σi = fi ◦π.

Proof. Define the diameter of A ⊆ M to be

diam(A) := sup
x,y∈A

d(x, y).

Set R := max1≤i≤N Lip fi , and observe that

diam( fi (A)) ≤ R diam(A).

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021
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Also, for w = w1w2 · · · ∈Σ and m ∈N,

Kw1...wm wm+1 ⊆ Kw1...wm .

Consider the set X :=∩m≥1Kw1...wm . Since Kw1...wm is compact, X is a nonempty compact
set. Further, we know that

diam(Kw1...wm ) ≤ Rmdiam(K).

Since 0 < R < 1, the previous inequality implies that diam(X) = 0, meaning X contains
only one element.

Next, suppose δr (w,τ) ≤ r m , where 0 < r < 1 (see the definition of δr in Proposi-
tion 2.12). Then,

π(w),π(τ) ∈ Kw1...wm = Kτ1...τm .

Thus, d(π(w),π(τ)) ≤ Rm diam(K) = Rm supx,y∈K d(x, y), so π is (Lipschitz) continuous.
Also,

π(Σ) =π(σ1(Σ)∪·· ·∪σN(Σ)) =π(σ1(Σ))∪·· ·∪π(σN(Σ)) = f1(π(Σ))∪·· ·∪ fN(π(Σ)).

Since π(Σ) is a nonempty compact set, Theorem 2.9 implies that π(Σ) = K, i.e. π is
surjective.

Finally, observe that

{π(σi (w)} =∩m≥1Ki w1...wm =∩m≥1 fi (Kw1...wm ) = { fi (π(w))}

and so π◦σi = fi ◦π.

Proposition 2.15. fw (π(ẇ)) =π(ẇ) for ẇ = w w w . . . , if w ∈ W∗ and w 6= ;.

Proof. Since fw is a contraction, it has a unique fixed point by Theorem 2.2. By Propo-
sition 2.14,

π(ẇ) =π(w ẇ) = fw (π(ẇ)).

As such, π(ẇ) is the unique fixed point of fw .

Definition 2.16. Given a self-similar structure L , we define the following associated
sets.

(i) CL ,K =∪i , j∈S,i 6= j ( fi (K)∩ f j (K)),

(ii) C =π−1(CL ,K), the critical set of L ,

(iii) P =∪n≥1σ
n(C ), the post critical set of L ,

(iv) V0 =π(P ), the boundary of K.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



10 An Introduction to Fractal Analysis

Example 2.17 (Sierpiński gasket). We present an example of the four sets in the previous
definition for K = SG. Recall that in this case, S = {1,2,3}, and fi (z) = z+pi

2 , for i ∈ S,
where pi are the vertices of an equilateral triangle. Then,

CL ,K = (
f1(K)∩ f2(K)

)∪ (
f1(K)∩ f3(K)

)∪ (
f2(K)∩ f3(K)

)= {
q1, q2, q3

}
,

where the qi are depicted in Figure 3. Further,

C =π−1(CL ,K) = {
12̇,21̇,13̇,31̇,23̇,32̇

}
and P =∪n≥1σ

n(C ) = {
1̇, 2̇, 3̇

}
,

so V0 =π(P ) = {
p1, p2, p3

}
.

q1

q2q3

p1 =π
(
1̇
)

p2 =π
(
2̇
)

p3 =π
(
3̇
)

q1 =π
(
23̇

)=π(
32̇

)
q2 =π

(
13̇

)=π(
31̇

)
q3 =π

(
12̇

)=π(
21̇

)

Figure 3: The approximation V1 of K = SG. A similar figure can be found in [2, p. 16].

Definition 2.18. Let L = (
K,S,{ fi }i∈S

)
be a self-similar structure. L is said to be post

critically finite, or PCF for short, if the post critical set P is finite.

Definition 2.19. Define
Vm = ⋃

w∈Wm

fw (V0).

Then Vm ⊆ Vm+1 and
Vm+1 =

⋃
i∈S

fi (Vm).

3 Laplacians and Dirichlet Forms on Finite Sets

As in the previous section, let L = (
K,S,{ fi }i∈S

)
be a PCF self-similar structure, and let

Vm be an approximation of K for some m ∈ N. Also denote by `((Vm) the collection
of real-valued functions on Vm . Note that ` (Vm) is an inner product space, with the
standard inner product

〈u, v〉 = ∑
p∈Vm

u(p)v(p),

for u, v ∈ `(Vm).
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Definition 3.1. The characteristic function χU of a subset U ⊆ Vm is

χU(q) =
{

1, if q ∈ U;

0, otherwise.

If U = {p}, we write χp (instead of χ{p}).

