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Finite Tropical Semirings

By Caden Zonnefeld

Abstract. The focus of this paper lies at the intersection of the fields of tropical algebra
and graph theory. In particular the interaction between tropical semirings and directed
graphs is investigated. Originally studied in [7], the directed graph of a ring is useful
in identifying properties within the algebraic structure of a ring. This work builds off
the research done by [2, 5, 1] in constructing directed graphs from rings. However, we
will investigate the relationship (x, y) — (min(x, y), x + y) as defined by the operations
of tropical algebra and applied to tropical semirings.

1 Introduction

The advent of graph theory has served to explore numerous mathematical phenomena.
These include binary relations of objects, planarity, coloring, critical path analysis, and
network flow as detailed in [6] and [11]. While there are numerous types of graphs,
directed graphs are of particular interest to the contents of this paper. The value in
directing the edges of a graph manifests itself in the study of Markov chains and, as
discovered in [7], rings.

Maclagan and Sturmfels [8] detail the fundamentals of tropical algebra by redefin-
ing addition as the minimum of two numbers and multiplication as the sum of two
numbers. The structure this describes is commonly known as the tropical semiring,
though alternatively it is called the min-plus algebra. The term tropical geometry was
coined in honor of Brazilian mathematician Imre Simon; however, the adjective tropical
holds no deeper meaning to the field of study. Though initially limited to optimization
and discrete mathematics, the applications of tropical geometry have expanded into
fields including computational algebra and combinatorics [3]. Dynamic programming
is another application of tropical geometry [8] that, when utilized in computational
biology, creates algorithms capable of predicting genes. Though most applications of
tropical geometry define the tropical semiring on R U {oo} we will define an analagous
structure on a finite set in Definition 2.17.
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2 Finite Tropical Semirings

This paper investigates finite tropical semirings as revealed by directed graphs. Sec-
tion 2 details the foundational concepts for understanding the remainder of the paper.
This includes graph theory and ring theory definitions as well as defining a finite tropical
semiring. Section 3 explores findings from investigating the directed graph of finite
tropical semirings. Section 4 shares ideas for further research in this line of inquiry.

2 Preliminaries

The findings of this paper rely upon concepts drawn from graph theory, ring theory, and
tropical geometry. The following definitions are fundamental graph theory concepts
that are based upon definitions found in [6] and [11]. We will begin by defining directed
graphs; then we will examine characteristics of directed graphs.

Definition 2.1. A directed graph is a collection of vertices and arcs G = (V, E, p) defined
by the mapping p : E — V? where V and E are sets. We call V or sometimes V(G) the set
of all vertices in G. Likewise, we call E or sometimes E(G) the set of all arcs in G. Lastly,
p is the incidence mapping which consists of mappings o and ¢ where o, : E — V. The
mappings o and ¢ map arcs to vertices and o(e), f(e) represent the origin and fail of an
arc respectively.

OO

Figure 1: Directed Graph Example

Definition 2.2. A directed graph G is one-sided connected if for all vertices a, b € V(G)
there exists a path from a to b or from b to a.

Definition 2.3. Consider the graph G = (V,E, p). The graph G' = (V/,E/, p’) is a subgraph
of Gif V(G') € V(G), E(G) €E(G),and p’' = p |p.

Definition 2.4. A one-sided component of directed graph G is a maximal one-sided
connected subgraph.
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Caden Zonnefeld 3

All components examined in this paper will be one-sided connected so we will use
the term component to mean one-sided component.

Figure 1 exemplifies a directed graph with more examples available in Figure 3 and 4.
The following examples make use of Figure 1. Each circle represents a vertex and arrow
an arc. The setV = {vy, v1, V2, U3, V4, Us, Us, U7, Ug, U9} consists of each of the 10 vertices in
the directed graph. Likewise, the set

E = {(vo, v1), (11, v7), (V2, 11), (V3, V1), (U4, V1), (V4, U3),

(V5} U4)’ (UG) Ug)) (V77 VZ)) (U7) U4)) (VS, V?), (U9’ Vg)}

consists of each of the 12 arcs in the directed graph. Consider the edge (v, v1) which
we will call ey. The origin of ej or o(ep) is vy. The tail of e or t(ep) is v;. The incidence
mapping of ey or p(ep) maps vy to v;. We can see that no path exists from vg to vy or
from vy to vg; therefore, Figure 1 is not a one-sided connected graph. Lastly, the vertices
v and vg along with the edges (vg, v9) and (v9, v9) form a component since they are a
maximal one-sided connected subgraph.

