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The Degeneration of the Hilbert Metric on Ideal
Pants and its Application to Entropy

By Marisa O’Gara, Marianne DeBrito, and Andrew Nguyen

Abstract. Entropy is a single value that captures the complexity of a group action on
a metric space. We are interested in the entropies of a family of ideal pants groups
ΓT, represented by projective reflection matrices depending on a real parameter T >
0. These groups act on convex sets ΩΓT which form a metric space with the Hilbert
metric. It is known that entropy of ΓT takes values in the interval

(1
2 ,1

]
; however, it has

not been proven whether 1
2 is the sharp lower bound. Using Python programming, we

generate approximations of tilings of the convex set in the projective plane and estimate
the entropies of these groups with respect to the Hilbert metric. We prove a theorem
that, along with the images and data produced by our code, suggests that the lower
bound is indeed sharp. This theorem regards the degeneration of the Hilbert metric on
the convex set ΩΓT .

1 Introduction

Entropy is a measure of chaos or disorder, both inside and outside the field of mathe-
matics. In mathematics, we define entropy more precisely as a number that captures the
complexity of certain group actions. Despite its usefulness in topology and geometry and
the variety of formulas that describe it, entropy is notoriously difficult to compute. In
order to better understand entropy, it would be beneficial to have a tool to approximate
it. As coding languages become more accessible, there is reason to believe that a software
program could approximate entropy.

By using this tool in the context of projective geometry, we bring a rich theory into
a more flexible setting where there is plenty of active research and much unknown, as
referenced in SECTION 1.1. In particular, Xin Nie has shown that the entropy of projective
triangle groups takes all values in the interval (0,1] [11]. Analogously, it is natural to ask
if such a statement might hold for ideal projective pants groups.

Motivated by the difficulty of calculating the entropy of ideal projective pants groups
and Nie’s statement on the entropy of projective triangle groups, we produced Python

Mathematics Subject Classification. 51M10
Keywords. entropy, pants, Hilbert metric, projective geometry, projective dual



2 Degenerating Hilbert Metric and on Ideal Pants

code which approximates the entropy corresponding to the action of a given ideal
projective pants group, as discussed in SECTION 6. The results from our code mirror
those of Nie’s, suggesting the degeneration of entropy in this new setting. Visual tilings
generated by the code provide an avenue for proving our first main result of this paper,
given by the following theorem, discussed and proven in SECTION 4:

Theorem 1.1 (Degeneration of the Hilbert Metric). As T goes to ∞, the convex set ΩΓT

which is tiled by the ideal pants group ΓT converges to a triangle.

Though this theorem only explicitly states the convergence of a tiling, it implies that
the Hilbert metric, which we use in our definition for entropy (Definition 2.2), converges
to the Hilbert metric on a triangle as T approaches infinity. Indeed, when T = 1, ΩΓ1 is
elliptic and the geometry is hyperbolic, and the group action of ΓT has an entropy of 1.
As T approaches infinity, the set ΩΓT which the metric is defined on changes from an
ellipse to a triangle. This triangle has minimal entropy, since polygons with the Hilbert
metric are quasi-isometric to R2 [9]. The metric is now defined on a polygon and has lost
its sense of complexity, becoming something simple; this is what we mean when we say
the Hilbert metric degenerates.

Estimations of entropy generated from our code also suggested a symmetric nature
of entropy around the value of T = 1. These observations gave rise to the second main
result of this paper, discussed and proven in SECTION 5:

Theorem 1.2 (Duality Invariance of Entropy). For the ideal pants groups ΓT and Γ 1
T

with

T ∈R>0, their entropies are equal; that is, hΓT = hΓ 1
T

.

This hinges on results from Benoist, Crampon-Marquis, Danciger-Guéritaud-Kassel,
Kassel-Potrie, and Cooper-Long-Tillman, among others [3, 7, 8, 10, 5]. See SECTION 5 for
more precise statements and references.

Finally, our coded approximations presented in SECTION 6 serve as strong evidence
that the entropy of the family of ideal projective pants groups, hΓT (from [12]), takes all
values in the interval

(1
2 ,1

]
, which motivates Conjecture 3.2.

1.1 Historical Context

Within the past decade, there have been many papers published on entropies in pro-
jective space, especially in relation to Hilbert geometry. Beginning in 2009, Crampon
showed that any divisible strictly convex set in RPn has entropy less than or equal to
n −1, with equality if and only if the Hilbert geometry is hyperbolic (ie. Ω is an ellipsoid
and supports the projective model of hyperbolic geometry) [7]. And as recently as 2017,
Barthelme, Marquis, and Zimmer showed that if a properly convex set admits a proper,
free, finite co-volume group action by automorphisms, the entropy is equal to n −1
if and only if the Hilbert metric is Riemannian [2]. These two papers both look at the
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Marisa O’Gara, Marianne DeBrito, and Andrew Nguyen 3

Figure 1: A visual representation of RP2

entropy of properly convex sets in real projective space, similar to what we set out to
explore. Finally, another recent piece of research that directly relates to our work is Nie’s
paper, “On the Hilbert geometry of simplicial Tits sets" [11]. Nie’s work with the entropy
of projective triangle groups features an entropy degeneration result. This inspired our
original conjectures about ideal pants and will be further discussed in this paper.