Definition 3.2. A symmetric bilinear form Em : ` (Vm)×` (Vm) →R is called a Dirichlet
form on ` (Vm) if it satisfies

(DF1) Em(u,u) ≥ 0 for any u ∈ `(Vm),

(DF2) Em(u,u) = 0 if and only if u is constant on Vm ,

(DF3) For any u ∈ `(Vm), Em(u,u) ≥ Em(u,u), where u is defined by

u(p) =


1, if u(p) ≥ 1;

u(p), if 0 < u(p) < 1;

0, if u(p) ≤ 0.

We denote by DF (Vm) the collection of Dirichlet forms on `(Vm).

Definition 3.3. A symmetric linear operator Hm : `(Vm) → `(Vm) is called a Laplacian
on ` (Vm) if it satisfies

(L1) Hm is non-positive definite,

(L2) Hmu = 0 if and only if u is constant on Vm ,

(L3) (Hm)pq := (
Hmχq

)
(p) ≥ 0 for all p 6= q ∈ Vm .

We denote by L A (Vm) the collection of Laplacians on `(Vm).

Lemma 3.4. The collections DF (Vm) and L A (Vm) are in bijective correspondence, via
the map

q : DF (Vm) −→L A (Vm)

Em 7−→ Hm

where Em(u, v) =−〈u,Hm v〉 for u, v ∈ `(Vm).

The proof is left as an exercise for the reader.

Definition 3.5. Given a function u ∈ ` (Vm−1), we define an extension of u to be any
function u′ ∈ `(Vm) such that u′|Vm−1 = u.
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12 An Introduction to Fractal Analysis

Definition 3.6. Let u ∈ `(Vm−1), and let u′ ∈ `(Vm) be an extension of u. The harmonic
extension ũ of u is the one that minimizes Em , i.e.

Em(ũ, ũ) ≤ Em(u′,u′) if ũ = u′ = u on Vm−1.

For the sequence {Vm}m≥1 of finite approximations of K, we wish to construct a
sequence of Dirichlet forms {Em}m≥0 (and corresponding Laplacians {Hm}m≥0). Such a
sequence should preserve the self-similar structure, i.e. we require that, for u, v ∈ ` (Vm),

Em(u, v) =
N∑

i=1

1

ri
Em−1 (u ◦Fi , v ◦Fi ) (1)

where ri are known as renormalization factors for i ∈ S. We will further require that for
u ∈ `(Vm−1) with harmonic extension ũ ∈ `(Vm),

Em(ũ, ũ) = Em−1(u,u), (2)

i.e. the harmonic extension of a function leaves the value of the Dirichlet form un-
changed.

Definition 3.7. For m ∈N, the restriction of Em to Vm−1 is

Ẽm(u,u) := Em(ũ, ũ).

We also write
H̃m := q(Ẽm)

where q is the map from Lemma 3.4.

Proposition 3.8. Let u ∈ `(Vm−1),Hm ∈L A (Vm). Then

Hm =
(
T J>

J X

)
, (3)

where T : `(Vm−1) → `(Vm−1), J : `(Vm−1) → `(Vm \ Vm−1), and X : `(Vm \ Vm−1) → `(Vm \
Vm−1). Also, H̃m = T− J>X−1J.

Proof. We leave Equation (3) to the reader, and prove the second part. Since Ẽm(u,u) =
Em(ũ, ũ) by definition, we must have

−〈
u, H̃mu

〉=−〈ũ,Hmũ〉 .

Since ũ is the harmonic extension of u, (Hmũ)(p) = 0 for all p ∈ Vm \ Vm−1. Also,

Hmũ =
(
T J>

J X

)(
u

ũ|Vm \Vm−1

)
,
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so we must have Ju +Xũ|Vm \Vm−1 = 0. This is true precisely when

ũ|Vm \Vm−1 =−X−1Ju,

meaning that

H̃mu = Hmũ =
(
T J>

J X

)(
u

−X−1Ju

)
=

(
(T− J>X−1J)u

0

)
.

Based on the proof of the above proposition, the harmonic extension ũ of u ∈ `(Vm−1)
is the unique element of `(Vm) that satisfies{

ũ|Vm−1 = u,

ũ|Vm \Vm−1 =−X−1Ju.

We now describe the construction of a sequence of Dirichlet forms {Em}m≥0 on the
discrete approximations {Vm}m≥0 of K. Begin with a Dirichlet form E0 : `(V0)×`(V0) →R,
as well as an N-tuple (ri )i∈S of renormalization factors. The subsequent Dirichlet forms
E1,E2, . . . are then determined by Equation (1), and we must also check that they satisfy
Equation (2) (this check is usually how the renormalization factors are determined).

Since DF (Vm) and L A (Vm) are in bijective correspondence by Lemma 3.4, we may
equivalently define a sequence {Hm}m≥0 of Laplacians. Given a Laplacian H0 : `(V0) →
`(V0), the subsequent Laplacians are defined by

Hm = ∑
w∈Wm

1

rw
R>

w H0Rw

where rw = rw1 . . .rwm with wi ∈ S, and Rw : `(Vm) → `(V0) is defined by Rw u = u ◦Fw .
We illustrate these constructions with a simple example.