The ensuing definitions further describe features of a directed graph.

Definition 2.5. A path connects vy to v, and consists a sequence of arcs ey, e, ...ej.
Furthermore, a simple path describes a path where no vertex appears more than once.

Definition 2.6. A loopis an edge e where o(e) = t(e).

For an arbitrary vertex v and edge e where o(e) = t(e) = v we say that v loops back to
itself.

Definition 2.7. The out-degree of a vertex v is the number of arcs that point from v.
Conversely, the in-degree of v is the number of arcs that point to v. A sourceis a vertex
with an in-degree of 0.

Consider Figure 1 once more. Notice the edges (vy, v1) and (v, v7), this pair of edges
creates a simple path between the vertices vy and v;. The origin and tail of the edge
(v9, vg) are each vy such that it forms a loop. Consider vs, this vertex has an in-degree of
0 and an out-degree of 1. Since vs has an in-degree of 0 it is a source.

The next several definitions are key to modular arithmetic and are adapted from [10].

Definition 2.8. Let a,b,m € Z and m = 2. We say that a is congruent to b modulo m
when m|(a— b). Equivalently, a is congruent to b modulo m when a and b have the same
remainder after division by m. We denote congruence as a = b mod m.

Example 2.9. Given a =13, b =3, and m = 5 notice that 13 = 3 mod 5 since 5/(13 — 3).

Recall the division algorithm which, as written in [10], states that for any integers
a and b where b is positive there exist unique integers g and r with the property that
a=mqg+rwith0<sr<m.
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4 Finite Tropical Semirings

Definition 2.10. Let a, m € Z where m is positive,ifa=mqg+rand0<r <m,wecall r
the least non-negative residue of a mod m.

The least non-negative residue can also be understood as the remainder of the
division algorithm.

Example 2.11. Consider the conditions from Example 2.9. We can see that 13=5-2+3
where 3 is the least non-negative residue of 13 mod 5.

Definition 2.12. The set of integers congruent mod m are an equivalence relation. The
collection of all integers congruent to a given integer x is an equivalence class.

Example 2.13. The elements of an equivalence class for a mod m are denoted as a =
{a+km:keZ}.

Though an equivalence class can be represented by any of its members, we will make
use of the least non-negative residue of our equivalence classes. Thus, for an arbitrary
equivalence class b usage of b will refer to the least non-negative residue of b.

The definition we will employ for a semiring is adapted from [4]. A semiring is an
algebraic structure that possesses properties similar to that of a ring.

Definition 2.14. A semiring is a nonempty set S together with two binary operations +
and - satisfying the following properties:

1. Associativity of Addition Given any a,b,c€ S, (a+b)+c=a+ (b+¢).

2. Commutativity of Addition Given any a,b€ S, a+ b= b+ a.

3. Additive Identity There exists a Og € S such that a+0s =0s + a = a.

4. Associativity of Multiplication Given any a, b,c €S, (ab)c = a(bc).

5. Left Distributive over Addition Given any a,b,c€ S, a(b+c) = ab+ ac.
6. Right Distributive over Addition Given any a,b,c€ S, (a+ b)c = ac+ bc.

The following properties define special kinds of semirings.
A semiring S that possesses a multiplicative identity is called a semiring with identity.

7. Multiplicative Identity There exists a 15 € S such that forall a € S, alg = 1sa = a.

A semiring S that satisfies multiplicative commutativity is called a commutative
semiring.

8. Multiplicative Commutativity Given a, b€ S, ab = ba.
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Caden Zonnefeld 5

Notice that the only property of rings lacking from semirings is that of an additive
inverse. In this paper we will make use of commutative semirings with identity.