2 Preliminaries

2.1 Real Projective Plane

We work in the real projective plane, RP2, which can be thought of as the set of lines
through the origin in R3. A quirk of projective geometry is that there are no parallel lines.
Two seemingly parallel lines are said to meet at infinity, just as the rails of a railroad track
appear to meet at some point on the horizon [1]. One way to conceptualize RP2 is to
pick any affine plane in R3. For example, consider the affine plane {(x, y, z) ∈R3 | z = 1}.
All the lines in R3 through the origin intersect this plane exactly once, except for the lines
in the x y-plane themselves. This we designate as the ‘plane at infinity’. Thus, we can
view RP2 as equivalent to R2 ∪ (the ‘plane at infinity’) where the affine plane (also called
affine chart) chosen earlier represents R2 [1].

2.2 Hilbert Metric

The metric we are using for computing and approximating entropy is the Hilbert metric
which is defined for a properly convex, open set. A properly convex, open set is one that
is open, bounded, and convex. The Hilbert distance between two points x, y in such a

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



4 Degenerating Hilbert Metric and on Ideal Pants

Figure 2: Hilbert metric visual: a and b are the points where the line intersects the
boundary, ∂Ω.

set, Ω⊂R3, is given by

dΩ(x, y) := 1

2
log

|x −b||y −a|
|x −a||y −b| ,

where a and b are the points where the line through x and y meets the boundary of Ω
(the closure of Ω). Using the notation above, a is chosen so that it is closer to x and b
is closer to y in the Euclidean metric (See Fig. 2). Although we will not verify that this
indeed defines a metric, we note that the cross-ratio

[a, x, y,b] := |x −b||y −a|
|x −a||y −b| ≥ 1,

guaranteeing that dΩ(x, y) is non-negative. Finally, we also observe that as x → a or
y → b, the cross-ratio increases rapidly along with the Hilbert distance between x and y .
Thus, in the Hilbert distance, the boundary of a properly convex set is infinitely far away.

Figure 3: Forming a pair of pants.

2.3 Ideal Pants Group

If we identify every other side of two hexagons to each other, we get a topological object
called a pair of pants (see Fig. 3).

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Marisa O’Gara, Marianne DeBrito, and Andrew Nguyen 5

By pinching and stretching the openings to ‘infinity,’ we create an ideal pair of pants.
Cutting along the seams of these ideal pants yields ‘ideal triangles’ with vertices at
‘infinity’ (see Fig. 4).

Figure 4: A topological pair of pants becoming an ideal pair of pants

The inspiration for this research came from Xin Nie’s work on projective triangle
groups which are generated by projective reflections over the sides of a compact trian-
gle in RP2. Similarly, the group, Γ, associated to an pair of ideal (projective) pants is
generated by projective reflections over the sides of the ideal triangles. Geometrically,
we can think of the group as unfolding the pants onto the projective plane. In terms of
computation, we can represent these projective reflections as projective transformations
in R3. Then, the matrix representation of Γ is a subgroup of PSL(3,R). By exploring ideal
pants, the project looks at a noncompact extension of the results of Nie which will be
precisely stated in SECTION 3.

Note 2.1. Since we will be only considering ideal pants and projective reflections in this
paper, we will often write pants group in place of ideal projective pants group.

2.4 Entropy

In a mathematical setting, entropy measures how ‘chaotic’ a group action is by examining
how far away each group element carries an object in a metric space. There are multiple
existing definitions for entropy, but the one primarily used in this project is given below.

Definition 2.2. Let (X,d) be a metric space and Γ be a group acting properly discontinu-
ously on X by isometries. The entropy of group Γ, hΓ, is given by

hΓ = limsup
n→∞

log#{γ ∈ Γ | d(o,γ ·o) ≤ n}

n
,

for an arbitrary o ∈ X, and where n is a positive real number.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



6 Degenerating Hilbert Metric and on Ideal Pants

Roughly speaking, the entropy of Γ gives the exponential growth rate of ‘the number
of elements in Γ that move o within an increasing distance.’ In this way, we can think
of entropy as a value describing the complexity of a group as it acts on a particular
metric space. In the context of our research, the metric space is the properly convex
set ΩΓT endowed with the Hilbert metric. The projective pants group, ΓT acts properly
discontinuously on ΩΓT by isometries, so it is natural to explore the entropy of ΓT.

In general, given a one-parameter family of groups ΓT, T ∈ R>0 that acts by isome-
tries on a metric space (XT,dXT ), it is known that the function which maps T 7→ hΓT is
continuous [4]. In his previous work on projective triangle groups, Nie uses this fact to
give a non-constructive proof of the degeneration of entropy in that setting. Taking this
as inspiration, we hope that Nie’s result can be extended to the setting of ideal projective
pants in a similar way.