Example 3.9 (Unit interval). Let I = [0,1]. The reader may check that I is the unique self-
similar set with respect to contractions f1(z) = z

2 and f2(z) = z+1
2 . By Proposition 2.15,

the boundary of I is V0 = {0,1}.

(i) Define a Dirichlet form E0 : `(V0)×`(V0) →R by

E0(u, v) = (u(1)−u(0))(v(1)− v(0)).

for u, v ∈ `(V0). By Equation (1), we have

E1(u, v) = 1

r1

(
u

(1

2

)
−u(0)

)(
v
(1

2

)
− v(0)

)
+ 1

r2

(
u(1)−u

(1

2

))(
v(1)− v

(1

2

))
.
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14 An Introduction to Fractal Analysis

Given a function u ∈ `(V0), we hope that, by choosing suitable renormalization
factors, Equation (2) will be satisfied. Since E0(u,u) = (u(1)−u(0))2, we have

E1(ũ, ũ) = 1

r1

(
ũ

(1

2

)
− ũ(0)

)2

+ 1

r2

(
ũ(1)− ũ

(1

2

))2

.

ũ(1) = u(1) and ũ(0) = u(0). If we let ũ
(1

2

)= 1
2 (u(1)+u(0)) and r1 = r2 = 1

2 , we have

E1(ũ, ũ) = 2

(
1

2
(u(1)+u(0))−u(0)

)2

+2

(
u(1)− 1

2
(u(1)+u(0))

)2

= 4

(
1

2
(u(1)−u(0))

)2

= (u(1)−u(0))2

which means Ẽ1 = E0, as desired.

(ii) Equivalently, we can check construct a sequence of Laplacians instead. The reader
may check that the Laplacian corresponding to E0 defined above is

H0 =
(−1 1

1 −1

)
Since r1 = r2 = 1

2 and H1 =∑
w∈W1

1
rw

R>
w H0Rw ,

H1 = 2

1 0
0 0
0 1

(−1 1
1 −1

)(
1 0 0
0 0 1

)
+2

0 0
0 1
1 0

(−1 1
1 −1

)(
0 0 1
0 1 0

)

=
−2 0 2

0 −2 2
2 2 −4


Then, we compute the restriction H̃1 to V0, which is

H̃1 = T− JTX−1J =
(−2 0

0 −2

)
−

(
2
2

)(−1
4

)(
2 2

)
=

(−1 1
1 −1

)
= H0

Note also that ũ
(1

2

)= 1
2 (u(1)+u(0)) =−X−1J

(
u(0)
u(1)

)
, as shown in Proposition 3.8.
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Remark 3.10. The Dirichlet form Em : `(Vm)×`(Vm) →R is sometimes referred to in the
literature as energy.

Definition 3.11. Let p, q ∈ Vm . Define the equivalence relation ∼
m

by

p ∼
m

q ⇐⇒ ∃ w ∈ Wm such that p, q ∈ Fw (V0).

If p ∼
m

q , we say that p and q are neighbors in Vm .

Recall the case of SG, and refer to Figure 2. Notice that neighboring points in V0,V1,
and V2, which we can think of as vertices on a graph, are connected by an edge.

Definition 3.12. Given a discrete Laplacian H0 : `(V0) → `(V0), we say that

(V0,H0) ≤ (V1,H1) ⇐⇒ V0 ⊆ V1 and H̃1 = H0.

For the sequence of Laplacians {Hm}m≥0, it would be lovely if

(Vm−1,Hm−1) ≤ (Vm ,Hm)

for all m ≥ 1. Thankfully, the next proposition says that it is enough to check that
(V0,H0) ≤ (V1,H1).

Proposition 3.13. If (V0,H0) ≤ (V1,H1), then (Vm−1,Hm−1) ≤ (Vm ,Hm) for all m ≥ 1.

Proof. Proceeding by induction, assume (Vm−1,Hm−1) ≤ (Vm ,Hm) for some m ≥ 1. For
any u ∈ `(Vm) and i ∈ S, Em−1(u ◦Fi ,u ◦Fi ) = Em(ũ ◦Fi , ũ ◦Fi ). By definition of Em in
Equation (1), this means that Em(u,u) = Em+1(ũ, ũ), and so (Vm ,Hm) ≤ (Vm+1,Hm+1).

Given a self-similar structure L and its boundary V0, we say that (H0,r) is a harmonic
structure if, for the corresponding sequence {(Vm ,Hm)}m≥0, we have (Vm−1,Hm−1) ≤
(Vm ,Hm) for all m ≥ 1. While it is not known if a harmonic structure exists for every
self-similar structure L , there are several known examples of PCF self-similar structures
with harmonic structures, as we will show in the next section.