Example 2.15. Consider the set N with traditional addition and multiplication as op-
erations. Notice that 5 € N; however, —5, the additive inverse of 5, is not in the set of
natural numbers. All other ring properties are fulfilled by the natural numbers, thus it is
a semiring.

Example 2.16. Consider the set of all 7 x n matrices with nonnegative entries as seen in
[9] with traditional addition and multiplication as operations. This set is a semiring.

We will now define the finite tropical semiring, the algebraic structure that will be
the basis of our study for the remainder of the paper, as S, := Z, U {oo}. Furthermore, we
will demonstrate the finite tropical semiring’s properties to show that it is a semiring. We
establish the convention that if an element has an overline it is an equivalence class in
Zp; conversely, if an element does not have an overline it is a general element of S ;.

Theorem 2.17. LetS,,:=Z, U {oo}, and define operations on S, as follows.

e Givenay,ay € Z,, a1 ® ay := min(ry, r2), where r; is the least non-negative residue of
a;,and forallbe Z,,b® oo =00® b =min(b,00) = b.

° Givenay,ay € Zp,a1® ay:=a)+ a, and forallbe 7,,b®oco=00® b = oo.
Then:
(a) The operations ® and ® are well-defined on S ,.

(b) Under the operations & and ®, S, is a commutative semiring with identity given by
Q.

Proof.
Addition is Well-Defined To demonstrate that addition is well-defined we will consider
finite and infinite elements.

Case 1: Let 5,5,5,3 €S,,a= E, and ¢ = d. We can represent E,E by 7] the least non-
negative residue of @ and b. Likewise, we can represent ¢, d by 7, the least non-negative
residue of ¢ and 3, then

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



6 Finite Tropical Semirings

Case 2: Let a, bes pnanda= E, then

‘a® oo =min(a,oo)

| 5 SN

in(b,00)
=bdoo

Since any representative of the equivalence class can be used addition is well-defined
for S,,.
Multiplication is Well-Defined To demonstrate that multiplication is well-defined we
will consider finite and infinite elements.

Case 1: Let a,b,¢,d €S,, a=b, and ¢ = d. We can represent @, b by 77 the least non-
negative residue of @ and b. Likewise, we can represent ¢, d by 7; the least non-negative
residue of ¢ and d, then

ae'c

n
Sl =l 9l
® + +
Ql «f ol

Case2: Leta,beS pnanda= b, then
a®oco=a+oo
=00
=b+o0
=b®oco
Since any representative of the equivalence class can be used multiplication is well-

defined for S,,.
Associativity of Addition Let a, b, c € S, then

(a®b)®c=min(a,b)®c
=min(min(a, b), ¢)
=min(a, min(b, c))
=a® min(b,c)
=a®(bac)
Commutativity of Addition Let a,b € S, then
a® b=min(a,b)
=min(b, a)
=b&a

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Caden Zonnefeld 7

Additive Identity We claim the additive identity in S, is co. By definition, forall a€ S,
a® oo =00® a= a. Thus, cois the additive identity.
Associativity of Multiplication Let a, b,c € S, then

a®(bec)=a® (b+c)
=a+(b+c)
=(a+b)+c
=(a+b)®c
=(a®b)®c

Left Distributive over Addition Let a,b,c€ S, then

a® (boc) =a®min(b,c)
= a+ min(b,c)
=min(a+ b,a+c)
=min(a® b,a® c)
=a®bdadc

Right Distributive over Addition Let a,b,c € S, then

(a®b)®c=min(a,b)®c
=min(a, b) +c
=min(a+c,b+c)
=min(a®c,b® c)
=a®coebe®c

Commutativity of Multiplication Let a, b € S, then

a®b=a+b
=b+a
=beoa

Multiplicative Identity We claim the multiplicative identity in S, is 0. By definition, for
allaeS,, a®0=0® a = a. Thus, 0 is the multiplicative identity.