2.5 Tiling

Given a group, Γ, that acts by isometries on a metric space, (X,d), there is a notion of
tiling induced by that group. More specifically, we give the following definition.

Definition 2.3. Γ tiles X with generating polygon P provided that:

1. X = ⋃
γ∈Γ

γ ·P

2. int(γ ·P)∩ intP 6= ; ⇐⇒ γ= 1.

In our research, a projective pants group, ΓT, acts on a properly convex set, ΩΓT ,
equipped with the Hilbert metric. While the group can be represented by matrices
in PSL(3,R), it is unclear what the convex set looks like. To resolve this, we examine
approximations of tilings of the convex set. Given a triangle placed inside an affine chart
and satisfying the above properties, we can use the group action on the triangle to get a
picture of ΩΓT inside an affine chart. Furthermore, if we consider the quotient ΩΓT /ΓT,
we recover the pair of projective pants we started with. In this way, a pair of projective
pants is associated with both a group and a tiling.

The generating polygons in our tilings, the ideal triangles, touch the boundaries of
the convex set at their vertices. This is consistent with the notion of ideal pants and the
Hilbert metric: by placing the vertices of the triangles on the boundary of the convex set,
we pinch and stretch the openings of our pants to ‘infinity.’

Using computer programming, we can generate approximations of ΓT and also
approximations of ΩΓT . The visuals generated by these tilings show a deformation of
the properly convex set, ΩΓT as T →∞. This observation of deformation in the tiling
originally pointed us to our initial conjecture: the degeneration of entropy in the setting
of ideal projective pants (Conjecture 3.2). While this does not offer a complete proof,
it allows us to show the degeneration of the Hilbert metric on ΩΓT which suggests that
Conjecture 3.2 is true.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Marisa O’Gara, Marianne DeBrito, and Andrew Nguyen 7

3 Background

Previous work by Xin Nie [11] explored projective triangle groups which have a similar
construction to pants groups. When viewed in an affine chart of RP2, both groups
generate tilings of a properly convex open set (endowed with the Hilbert metric) by
acting on triangles in the chart. For projective triangle groups, the triangles in the tiling
are strictly contained inside the properly convex, open set. This tiling phenomenon was
ultimately used to prove the degeneration of entropy in that setting, the main theorem
in Nie’s paper.

Theorem 3.1 (Nie, [11, Theorem 1]). Given a one parameter family of projective triangle
groups, ΓT, the function sending the group to its entropy, T 7→ hΓT , has image (0,1].

In the case of pants groups, ΓT, however; the action takes place on triangles that
touch the boundary of the closure of the properly convex set ΩΓT . We hope to extend
Nie’s result to this noncompact setting, albeit with some slight modification.

Conjecture 3.2. Given a one parameter family of pants groups, ΓT, the function sending
the group to its entropy, T 7→ hΓT , has image

(1
2 ,1

]
.

A few results from hyperbolic and projective geometry give us some insight into this
problem.

3.1 Representation of the Pants Group

First, let us look deeper into Nie’s aforementioned paper [11] for a representation of
pants groups. Using the notation from this paper, we consider a special case of the
Theorem on page 6, referring to results of Tits and Vinberg [12], taking dimension m = 2,
with the order of generators mi ,i = 2, and mi , j =∞ for all i 6= j . This Theorem gives us a
recipe for computing the generators of the pants groups in terms of matrices in PSL(3,R).

ΓT :=
〈−1 0 0

2T 1 0
2
T 0 1

 ,

1 2
T 0

0 −1 0
0 2T 1

 ,

1 0 2T
0 1 2

T
0 0 −1

〉
T > 0.

Throughout this paper, the matrix generators of the group ΓT are referred to as RT1,
RT2, and RT3, respective to the matrices above, left to right. Indeed, the version of
Vinberg’s theorem stated by Nie gives us that any one-parameter family of pants groups
is conjugate to ΓT.

By construction, the fundamental domain for this family of representations ΓT acting
on ΩΓT is “the fundamental simplex” P, defined on page 5 in the preliminaries of Nie’s
paper. In dimension 2, P is the first octant of R3, or in other words, the positive cone over
the interior of the triangle with vertices e1,e2,e3.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



8 Degenerating Hilbert Metric and on Ideal Pants

It is worth observing that RT,1 fixes span(e2,e3), RT,2 fixes span(e1,e3), and RT,3 fixes
span(e1,e2). So it is believable that the fundamental simplex P is indeed a fundamental
domain for the action of ΓT on ΩT; we refer the reader to Nie’s paper for a proof of this
fact.

Now, it is a straightforward calculation to show that RT,2RT,3 is a unipotent ma-
trix and hence is a parabolic isometry. It fixes only one point, e1, which we can see
quickly because e1 is the unique intersection point of the fixed point sets span(e1,e3)
and span(e1,e2) of RT,2 and RT,3, respectively. Then e1 must be in the boundary of Ω
because RT,2RT,3, being parabolic, has infinite order and moves points towards e1.