4 Limits of Discrete Laplacians and Harmonic Functions

In the previous section, we constructed a sequence {Hm : `(Vm) → `(Vm)}m≥0 of discrete
Laplacians, where Vm is the mth approximation of a self-similar set K. These Lapla-
cians agree with the self-similarity of the set (Equation (1)) and is compatible with the
harmonic extension of functions to greater approximations (Equation (2)).

In this section we will take the limit, in some sense, of the sequence {(Vm ,Hm)}m≥0.
The result will be a continuous Laplacian ∆µ on K. To begin, we will define a self-similar
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16 An Introduction to Fractal Analysis

measure µ on K, on which ∆µ depends. We will establish the notion of functions with
finite energy, i.e. functions u for which the Dirichlet form Em(u,u) remains finite as m
approaches infinity. Then, we will show that all functions with finite energy defined on

V∗ :=∪m≥0Vm

are uniformly continuous, and that the set V∗ is dense in K. The upshot of these two
facts is that any function of finite energy defined on V∗ will have a unique continuous
extension to all of K. Finally, we will define the domain of the Laplacian for a self-similar
set K, which consists of functions for which ∆µ is defined. This domain will always
include harmonic functions, for which the discrete Laplacian vanishes for all m ≥ 0.

Definition 4.1. For w ∈ Wm , we call Fw (K) a cell of level m. Informally, this is just a
subset of K that is a “smaller version” of K (in the sense of self-similarity).

Definition 4.2. Let C = Fw (K) for some w ∈ Wm . The self-similar measure µ is a mea-
sure on K satisfying the following conditions.

(i) (Positivity) µ(C) > 0,

(ii) (Additivty) If C =∪N
j=1C j , where the cells {C j } j∈S only intersect at boundary points,

then

µ(C) =
N∑

j=1
µ(C j ),

(iii) (Continuity) As |C|→ 0 (where |C| is the cardinality of the cell C), µ(C) → 0,

(iv) (Probability) µ(K) = 1.

The definition of µ largely depends on the distribution allocated to different cells,
which changes the definition of the Laplacian. For example, the standard Laplacian on
SG distributes weight to all cells equally, meaning that µ(SG) = 1 and µ(Fi (SG)) = 1

3 for
i = 1,2,3.

Definition 4.3. Recall that V∗ :=∪m≥0Vm . Define

F :=
{

u ∈ `(V∗)
∣∣ lim

m→∞Em
(
u|Vm ,u|Vm

)<+∞
}

,

E (u, v) := lim
m→∞Em

(
u|Vm , v |Vm

)
We are allowed to take the limit of the energy, since the sequence {Em(u,u)} is nonde-
creasing in R. Functions in u ∈F have finite energy, i.e. E (u,u) <+∞.

We want to show that any u ∈F is also uniformly continuous in V∗. We first define
the following metric on V∗.
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Definition 4.4. For any p, q ∈ V∗, define the resistance metric,

R(p, q) := (
min

{
E (u,u)

∣∣ u ∈F and u(p) = 1,u(q) = 0
})−1

The reader may check that R1/2 :=p
R( , ) is a metric on V∗.

Proposition 4.5. F ⊆ C
(
V∗,R1/2

)
, the set of uniformly continuous functions on V∗.

Proof. Let u ∈F . For any p, q ∈ V∗,

R(p, q) = (
min

{
E (u,u)

∣∣ u ∈F and u(p) = 1,u(q) = 0
})−1

= max

{ |u(p)−u(q)|2
E (u,u)

∣∣∣ u ∈F ,E (u,u) > 0

}
.

Thus, we have that |u(p)−u(q)|2 ≤R(p, q)E (u,u), and so

|u(p)−u(q)| ≤R1/2(p, q)
√

E (u,u).

Thus, u is Lipschitz continuous on
(
V∗,R1/2

)
, and therefore u ∈ C

(
V∗,R1/2

)
.

Proposition 4.6. V∗ is dense in K.

Proof. Recall the map π : Σ → K as defined in Definition 2.13. Since π is surjective,
for any x ∈ K there exists w = w1w2w3 · · · ∈ Σ such that π(w) = x. Let τ ∈ P , the post-
critical set of K, and define a sequence {xm}, where xm = π(w1 . . . wmτ). Since Vm =
∪w∈Wm fw (V0), and π(τ) ∈ V0, we have that xm ∈ Vm ⊆ V∗. As m →∞, xm → x, so V∗ is
dense in K.

Since V∗ is dense in K, we have that any function u of finite energy (which is uniformly
continuous on (V∗,R1/2)) has a unique continuous extension to K.

Finally, we define the notion of harmonic functions on K. This definition is equivalent
to the harmonic extension of a function ρ ∈ `(V0) to V∗ (and hence all of K), as discussed
in the previous section.

Definition 4.7. For any ρ ∈ `(V0), there exists a unique u ∈ F such that u|V0 = ρ and
E (u,u) = min{E (v, v) : v ∈ F ,u|V0 = ρ}. Equivalently, u is the unique function that
satisfies {

(Hmu)|(Vm \V0) = 0 for all m ≥ 1,

u|V0 = ρ.