Since S, is well defined and fulfills the aforementioned properties, it is a commutative
semiring with identity defined under the operations of @ and ®. O

Now that we have established the finite tropical semiring, we will define the directed
graph of a semiring in a similar fashion as [2]. The directed graph of finite tropical
semirings will be the basis of the research completed in this paper.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



8 Finite Tropical Semirings

Definition 2.18. The directed graph of a semiring S,, denoted ¥ (S,), is the graph
with V(¥ (S,)) =S, xSy. For (a,b),(c,d) €S, xSy, (a,b) — (c,d) ifand only if ae b =
min(a,b) =cand a®b = a+ b = d. Equivalently, (a, b) — (a® b, a® b) = (min(a, b),a+b).
Since S,, is commutative, (b, a) — (c¢,d) when (a, b) — (c,d).

We conclude this section with an observation about the structure of ¥ (S,,).
Lemma 2.19. Every vertex in ¥ (S,) can point to only one vertex.

Proof. Let (x,y) € ¥(S,). If min(x, y) = x, then (x,y) — (x,x+ y). f min(x, y) = y, then
(x,y) — (¥, x+y). Whether x or y is minimum (x, y) only points to one vertex. O

3 Results

The focus of our investigation is the finite tropical semiring; in particular, we will utilize
the directed graph to explore finite tropical semirings. We will begin by examining the
behavior of vertices in S, that include the element infinity.

Proposition 3.1. ForallneN, (co,00) € W(S;,) is the only vertex in its component.

Proof. Consider the vertex (co,00). We observe that (0o, 00) — (00,00) since co ® oo = 0o
and co ® co = co. Likewise, any vertex that might point to (co,00) must consist of only
infinite elements to satisfy tropical addition. Therefore, for all n € N the vertex (co,00) €
W(S,) is the only vertex in its component. O

Proposition 3.2. ForallacS,, there exists a component consisting of (oo, a) — (a,o0) —
(a,00).

Proof. Let a € S, and consider the vertex (0o, a). No vertex can point to (oo, a) by the
definition of tropical addition in Theorem 2.17. We observe that co®a = a and co®a = oo,
such that (oo, @) — (a,00). Similarly, a ® co = a@ and a ® co = co such that (a,oc0) — (a,00).
Therefore, the component containing (oo, a) is (oo, a) — (a,00) — (a,0). O

The outcome of Proposition 3.1 addresses the behavior of the vertex (co,00). The
result of Proposition 3.2 indicates that for all @ € S, the components that contain vertices
with co as an element are simple. The vertex (oo, a) is a source that points to (a,o0) where
(a,o0) points to itself. Thus, from now on only vertices consisting of elements in Z,, from
the finite tropical semiring will be considered.

The next several propositions begin to examine the larger structure of ¥(S,). Our
initial focus will be the behavior of the directed graph at vertices of the form (0, a).

Definition 3.3. We define the terminal vertex of a component in ¥ (S,) as a vertex that
points to itself.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Caden Zonnefeld 9

Proposition 3.4. All terminal vertices must be of the form 0,a).

Proof. Let (x,y) € ¥(S,). For (x,y) — (x,y) we must have min(x,y) =xand x+y=17.
After subtracting ¥ from the previous equation we can see that x = 0. Similarly by
substitution 0+ = ¥ such that y can be any equivalence class in Z,,. Therefore, since
X =0and y € Z, all terminal vertices must be of the form (0, @). O

Proposition 3.5. All points of the form (0, @) are terminal vertices.

Proof. Let (0,a) € ¥(S,). Then (0,@) — (0,a) since 0® @ = 0 and 0 ® @ = a. Therefore, all
points of the form (0, a) are terminal vertices. O

The results of Proposition 3.4 and Proposition 3.5 indicate that the set of all terminal
vertices in W(S,,) is precisely the set of vertices of the form (0, a).

Example 3.6. In ¥(S5), the set of terminal vertices is {(0,0), (0, 1), (0,2), (0,3), (0,4)}.
Lemma3.7. Forallae$S,, (a,0) — (0,a) — (0,a).