3.2 Entropy of the Pants Group

Next, the hyperbolic pants group, Γ1, has been computed to have an entropy of 1, and all
other groups in the family, ΓT for T 6= 1, are known to have a smaller entropy [2]. It also is
known that the entropy of a given pants groups is strictly greater than 1

2 [7]. However, it is
unknown exactly what im(T 7→ hΓT ) is; i.e. it has not been proven that 1

2 is a sharp lower
bound of this mapping. Our project involves making observations about pants groups
and creating approximations of their entropies to gain intuition and build support for
the conjecture.

While making these approximations of entropy, we also present approximations of
the convex set ΩΓT generated by approximating the ΓT-tilings. From these pictures, we
observed a deformation of the tiling of ΩΓT to its “base triangle,” described further in
Theorem 4.1. While this does not prove Conjecture 3.2, it provides strong evidence that it
is true and can be interpreted as a degeneration of the Hilbert metric onΩΓT as T →∞. In
terms of Conjecture 3.2, this interpretation shows that the space ΩΓT equipped with the
Hilbert metric looks ‘more like’ R2 with the Euclidean metric as T →∞. As a Euclidean
space, actions on R2 have minimum entropy. And in this way, Theorem 1.1 suggests
Conjecture 3.2.

Note 3.3. Before we look at any visualizations, a note for clarity: the visuals in this
paper are all two-dimensional. A natural question that the reader may have is how a
group generated by three-dimensional matrices has become a two-dimensional tiling.
Even though the generators are 3×3 matrices, the reason we have two-dimensional
figures for different groups is because we are working in the projective space RP2, which
is a projection of R3 onto a two-dimensional affine chart in union with the plane at
infinity. Thus, we ‘lose’ a dimension moving from the group to a visualization on a two
dimensional plane.

Now having defined all necessary terms and given thought to the practicality of
Theorem 1.1, we move on to one outcome of our project.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Marisa O’Gara, Marianne DeBrito, and Andrew Nguyen 9

4 Proof of Degeneration of Hilbert Metric

As we worked on our code and building empirical evidence for Conjecture 3.2, we made
interesting observations which lead us to Theorem 1.1 and several other results to prove
it. This section details these results and their proofs.

4.1 Convergence to Base Triangle

With our code’s visual outputs (detailed in SECTION 6), we observe that for the family of
ideal projective pants groups ΓT varying under a real value T, the properly open convex
set ΩΓT converges to a triangle as T increases. This convergence becomes evident very
quickly, even for T = 16, and can be seen in Figure 6. We turn our focus to proving this
observation, stated in Theorem 1.1:

Theorem (Degeneration of Hilbert Metric). As T goes to ∞, ΩΓT converges to the base
triangle.

Figure 5: A pants tiling of ΩΓ1 with the base triangle highlighted in red

By “base triangle,” we refer to the triangle which the group elements of ΓT act upon.
This triangle is chosen based on the attracting eigenvectors of each matrix generator.
For the relevant images in this report, we take the base triangle to be simply the triangle
with vertices at e1,e2,e3 (the standard basis vectors) projected onto a fixed affine chart.
More on this specific affine chart and how it is chosen can be found in SECTION 6. By the
way our matrix generators are chosen, no matter the value of T, ΩΓT must contain this
triangle.

4.2 Results Leading to Theorem 1.1

To prove Theorem 1.1, we proceed to define a triangle in the affine chart which bounds
ΩΓT and converges to the base triangle. It then follows by the squeeze theorem that ΩΓT

converges to the base triangle, as desired. The following five lemmas and their proofs
define such a bounding triangle, prove its containment of ΩΓT and prove its convergence
to the base triangle.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



10 Degenerating Hilbert Metric and on Ideal Pants

First, we identify the vertices of the desired bounding triangle, fT1, fT2, fT3 to be the
eigenvectors of the matrix generators RT1,RT2,RT3 respectively, with eigenvalue of −1.
Lemmas 4.1 and 4.2 are necessary for use in Lemma 4.3, which proves that the bounding
triangle contains ΩΓT .

Note 4.1. Recall from SECTION 3, that the matrices RT1,RT2, and RT3 depend on T since
they are associated to the group ΓT. We have moved the parameter T to the subscript to
clean up the notation (writing RT1 instead of R1(T). We introduce a similar format for
the eigenvectors of each matrix: fT1, fT2, and fT3.

Lemma 4.1. Let i , j ,k be three distinct numbers in {1,2,3} and RTi ,RT j be two generators
of the group ΓT. Then for fTi , fT j , the eigenvectors of RTi ,RT j respectively with eigenvalue
−1, we have fTi + fT j = ek .

Proof. By symmetry, it suffices to check this for the case of fT1 and fT2. The statement
of the lemma for other values of i , j can be proven by a similar method. Let fT1 and fT2

be the eigenvectors of RT1 and RT2 both corresponding to the eigenvalue λ = −1. We
can compute fT2 and fT2 by looking at the system of equations generated by RT1 + I and
RT2+I respectively. Solving the system of equations produces the following eigenvectors:

fT1 =
−1

T
1
T

 , fT2 =
− 1

T
1
−T

 .