We call u a harmonic function on K. More generally, if the initial function ρ is in `(Vm)
for some m ≥ 1 (and not just in `(V0)), we call the corresponding (continuous) harmonic
extension an m-harmonic function.
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18 An Introduction to Fractal Analysis

By the discussion in the first part of this section, a harmonic function u can be
extended uniquely to a continuous function on all of K, and so we may identify all
harmonic functions u with their continuous extensions. Also note that any harmonic
function K → R is completely determined by its values on the boundary V0, which is
analogous to the situation in many smooth settings with boundary!

Example 4.8 (Hata’s tree-like set). Let M =C, and define contractions f1(z) = cz, f2(z) =
(1− |c|2)z + |c|2 for |c| ∈ (0,1). We call the PCF self-similar set corresponding to these
contractions Hata’s tree-like set. Its boundary is V0 = {c,0,1}. Define

H0 =
−h h 0

h −(h +1) 1
0 1 −1

 , r = (a,1−a2),

where a = 1
h . The reader may check via one of the techniques used in Example 3.9 that

(H0,r) is a harmonic structure. See Figure 4 and Figure 5 for illustrations.

V0

c

0 1

Figure 4: The boundary V0 of Hata’s tree-like set with c = 0.4+0.3i .
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Figure 5: The unique harmonic function u with boundary values u(c) = 0.5,u(0) =
1,u(1) = 0.5. Note that here a = 0.7 and c = 0.4+0.3i . This image was created using the
Javascript library three.js with points in the approximation V10.

Definition 4.9. For p ∈ V0, let ψp be the harmonic function satisfying ψp |V0 = χV0
p . Note

that this function takes on the value 1 at p, and 0 everywhere else in V0. Define

Dµ :=
{

u ∈ C(K)
∣∣ ∃ f ∈ C(K) such that lim

m→∞ max
p∈Vm \V0

∣∣µ−1
m,p (Hmu)(p)− f (p)

∣∣= 0

}
where µm,p = ∫

Kψ
m
p dµ and C(K) is the collection of continuous functions f : K →R. For

u ∈ Dµ, we write f =∆µu, where f is the function in the definition above. ∆µ is called
the Laplacian associated with (H0,r ) and µ.

Note that if u is a harmonic function, then (Hmu) |Vm \V0 = 0 for all m ≥ 1, so u ∈Dµ

and ∆µu vanishes on all of K \ V0.

Example 4.10 (Unit interval). Let I = [0,1] as in Example 3.9. Define H0 ∈L A (V0) by

H0 =
(−1 1

1 −1

)
Then (H0,r) is a harmonic structure for any r = (r1,r2) such that r1 + r2 = 1 and 0 < ri < 1.

Ideally, we want the Laplacian to agree with its classical counterpart, i.e. ∆µu =∑
i
∂2u
∂x2

i

for u ∈ Dµ. Set r = ( 1
2 , 1

2 ). Then for p = i
2m ∈ Vm ,

(Hmu)(p) = 1

2−m


u(p +2−m)+u(p −2−m)−2u(p) if p 6= 0,1;

u(2−m)−u(0) if p = 0;

u(1−2−m)−u(1) if p = 1.
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20 An Introduction to Fractal Analysis

Then if we let µ be the self-similar measure with weight ( 1
2 , 1

2 ), we have that µm,p = 2−m ,
and so

µ−1
m,p (Hmu)(p) = 1

4−m
(u(p +2−m)+u(p −2−m)−2u(p)) = u(p + 1

2m )+u(p − 1
2m )−2u(p)

( 1
2m )2

which is precisely the second difference quotient.

Example 4.11 (Sierpiński gasket). Define

H0 =
−2 1 1

1 −2 1
1 1 −2

 ,r =
(

3

5
,

3

5
,

3

5

)

Then (H0,r) is a harmonic structure, with

(Hmu)(p) =
(

5

3

)m ∑
p∼

m
q

(
u(q)−u(p)

)
If we let µ be the self-similar measure with weight

(1
3 , 1

3 , 1
3

)
, then∫

K
ψm

p dµ=
{

2
3m+1 if p ∈ Vm \ V0;

1
3m+1 if p ∈ V0.

Thus we have that

∆µu = lim
m→∞

3

2
5m

∑
p∼

m
q

( f (q)− f (p)).

This is known as the standard Laplacian on the Sierpiński gasket.

5 Green’s function

This section is concerned with the Dirichlet problem for Poisson’s equation where the
domain is a PCF self-similar fractal K along with Laplacian ∆µ as defined in the previous
section. That is, given a function f ∈ C(K) and ρ ∈ `(V0), we seek u ∈ Dµ such that{

∆µu = f ,

u|V0 = ρ.