Proof. Let a € S, and consider the vertex (@,0). We can see that (a@,0) — (0,a) since
a®0=0and a®0 = a. Furthermore, it is evident that (0,a) — (0,a) as a result of
Proposition 3.5. Therefore, forall a€ S, (a,0) — (0, a) — (0, a). O

Proposition 3.8. Foralla€ S, satisfying 5 < a < n—1, there is a component that consists
of 2 vertices such that (a,0) — (0,a) — (0, a).

Proof. Let a € S, where 5 < a < n—1. Lemma 3.7 can be referenced to show that
(@,0) — (0, — (0,a). For an arbitrary vertex (x,y) € S,, to point to (0, @) we must have
min(%,y) = 0 and X+7 = @. Let min(X, y) = X = 0, then by substitution 0+ = @ such that
y=aand (,y) is not unique. Thus, (0, @) is the only vertex that points to (0, a@).

Consider an arbitrary vertex (x, y) € ¥(S,). Suppose (x,y) — (a, 0) such that min(x,y) =
aandx+y= 0. Let min(x, y) = X = a. Assume without loss of generality that a, x, and
y are the least non-negative residues of their respective equivalence classes. We know
that 0 < y < n by Definition 2.10 such that 0 < x + y < 2n. Thus, x + y = n as n is the only
element of 0 that fulfills X+ y = 0. Since x = a > 5 we can see that y < 5 such that y < x;
however, this causes a contradiction with the earlier statement that min(x,y) = x. Thus,
no vertices can point to (a, 0)

Therefore, for all @ € S, satisfying 5 < a < n— 1 there is a component that consists of

2 vertices such that (a,0) — (0,a) — (0, ). O

Proposition 3.9. Forall n € 27", there is a component of ¥ (S,,) that consists of 3 vertices
such that (3, %) — (3,0) - (0,3) — (0.5).

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



10 Finite Tropical Semirings

Proof. Let n€ 27" and consider the vertex (2 , 2) We can see that (2, 2) — (?, 6) since

5@ g = 4 and g ® g =7 = 0. Taken in conjunction with Lemma 3.7, we can see that

@, g) - @, 6) - (6, g) - (6 ) The argument from Proposition 3.8 can be referenced

to show that no other vertices point to (”, 0) or (0, 1y,

For an arbrtrary vertex (x,y) € ¥(S;) to point to (2, 2) we must have min(x,y) = g

and X+ = 7. We will use contradiction to show that no arbitrary vertex can point to

(2, 2) Let min(x,y) = 2. Then by substitution 2 5+ y=3% and y= 0. Now we arrive at
a contradiction since x >y desplte min(x, y) = x. Since no vertex can point to (g, g) itis

a source. Thus, there is a component of W (S ) that consists of ( > 5) — (?, 6) — (6, g) —
(0, g) O

Though the results of Proposition 3.8 and 3.9 are important to our investigation,
the components they yield are simple and easily described. Figure 2 depicts a pair of

components from W (S;2). Proposition 3.8 describes the component shaded in grey and
Proposition 3.9 describes the component shaded in white.

Figure 2: ¥(S,), n=12

We will now begin to investigate components with terminal vertices where a < 3.
These components will be more complex and reveal information about the nature of
the finite tropical semiring. Qualities of these components that we will examine include
directed graph structure, source vertex form, and the maximum in-degree of a vertex.

Proposition 3.10. Foralla€ S, satisfying “5~ ntl < g < n wheren € 27 and n = 2, the vertex
(@,1) is a source that points to 1,a+1).

Proof. Letace S, satisfying “5= ntl < g < nwhere n€ 27 and n = 2. We can see that (a@,1) —
(1,a+1)sinceae®l=1anda ® 1=a+ 1. Consider the arbitrary vertex (x,y) € ¥(S,). We
will now use contradiction to show that no vertex points to (a, 1).