Before adding the eigenvectors together, we multiply by scalars to simplify the summa-
tion. Since we are ultimately working in RP2, this scaling is permitted. Multiply fT1 by T
and fT2 by T2, to get

fT1 =
−T

T2

1

 , fT2 =
 T
−T2

T3


and we can observe that

fT2 + fT1 =
 0

0
1+T3

= (1+T3)e3.

Thus, barring scaling, we see that fT1 + fT2 = e3.

Thus, we have that the vertices of the base triangle are linear combinations of the
vertices of the bounding triangle.

Lemma 4.2. Let fTn be the eigenvector for the generator RTn which corresponds to the
eigenvalue −1. The projective line through fTi and fT j , for i , j ∈ {1,2,3} i 6= j , is preserved
by the generators RTi and RT j .

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Marisa O’Gara, Marianne DeBrito, and Andrew Nguyen 11

Proof. Let i = 1, j = 2. We can see the projective line through fT1 and fT2 is a subspace
containing both fT1 and fT2. In projective space, fT1 being the eigenvector of RT1 for the
eigenvalue of −1 means that fT1 is preserved by RT1. If we can show that RT1 sends fT2

to a point on the projective line through fT1 and fT2 then RT1 will preserve the entire
projective line. We have found the following matrices for the general form of RT1, fT2

with parameter T.

RT1 =
−1 0 0

2T 1 0
2
T 0 1

 , fT2 =
− 1

T
1
−T


We find the following vector for RT1 fT2 and can break it into a linear combination of

fT1 and fT2.

RT1 fT2 =
 1

T
−1

−T− 2
T2

=− 2

T

−1
T
1
T

+
 −1

T
1
−T

=− 2

T
fT1 + fT2

We have shown that RT1 fT2 is on the projective line between fT1 and fT2, which means
that RT1 preserves the entire projective line.

To show RT2 preserves the projective line, we similarly show that RT2 fT1 is on the line.
Computing, we have

RT2 fT1 =
 1

−T
2T2 + 1

T

=
−1

T
1
T

+−2T

 −1
T
1
−T

= fT1 +−2T fT2.

We have shown that RT2 fT1 can be written as a linear combination of fT1 and fT2, mean-
ing that RT2 fT1 is on the projective line. We can conclude that RT2 also preserves this
projective line through fT1 and fT2.

The other cases follow by symmetry.

Equipped with these two lemmas, we are now ready to prove that the bounding
triangle contains ΩΓT .

Lemma 4.3. For n = 1,2,3, let fTn be the eigenvector for the generator RTn which corre-
sponds to the eigenvalue −1, and let Ω be the properly convex set generated by 〈RTn〉. Then
the triangle formed by fT1, fT2, and fT3 contains Ω.

Proof. Let A be an affine chart containing Ω. Suppose the triangle 4′ formed by fT1, fT2,
and fT3 on A does not contain Ω. Note that fT1 + fT2 = e3 ∈ ∂Ω, fT1 + fT3 = e2 ∈ ∂Ω, and
fT2 + fT3 = e1 ∈ ∂Ω, as shown in Lemma 4.1. Fix distinct i , j ,k ∈ {1,2,3} and let L denote
the line containing fTi and fT j . Then we know L∩∂Ω= ek . Since 4′ does not contain Ω,
L must intersect ∂Ω at another point p, other than ek . Because ∂Ω is preserved under

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



12 Degenerating Hilbert Metric and on Ideal Pants

Γ and, as proven earlier in Lemma 4.2, L is preserved under RTi RT j , either RTi RT j p = p
or RTi RT j p = ek . But we already know that RTi RT j ek = ek , so we must have RTi RT j p = p,
so ek and p are both eigenvectors of RTi RT j . RTi RT j is parabolic, meaning it only has
one eigenvector.1 Thus, p = ek , which contradicts our definition of p. Thus, L is tangent
to ∂Ω and 4′ contains Ω.

So, we have that the bounding triangle defined by fT1, fT2, fT3 contains ΩΓT . The next
step toward proving Theorem 1.1 is to prove that the bounding triangle converges to the
base triangle using the notion of Gromov-Hausdorff convergence. That is, we say that a
sequence of sets converges to another set if the Gromov-Hausdorff distance between the
sets goes to 0. To prove that the bounding triangle converges to the base triangle, then,
we need to show that the Gromov-Hausdorff distance between between the bounding
triangles and the base triangles goes to 0. We do this in two lemmas, first proving that
the vertices of the bounding triangle converge to the vertices of the base triangle, and
second proving that the sides of the bounding triangle converge to the sides of the base
triangle.

Lemma 4.4. Inside an affine chart containing e1, e2, and e3, the vertices of the bounding
triangle converge to the vertices of the base triangle in the following way:

fT1 → e2 fT2 → e3 fT3 → e1 as T →∞.