To this end, we will construct a Green’s function g : K×K →R. By the end of the section,
we will show that the equation above has a unique solution u, which satisfies

u(x) = ∑
p∈V0

u(p)ψp (x)−
∫

K
g (x, y) f (y)µ(d y),
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where ψp is once again the harmonic function with value 1 at p and value 0 elsewhere
on the boundary V0.

As in our construction of∆µ, we begin with the discrete case. Recall that for Hm : `(Vm) →
`(Vm) on Vm , we have

Hm =
(
Tm J>m
Jm Xm

)
Definition 5.1. Define Ψ : K →R by

Ψ(x, y) = ∑
p,q∈V1\V0

(−X−1
1

)
pq ψp (x)ψq (y)

for x, y ∈ K. For w ∈ W∗, further define

Ψw (x, y) =
{
Ψ

(
F−1

w (x),F−1
w (y)

)
, if x, y ∈ Kw ;

0, otherwise.

We write Ψx(y) :=Ψ(x, y) and Ψx
w (y) :=Ψw (x, y). Note that Ψw is a nonnegative

continuous function on K×K and Ψx
w is an (m +1)-harmonic function if w ∈ Wm .

Definition 5.2. For u ∈F , define

um := ∑
p∈Vm

u(p)ψm
p ,

where ψm
p is the m-harmonic function with boundary value χVm

p (this function has value
1 at p ∈ Vm \ Vm−1, and value 0 everywhere else in Vm).

Lemma 5.3. Let u be an m-harmonic function and let f ∈F . If f |Vm = 0, then E (u, f ) = 0.

Proof. For n > m, we have (Hnu)(p) = 0 if p ∈ Vn \ Vm and f (p) = 0 if p ∈ Vm . Hence,

En(u, f ) =− ∑
p∈Vn

f (p)(Hnu)(p) = 0.

Lemma 5.4. For any u ∈F ,

E (Ψx
w ,u) =

{
r−1

w (um+1(x)−um(x)), if x ∈ Kw ;

0, otherwise.
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22 An Introduction to Fractal Analysis

Proof.
E

(
Ψx ,u

)= E
(
Ψx ,u −u0

)
(Lemma 5.3)

=− ∑
p,q∈V1\V0

XpqΨ
x(p) · (u(q)−u0(q)

)
= ∑

q∈V1\V0

(
u(q)−u0(q)

) ·ψq (x)

= u1(x)−u0(x)

Thus if x ∈ Kw , w ∈ Wm , and z := F−1
w (x), then

E
(
Ψx

w ,u
)= ∑

v∈Wm

r−1
v E

(
Ψx

w ◦Fv ,u ◦Fv
)

= r−1
w E

(
Ψz ,u ◦Fw

)
= r−1

w

(
(u ◦Fw )1 (z)− (u ◦Fw )0 (z)

)
= r−1

w (um+1(x)−um(x)) .

Definition 5.5. Define gm : K →R by

gm(x, y) =
m−1∑
k=0

∑
w∈Wk

rwΨw (x, y)

and set g x
m(y) := gm(x, y).

Note that g x
m is an m-harmonic function and g x

m(y) = 0 if y ∈ V0. By Lemma 5.4,

E (g x
m ,u) = um(x)−u0(x)

for any u ∈F . So we get that

gm(x, y) = ∑
p,q∈Vm \V0

(−X−1
m )pqψ

m
p (x)ψm

q (y).

Definition 5.6. Define

g (x, y) = lim
m→∞gm(x, y) = ∑

w∈W∗
rwΨ(x, y).

Theorem 5.7. Define Rt
m(µ) := maxw∈Wm rwµ(Kw )1/t for 1 ≤ t ≤∞. Assume

∑
m≥0 Rt

m(µ) <
∞. If s is the constant satisfying 1

t + 1
s = 1, then the following conditions hold.

(i) Let Ls(K,µ) be the space of functions f such that

∥∥ f
∥∥

s =
(∫

S
| f |s dµ

)1/s

<∞.
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For f ∈ Ls(K,µ), (
Gµ f

)
(x) =

∫
K

g (x, y) f (y)µ(d y)

is well-defined for all x ∈ K and Gµ f ∈ C(K)∩F0, where F0 := {
u ∈F : u|V0 = 0

}
.

(ii) Gµ : Ls(K,µ) → C(K) is a compact operator.

(iii) E
(
u,Gµ f

)= ∫
K(u −u0) f dµ for any u ∈F .

We call Gµ the (extended) Green’s operator.

We need several lemmas to prove the above theorem.

Lemma 5.8. If
∑

m≥0 Rt
m(µ) <∞, then g x ∈ Lt (K,µ) for any x ∈ K. Moreover, x 7→ g x is a

continuous map from K to Lt (K,µ).