Suppose (¥,¥) — (@, 1) such that min(x, ) = @ and X + ¥ = 1. Assume without loss of
generality that min(x,y) = X = a. Furthermore, we may assume without loss of generality
that a, x, and y are the least non-negative representatives of their respective equivalence
classes. We know that 0 < x, y < n by Definition 2.10 such that 0 < x + y < 2n. The only

way thatX+y=1isifx+y=n+1.Since x=a > ”;1 we can see that y < 5= 2+l such that

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Caden Zonnefeld 11

x > y; however, this causes a contradiction with the earlier statement that min(x, y) = x.
Thus, no vertices can point to (a, 1).
Therefore (a, 1) is a source that points to (1, a + 1). O

Proposition 3.11. Forall a €S, where a> 0 the vertex (a, a) is a source that points to a
vertex with an in-degree of 1.

Proof. Letac€S, and a > 0, then consider the vertex (a, a). For (a, a) to be a source it
must have an in-degree of 0. We will use contradiction to show no vertex can point to
(a,a). Consider the arbitrary vertex (x,y) € ¥(S,) and assume that (x,y) — (a,a). As
a result min(x,y) = @ and X +y = a. The only values that X and y can assume are in
Z,=10,1,2,....n—-2,n—1}. Let min(x,y) = x =a, then a+y = a such that y = 0 and
X > y. However, a contradiction arises with the earlier statement that min(x,y) = x.
Therefore, there does not exist a vertex (x,y) € W(S,) that points to (a, a) implicating
that (a, a) is a source.

We can see that (@, a) — (a,2a) since a®ad =a and a® a = 2a. We will now show
that no other vertex (w,z) € ¥(S,) can point to (@,2a). Assume (w,z) — (@,2a) such
that min(w,z) = @ and w + z = 2a. Let min(w, z) = w = a, then substitution shows that
a+z=2a. Nowitisevident thatz=a. Sincew=z=a only (a, a) points to (a, 2a).

Therefore, for all a € S;, the vertex (a, a) is a source that points to a vertex with an
in-degree of 1. O

Proposition 3.12. The in-degree of every vertex (x,y) € Y (S,) is at most 2.

Proof. Consider the vertex (x,y) € W(S,) that is not a source. Definition 2.7 ensures that
any vertex with an in-degree of 0 is a source. Let (w, z) € ¥(S,,) such that (w, z) — (x, y).
Then w =% and z = y — X. Definition 2.18 implicates that (z, w) — (x,y) where z =X and
w =y —x. We will now show that no other unique vertex points to (x,y).

Consider (u,v) € ¥(S,) and assume that (#,7) — (x,y). Then min(z%,v) = X and
+ v =y. Using substitution we can see that x + v = y such that v = y — x. However,
=w and v = z such that («, v) € {(w, z), (z, w)} and thus is not unique. Likewise when
min(u, V) = v the vertex (1, v) is not unique.

Therefore, the in-degree of each vertexin W (S,,) is at most 2. O

u
u

The following material broadens the focus of study to the entire structure of the
directed graph. The topics considered include the presence of cycles and connections in
the directed graph of finite tropical semirings.

Lemma 3.13. Forall (x,y) € ¥(S,) where the least non-negative representatives of each
equivalence class satisfy xk =n—-yandx <y, (x,7) =- (X, x+y) — (X,2x+y) — -+ —
X, (k-1x+y) — (x,0) — (0,%).
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12 Finite Tropical Semirings

Proof. Let (x,y) € ¥(S;,) and without loss of generality assume that the least non-
negative representative of each equivalence class satisfies xk = n— y and x < y. Now we
can see that (X,y) — (X, x+ y) — (X,2x+ y) — --- — (X, (k— 1)x + y) — (,0). Likewise we
can see that (x,0) — (0,X) as a result of Lemma 3.7. Thus when the least non-negative
representatives of (x,y) satisfy xk=n—yand x <y, (X, — X, x+y) — (x,2x+y) —
o= & (k=1Dx+y) = (x,0) — (0,%). m

Remark 3.14. If the least non-negative representatives of a vertex (x, y) € ¥(S,) satisfy
yIn—x and y < x the commutativity of tropical operations allows us to apply an argument
symmetrical to Lemma 3.13. In that case, a path exists from (x,y) to (0, 7).

Theorem 3.15. The only cycles in ¥ (S,,) are of length 1 and consist of loops at terminal
vertices.