Proof. Recall that

fT1 =
 1
−T
−1
T

 , fT2 =
 −1

T
1
−T

 , and fT3 =
−T

−1
T
1

 .

Consider now an affine chart containing e1, e2, and e3; that is, one determined by a plane
{ax +by +cz = 1} for a,b 6= 0. Let’s first place the base triangle in the chart by projecting
it onto the plane {ax +by + cz = 1} and then projecting it down onto the x y-plane.

e1 7→ 1

a
e1 7→

( 1
a
0

)
e2 7→ 1

b
e2 7→

(
0
1
b

)
e3 7→ 1

c
e3 7→

(
0
0

)
.

Similarly, we can also place the vertices of the bounding triangle, fT1, fT2, and fT3, inside
the chart and see where they move as T tends to infinity.

1A concrete proof of RT1RT2 having only one eigenvector can be found in Appendix A.
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fT1
1

a−bT− c
T

 1
−T
−1
T

 ( 1
a−bT− c

T−T
a−bT− c

T

) (
0
1
b

)
= e2

fT2
1−a

T +b−cT

 −1
T
1
−T

 ( −1
−a−bT−cT2

1−a
T +b−cT

) (
0
0

)
= e3

fT3
1

−aT− b
T +c

−T
−1
T
1

 ( −T
−aT− b

T +c
1

aT2+b−cT

) ( 1
a
0

)
= e1

T→∞

T→∞

T→∞

Thus, fT1 → e2, fT2 → e3, and fT3 → e1, so that the vertices of the bounding triangle
converge to those of the base triangle inside a suitable chart.

Finally, we must show that the edges of the bounding triangle converge to the edges
of the base triangle by Gromov-Hausdorff convergence.

Lemma 4.5. Let ` be a line segment in R2, and let `T be a sequence of line segments whose
endpoints converge to those of `. More specifically, suppose ` has endpoints x, y and `T

has endpoints xT, yT where xT → x and yT → y as T tends to ∞. Assume furthermore that
for all T, the intersection of the segments ` and `T is xT. Then, `T converges to ` as T tends
to ∞ with respect to the Gromov-Hausdorff distance.

This can be proven using parameterization and convexity of the metric on R2. How-
ever, we provide an alternate proof in APPENDIX A labeled as Proof (A). Using these
results, we are now able to prove Theorem 1.1.

Proof of Theorem 1.1. By Lemma 4.5 we know that the sides of the bounding triangles
converge to the sides of the base triangle. We also know from lemma 4.4 that the vertices
of the bounding triangle converge to the vertices of the base triangle. Knowing this is
true, assume the two triangles do not converge to each other. Then there is at least one
point in one of the triangles that is not within the set of the other as T goes to infinity.
However, this cannot be in a triangle side or a vertex. Thus, this point cannot exist and
we have a contradiction. We now know our assumption is false and the two triangles
must converge.

As mentioned in SECTION 1, Theorem 1.1 can be interpreted as a degeneration of the
Hilbert metric. The main idea in this interpretation is the fact that a triangle endowed
with the Hilbert metric is quasi-isometric to R2 with the Euclidean metric [9]. As ΩΓT

converges, its geometry degenerates, becoming ‘flatter.’ In terms of the entropy of ΓT,
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14 Degenerating Hilbert Metric and on Ideal Pants

this flattening of the geometry is evidence for a decrease in hΓT . The extent of this
decrease and the bounds on hΓT can be explored using a computer program, detailed in
SECTION 6. In total, the results and approximations strongly suggest the sharp bounds
mentioned in Conjecture 3.2.

Figure 6: Projection of ΩΓT onto the x y-plane with T values 1, 2, 4 on top , and 8, 16 on
bottom.

5 Proof of Duality Invariance of Entropy

While developing our code, we also found empirical evidence to support the duality
invariance of entropy. In this section, we build support and work to prove our other
main result, Theorem 1.2.

5.1 Projective Dual

Our results from SECTION 6 display a symmetric trend around T = 1 (see Figure 9).
Looking deeper, we found that this was caused by the projective duality of the pants
group, leading us to Theorem 1.2.

Theorem (Duality Invariance of Entropy). For the ideal pants groups ΓT and Γ 1
T

with

T ∈R>0, their entropies are equal; that is, hΓT = hΓ 1
T

.

If we consider the projective dual of ΩΓT , we can uncover a relationship between the
entropy of ΓT and the entropy of the group that acts on the dual convex set, (ΩΓT )∗. In
theory, the dual exchanges points and lines in RP2. For example, the vertices of the base
triangle become the edges of the bounding triangle of (ΩΓT )∗ and vice versa. In this way,
the base triangle and the bounding triangle are swapped in the dual picture (see Fig. 7).
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Figure 7: The figure on the top shows the original convex set ΩΓ1 and the one on the
bottom is its dual, (ΩΓ1 )∗.
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16 Degenerating Hilbert Metric and on Ideal Pants

To determine exactly where the vertices of the new base triangle, ê1, ê2, ê3 in (ΩΓT )∗ are,
we can examine the intersections of the kernels (e.g. span ê1 = ker f >

T2 ∩ker f >
T3):

ê1 =
0

T
1

 , ê2 =
1

0
T

 , ê3 =
T

1
0

 .