Proof. For u ∈ Lt
(
K,µ

)
, set ‖u‖µ,t =

(∫
K |u|t dµ

)1/t . Let x =π(w1w2 . . . ). Then,

g x(y) = ∑
m≥0

rw1...wmΨw1...wm (x, y).

As such, ∥∥g x
∥∥
µ,t ≤

∑
m≥0

rw1...wm

∥∥Ψw1...wm

∥∥
µ,t

≤ ∑
m≥0

rw1...wmµ
(
Kw1...wm

)1/t (
see the definition of Ψx(y)

)
≤ ∑

m≥0
Rt

m(µ)

<∞.

So g x ∈ Lt (K,µ). Then,∥∥g x − g y
∥∥
µ,t ≤

∥∥g x
m − g y

m

∥∥
µ,t +

∥∥g x
m − g x

∥∥
µ,t +

∥∥g y
m − g y

∥∥
µ,t .

Since
∥∥g x

m − g x
∥∥
µ,t ≤

∑
k≥m+1 Rt

k (µ) <∞ and gm is continuous on K×K (by continuity of

harmonic functions), we have that
∥∥g x − g y

∥∥
µ,t → 0 as d(x, y) → 0.

Lemma 5.9.

∑
q∈Vm

(Hm)pq g q (y) =
{
−ψm

p (y), if p ∈ Vm \ V0;

−ψm
p (y)+ψp (y), if p ∈ V0.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



24 An Introduction to Fractal Analysis

Proof. For any u ∈F , we have that E
(
ψm

p ,u
)
= EHm

(
ψm

p ,u
)
=− (Hmu) (p). Since E

(
g p ,u

)=
u(p)−u0(p), it follows that

E

( ∑
p∈Vm

(Hm)pq g q ,u

)
= (Hmu) (p)− (Hmu0) (p) = E

(
−ψm

p ,u
)
+E

(
ψm

p ,u0

)
.

Since u0 is harmonic, Lemma 5.3 implies that E
(
ψm

p −ψp ,u0

)
= 0 for p ∈ V0. Further-

more, (Hmu0)(p) = 0 for p ∈ Vm \ V0. Hence,

E

( ∑
p∈Vm

(Hm)pq g q ,u

)
=

E
(
−ψm

p ,u
)

if p ∈ Vm \ V0;

E
(
−ψm

p +ψp ,u
)

if p ∈ V0.

for any u ∈F , which implies the result.

Lemma 5.10.

(
Hm(Gµ f )

)
(p) =

{−∫
Kψ

m
p f dµ, if p ∈ Vm \ V0;

−∫
K

(
ψm

p −ψp

)
f dµ, if p ∈ V0.

Proof. Note that

(
Hm

(
Gµ f

))
(p) = ∑

q∈Vm

(Hm)pq

∫
K

g q f dµ=
∫

K

( ∑
q∈Vm

(Hm)pq g q

)
f dµ

So Lemma 5.9 implies the result.

Now we are ready for the proof of Theorem 5.7.

Proof of Theorem 5.7. Recall that we set
∥∥ f

∥∥
µ,s := (∫

K | f |s dµ
)1/s .

(i) By Hölder’s inequality,∣∣(Gµ f
)

(x)− (
Gµ f

)
(y)

∣∣= ∣∣∣∣∫
K

(g (x, p)− g (y, p)) f (p)µ(d p)

∣∣∣∣= ∥∥(g x − g y ) f
∥∥
µ,1 ≤

∥∥g x − g y
∥∥
µ,t

∥∥ f
∥∥
µ,s .

We have showed in Lemma 5.8 that
∥∥g x − g y

∥∥
µ,t → 0 as d(x, y) → 0, so this implies

that Gµ f ∈ C(K). By Lemma 5.10,

EHm

(
u,Gµ f

)=− ∑
p∈Vm

u(p)
(
Hm(Gµ f )

)
(p)

=− ∑
p∈Vm

u(p)

(
−

∫
K

(
ψm

p −ψp

)
f dµ

)
=

∫
K

(um −u0) f dµ
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(Recall that um =∑
p∈Vm u(p)ψm

p .) If we set u = Gµ f , then

EHm

(
Gµ f ,Gµ f

)= ∫
K

(
(Gµ f )m − (Gµ f )0

)
f dµ

=
∫

K

(
Gµ f

)
m f dµ

≤
∫

K
sup
x∈K

∣∣(Gµ f )(x)
∣∣ · | f |dµ

≤ ∥∥ f
∥∥
µ,1 · sup

x∈K

∣∣(Gµ f )(x)
∣∣ .

Note that (Gµ f )0 = 0 since g = 0 if x ∈ V0 or y ∈ V0. Since we already showed that
Gµ f is continuous and K is compact, Gµ f is bounded and so EHm

(
Gµ f ,Gµ f

)<∞,
meaning that Gµ f ∈F0.