Proof. Let (xg, y0) € ¥(S,) be an arbitrary vertex that is not of the form of a terminal
vertex. All vertices considered by Proposition 3.8 and 3.9 will not be addressed as their
respective components only have cycles at terminal vertices. Assume that a path exists
between (xp, yo) and (X, yx) where k € N, Xy = X, and )y = ¥,. This path is a cycle.
Furthermore, Xy # yo as a result of Proposition 3.11. Since Xy # )y, we can assume
without loss of generality that 0 < Xy < Jo < 72. The nature of tropical addition implies
that Xp =2 X1 = X2 = --- = Xj_; = X such that Xy = X1 = X2 = --- = Xj_; = X. Tropical
multiplication shows that Xy + yo = 1, X1 + 1 = V2,...,Xk—1 + Yk—1 = Vk- We can use
substitution to show that Xo+ o = y1, X0+ 1 = ¥2,...,X0 + Yk—1 = Vk. Furthermore, we can
substitute y7 into the the second equation to see that Xy +Xo+ ¥ = 2Xo+ o = ¥2. Likewise,
we can substitute J; into the third equation to see that Xy +2xo + ¥ = 3X0 + Jo = J3. Now
itis clear that each copy of Xy added to y, increases the index of the y; term by 1, giving
rise to the general form jXxo + o = y; where j € N. We will now use contradiction to show
that no Xj preserves the integrity of the cycle.

Case 1: Let Xy|(72 — Jp) as in Lemma 3.13. Then there exists a ¢ € N that satisfies
0 < ¢ < k such that cxg + yo = nn as a result of yy > xo. We can see from the general form
that J; = 77 = 0. As a result X.;; = 0 which is in contradiction with earlier statements

that 0 < Xp and Xy = X7 = --- = X;_1 = Xx. Therefore, (X;, 7o) cannot be in a cycle when
Xol(m—Yo).

Case 2: Let Xg 1 (11— Jp), then, by the division algorithm, there exists a ¢ € N that
satisfies 0 < ¢ < k such that ¢xo + yo = n+ 71 where 0 <7 < Xp and r, the least non-
negative representative of 7, is an integer. We can substitute the general form to see
that y. =7n+7 =T7. Asaresult Xx.;1 = 7. However, this contradicts the earlier statement

that Xy =X =+ = X; = X¢+1 since 7 < Xy. Therefore, (Xy, y9) cannot be in a cycle when
Xo 1 (1 =Y0).

Thus, (xy, ) cannot be a part of a cycle. However for all a € S,, the loop at the
terminal vertex where (0, a) — (0, a) constitutes a cycle of length 1. Therefore, the only
cycles in W(S,) occur at terminal vertices and are of length 1. O
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Lemma 3.16. A path exists from every non-terminal vertex (x,y) € Y(S,) to a terminal
vertex.

Proof. Consider an arbitrary vertex (x,y) € ¥ (S,) and without loss of generality let x
and yp be the least non-negative representative of each equivalence class. Theorem 3.15
indicates that the only cycles in W (S;,) occur at terminal vertices and are of length 1.
Definition 2.18 ensures that every vertex must point to some vertex. Therefore, every
non-terminal vertex (xp, yo) € W(S,) is not a part of a cycle and must point to some
vertex. Then (xo, yo) — (x1, y1). If (x1, y1) is a terminal vertex then we have accomplished
our goal. If not, the same conditions will apply to (x;, 1) and the next vertex (x», y») all
the way until (xx_1, yx—1) such that (x3, y1) — (x2, y2) — -+ (Xk-1, Yk-1) — (X, Yx) where
0<k<n®and x; =0.

Therefore, a path exists from every non-terminal vertex (x,y) € ¥(S;,) to a terminal
vertex. O

Theorem 3.17. The number of components consisting of finite elements in ¥ (S,,) is equal
ton.