In essence, The base triangle in ΩΓT and the bounding triangle in (ΩΓT )∗ are dual to each
other.

To understand the dual convex set (ΩΓT )∗, we consider the dual map

φ : {lines in RP2} → (
RP2)∗

given by φ : L 7→ the 1×3 matrix with kernel = L.

(ΩΓT )∗ =φ({lines in RP2 that do not intersect ΩΓT })

These definitions are designed so that if ΓT preserves ΩΓT , then (Γ−1
T )> preserves (ΩΓT )∗.

Let `i ,T denote the line between f j ,T and fk,T in RP2, where {i , j ,k} = {1,2,3}. It is straight-
forward to check that if ΓT preserves ΩΓT , then (Γ−1

T )> preserves (ΩΓT )∗. That is,⋃
γ∈ΓT

γ ·4(e1,e2,e3) =ΩΓT =⇒ ⋃
γ∈(

Γ−1
T

)∗γ ·4(φ(`1,T),φ(`2,T),φ(`3,T)) =Ω∗
ΓT

,

where 4(a,b,c) denotes the triangle with vertices a,b,c. This implies that if we
can show that (Γ−1

T )> is a group of reflections, then it must tile (ΩΓT )∗. We proceed
by showing that the generators R−1

1,T, R−1
2,T, and R−1

1,T of (Γ−1
T )> are reflections; that is,

(R−1
i ,T)>(φ(` j ,T)) =φ(` j ,T) for 1 ≤ i 6= j ≤ 3. By symmetry, we can look at just (R−1

1,T)>. We
have,

RT1 = R−1
T1 =

−1 0 0
2T 1 0

2
T 0 1

 so (R−1
1,T)> =

−1 2T 2
T

0 1 0
0 0 1

 .

Since e2 lies on `2,T, we have φ(`2,T) =
1

0
T

= ê2. Then,

(R−1
1,T)>φ(`2,T) =

−1 2T 2
T

0 1 0
0 0 1

1
0
T

=
1

0
T

 .

Thus, ê2 is a fixed point of (R−1
1,T)>. Similarly, for j = 3, ê3 is a fixed point of (R−1

1,T)>, and

therefore (R−1
1,T)> must be a reflection matrix. As stated before, (R−1

2,T)> and (R−1
3,T)> must

also be reflection matrices by a symmetrical argument. Hence, we have shown that
(Γ−1

T )> tiles (ΩΓT )∗, and described the vertices ê1, ê2, and ê3 of its base triangle.
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The duality gives an algebraic relationship between the groups (Γ−1
T )> and Γ 1

T
that

we now discuss. Consider the matrix:

gT :=
 | | |

ê1 ê2 ê3

| | |

=
0 1 T

T 0 1
1 T 0


Then, for i = 1,2,3,

g−1
T (R−1

i ,T)>gT = 1

T3 +1

−T T2 1
1 −T T2

T2 1 −T

−1 2T 2
T

0 1 0
0 0 1

0 1 T
T 0 1
1 T 0


=

−1 0 0
2
T 1 0

2T 0 0

= Ri , 1
T

.

We have shown that the generators of (Γ−1
T )> are similar to the generators of Γ 1

T
, and

we can conclude (Γ−1
T )> and Γ 1

T
have the same entropy. This indicates a relationship

between the entropies hT and h 1
T

for all T > 0; we are able to prove this relationship by

applying a proposition from Danciger-Guéritaud-Kassel and a proposition from Kassel-
Potrie, both found below. For γ ∈ Γ, we let σi (γ) denote the i th singular value of γ and λi

denote the modulus of the i th eigenvalue of γ (arranged in descending order). We also
define

µ(γ) := (logσ1(γ), logσ2(γ), logσ3(γ))

and λ(γ) := (logλ1(γ), logλ2(γ), logλ3(γ)),

where σ1 ≥σ2 ≥σ3 > 0 and λ1 ≥ λ2 ≥ λ3 > 0.

Proposition 5.1 (Danciger-Guéritaud-Kassel, [8, Prop. 10.1]). Let Ω be a properly convex
set of P(V). For any z ∈Ω, there exists κ> 0 such that for any automorphism g on Ω,

log
σ1(γ)

σ3(γ)
≥ 2dΩ(z,γ · z)−κ.

Proposition 5.2 (Kassel-Potrie, [10, Fact 2.10]). Let Γ be a group of 3×3 matrices whose
Zariski closure is reductive. Then there exists a finite subset S of Γ and constant M′ > 0
such that for any γ ∈ Γ,

min
s∈S

‖µ(γ)−λ(γ · s)‖ ≤ M′,

(See also, Benoist [3]).
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18 Degenerating Hilbert Metric and on Ideal Pants

5.2 Results Leading to Theorem 1.2

To begin proving the duality invariance of entropy, we first begin by defining bounds in
terms of the singular values of the group for the Hilbert distance.