(ii) Let
{

fn
}

n≥1 be a bounded sequence in Ls(K,µ) such that
∥∥ fn

∥∥
µ,s ≤ M for all n. Now

we want to show that
{
Gµ fn

}
n≥1 =

{∫
K g (x, p) f (p)µ(d p)

}
n≥1 is equicontinuous.

∣∣(Gµ fn)(x)− (Gµ fn)(y)
∣∣= ∣∣∣∣∫

K
(g (x, p)− g (y, p)) fn(p)µ(d p)

∣∣∣∣= ∥∥(g x − g y ) fn
∥∥
µ,1 ≤ M

∥∥g x − g y
∥∥
µ,t

By Lemma 5.8, this shows
{
Gµ fn

}
n≥1 is equicontinuous.

Now we want to show
{
Gµ fn

}
n≥1 is uniformly bounded.

∣∣(Gµ fn)(x)
∣∣= ∣∣∣∣∫

K
g (x, p) fn(p)µ(d p)

∣∣∣∣= ∥∥g x fn
∥∥
µ,1 ≤ Msup

x∈K

∥∥g x
∥∥
µ,t

Note that supx∈K ‖g x‖µ,t <∞ since g x is continuous on K. Again by Lemma 5.8,
this shows that

{
Gµ fn

}
n≥1 is uniformly bounded.

By Ascoli-Arzelà’s theorem,
{
Gµ fn

}
n≥1 contains a subsequence that is convergent

in C(K). Hence Gµ is a compact operator from Ls(K,µ) to C(K).

(iii) For any u ∈F , if we let m →∞ for EHm (u,Gµ f ) = ∫
K(um −u0) f dµ , we get

E (u,Gµ f ) = lim
m→∞EHm

(
u,Gµ f

)= lim
m→∞

∫
K

(um −u0) f dµ

We already know that (um −u0) f converges to (u −u0) f . Since K is compact, it has
finite measure, and so there exists an (integrable) constant function g on K such
that |(um −u0) f | ≤ g for all m. By the Lebesgue Dominated Convergence Theorem,
we have that

lim
m→∞

∫
K

(um −u0) f dµ=
∫

K
(u −u0) f dµ.

as desired.
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Lemma 5.11. Let DD := {
u ∈Dµ : u|V0 = 0

}
. For any f ∈ C(K), we have

Gµ f ∈DD and ∆µ(Gµ f ) =− f .

Proof. Recall that

Dµ :=
{

u ∈ C(K)
∣∣ ∃ f ∈ C(K) such that lim

m→∞ max
p∈Vm \V0

|µ−1
m,p (Hmu)(p)− f (p)| = 0

}
.

where µm,p = ∫
Kψ

m
p dµ.

Let f ∈ C(K). Note that since K is compact, f ∈ Ls(K,µ). Using Lemma 5.10, for p ∈
Vm \ V0,∣∣∣µ−1

m,p Hm(Gµ f )(p)+ f (p)
∣∣∣=µ−1

m,p

∣∣∣∣−∫
K
ψm

p (y) f (y)µ(d y)+ f (p)

∣∣∣∣ (Lemma 5.10)

=µ−1
m,p

∫
∪w∈Wm Kw

ψm
p (y)| f (p)− f (y)|µ(d y)

=µ−1
m,p

∫
Km,p

ψm
p (y)

∣∣ f (p)− f (y)
∣∣µ(d y) (since ψm

p (y) = 0 if y ∉ Km,p )

≤ max
p∈Vm

{
sup

y∈Km,p

∣∣ f (p)− f (y)
∣∣} .

where Km,p := ∪w∈Wm ,p∈Kw Kw for p ∈ K. Note that another characterization of an m-
harmonic function ρ is that ρ◦Fw is a harmonic function for any w ∈ Wm . Thus if y ∈ Kw

but y ∉ Km,p , we have that ψm
p (y) = 0. Then since f is uniformly continuous on K,

lim
m→∞ max

p∈Vm

{
sup

y∈Km,p

∣∣ f (y)− f (p)
∣∣}= 0.

By definition of Dµ, this implies that Gµ f ∈ Dµ with ∆µ(Gµ f ) =− f . Since Gµ f |V0 = 0, we
have Gµ f ∈DD.

Theorem 5.12. Let f ∈ C(K) and ρ ∈ `(V0). There exists a unique function u ∈ Dµ such
that {

∆µu = f ,

u|V0 = ρ.

Moreover,

u(x) = ∑
p∈V0

ρ(p)ψp (x)−
∫

K
g (x, y) f (y)µ(d y)

Note that if u|V0 = 0 then we have u(x) =−∫
K g (x, y) f (y)µ(d y).

Proof. Let u = (
∑

p∈V0 ρ(p)ψp )−Gµ f . By Lemma 5.11, u satisfies the above.
To show uniqueness, assume ua and ub satisfy the above. Then v := ua −ub ∈DD and
∆µv = 0. Since −Gµ = (∆µ|DD )−1, it follows that v = 0, i.e. ua = ub .
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