Proof. A path exists from every non-terminal vertex (x,y) € ¥(S;,) to a terminal vertex
as a result of Lemma 3.16. Now we must determine the number of terminal vertices.
As described in Definition 3.3 a terminal vertex must take on the form (0,a) where
a€S,. ThesetS, =1{0,1,2,...,n—2,n—1} such that there are n terminal vertices in
W(S,). Therefore, there are n components consisting of finite elements in W (S ). O

The next definitions establish terminology that describes the behavior we will en-
counter and explore regarding different types of source vertices.

Definition 3.18. We define a true source as any source (x,y) € ¥(S,) where either x =y
or where (%, y) and (3, x) are both sources and the same distance from the terminal vertex
of the component.

Definition 3.19. We define an adjacent source as any source in ¥ (S ;) that is not a true
source as described by Definition 3.18. (Note: Sources of the form (a,0) fall into this
category; their components are described in Proposition 3.8.)

Figure 3 depicts true sources in dark grey and adjacent sources in light grey. For the
sake of clarity, Figure 3 and 4 will follow the convention established after Proposition 3.2
by omitting vertices including co as an element. The distinction between true and adja-
cent sources becomes important in describing the larger structure of each component
in ¥(S,). We will begin to examine the difference between each type of source in the
following propositions.

Proposition 3.20. There exists a path P : (xo, yo) — (x1,y1) — -+ — (X1, Y1) from every true
source (xy, yo) to a terminal vertex (x;,y;). For all (xi, yx) inP where0< k< t, ke Z, and
(Yk, Xx) is a source, (yk, Xx) is an adjacent source.
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14 Finite Tropical Semirings

N

.

Figure 3: ¥(S,), n=6

Proof. Consider the true source (xy, yo) € ¥(S;). The result of Lemma 3.16 informs us
that a path P exists from (x, yp) to a terminal vertex (x;, y;). Furthermore, we reference
Definition 2.18 to show that for each (xg, yx) — (Xx+1, Yk+1) in P where k € Z and satisfies
0 < k < t, there exists a vertex (yg, Xx) — (Xx+1, Vk+1)- Since the in-degree of (xXx+1, Vi+1)
is 2, (yx, Xx) cannot be a true source where yj = xi as a result of Proposition 3.11. Fur-
thermore, only when k = 0 is (xg, yx) a source; thus, when (yi, x) is a source it is only a
true source if k = 0. Thus, for all 0 < k < ¢ along P where the vertex (yy, xx) is a source it
is an adjacent source. O

4 Future Research

There are many directions for future research in this area of study. We will begin by
sharing conjectures that we observed and could be used to guide future research into
the directed graph of finite tropical semirings.

The first two conjectures examine the presence and proportion of sources in the
directed graph of finite tropical semirings.

n-1 .

Conjecture 4.1. The number of sources in ¥(S,) forn>4,n€ Zisequal to 7} i.

Conjecture 4.2. The proportion of sources in ¥(S,) approaches a limit of 0.5 as n
approaches oco.

The next two conjectures aim to address the structure of each component. The
objective of the first conjecture is to demonstrate that true sources are fundamental to
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the construction of the directed graph.
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Figure 4: ¥(S,), n=12

Conversely, the second conjecture illustrates that adjacent sources are merely adjacent
additions to the directed graph.

Conjecture 4.3. The exists a path from the set of true sources in ¥ (S,,) to every vertex
that is not an adjacent source.
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16 Finite Tropical Semirings

Conjecture 4.4. There does not exist an adjacent source (x,y) € ¥(S,) that points to a
vertex with in-degree 1.

The final conjecture from our research inspects the form of vertices in special com-
ponents.

Conjecture 4.5. For @ € S,, where a|n, the component containing the vertex (0, d@) con-
sists only of elements from the generating set (a), the ideal generated by a.

This phenomena is best illustrated by the components in Figure 4 that include (0, 2),
(0,3), and (0,4).

Additional ideas to investigate include determining a general form for each type of
vertex, identifying a model that predicts the maximal distance of a directed graph, and
searching for a pattern in the number of vertices in each component. However, our ideas
for research are from exhaustive. The study of tropical geometry in relation to graph
theory boasts numerous opportunities for further study.
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