Lemma 5.1. For all z ∈ΩΓT , there exists a uniform constant M′ > 0 such that for all γ ∈ ΓT,

1

2
log

σ1(γ)

σ3(γ)
+M′ ≥ dΩΓT

(z,γ · z) ≥ 1

2
log

σ1(γ)

σ3(γ)
−M′.

After completing this proof, we learned that a more general version of this lemma is
proven in work in progress by Konstantinos Tsouvalas.

Proof. The left-hand inequality,

1

2
log

σ1

σ3
(γ)+M′ ≥ dΩΓT

(z,γ · z),

follows from the Danciger-Guéritaud-Kassel result (see 5.1). We will prove the right hand
equality:

dΩΓT
(z,γ · z) ≥ 1

2
log

σ1

σ3
(γ)−M′.

By Crampon-Marquis [6, Thm. 3.3] and Cooper-Long-Tillman [5, Prop. 2.1], we have
the following result

dΩΓT
(z,γ · z) ≥ 1

2
log

λ1

λ3
(γ).

In order to connect this result to the singular values of g , we will need some more
machinery. We would like to use Proposition 5.2, but first, we must show the following
claim:

Claim 5.3. ΓT has a reductive Zariski closure.

Proof sketch of the claim in our setting. This is a special case of a much more general
statement. To see that all the necessary hypotheses hold in our setting, we observe
that R1,T,R2,T,R3,T do not preserve a proper vector subspace of R3, therefore, the set of
generators {Ri ,T} is irreducible. Thus, since we have an irreducible set of generators,
we can apply Crampon Marquis [6, Thm. 7.28] to obtain that the Zariski closure of Γ is
reductive. ■

Now we can apply Proposition 5.2, which in our setting gives us a finite subset S ⊂ ΓT

and M > 0 such that for any γ ∈ ΓT,

min
s∈S

‖µ(γ)−λ(γ · s)‖ ≤ M
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Consider such an S ⊂ ΓT such that the above statement holds. Let s ∈ S such that

‖µ(γ)−λ(γ · s)‖ ≤ M.

Then,

| logσ1(γ)− logλ1(γ · s)| ≤ M

and | logσ3(γ)− logλ3(γ · s)| ≤ M, since ‖µ(γ)−λ(γ · s)‖ ≤ M

=⇒ 1

2

∣∣∣∣log
σ1(γ)

σ3(γ)
− log

λ1(γ · s)

λ3(γ · s)

∣∣∣∣≤ M reverse triangle inequality.

We thus have

1

2
log

λ1(γ · s)

λ3(γ · s)
≥ 1

2
log

σ1(γ)

σ3(γ)
−M

=⇒ dΩΓT
(z,γ · (s · z)) ≥ 1

2
log

σ1(γ)

σ3(γ)
−M triangle inequality.

To complete the proof, we make use of the following claim.

Claim 5.4. There exists C ∈R such that

C+dΩ(z,γ · z) ≥ dΩ(z,γ · s · z)

for all s ∈ S.

Proof of claim. By the triangle inequality,

dΩ(z,γ · s · z) ≤ dΩ(z,γ · z)+dΩ(γ · z,γ · s · z)

= dΩ(z,γ · z)+dΩ(z, s · z)

since g preserves distances in dΩ. Noting that S is finite, we then set

C = max
s∈S

dΩ(z, sz). ■

Putting together multiple steps, we have,

dΩΓT
(z,γ · z) ≥ dΩΓT

(z,γ · (s · z))−C from Claim 5.4

dΩΓT
(z,γ · (s · z)) ≥ 1

2
log

σ1(γ)

σ3(γ)
−M as shown earlier

=⇒ dΩΓT
(z,γ · z) ≥ 1

2
log

σ1(γ)

σ3(γ)
−M−C substituting for dΩΓT

(z,γ · (s · z))

dΩΓT
(z,γ · z) ≥ 1

2
log

σ1(γ)

σ3(γ)
−M′ where M′ = M+C.

This is the inequality we were looking for and thus completes our proof.
ä
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20 Degenerating Hilbert Metric and on Ideal Pants

Moving toward completing the proof for Theorem 1.2, we now prove and then make
use of the following lemma. Starting from Definition 2.2, the proven result formalizes
entropy in terms of singular values of the group.

Lemma 5.2. Given a group of 3×3 real matrices, Γ, the entropy of Γ can be characterized
by the singular values of the group elements γ ∈ Γ in the following way

hΓ = limsup
n→∞

log
(
#
{
γ ∈ Γ

∣∣∣ 1
2 log σ1(γ)

σ3(γ) < n
})

n
.

Proof. We will prove equality by showing both inequalities hold.

hΓ = limsup
n→∞

log
(
#{γ ∈ Γ | dΩ(x,γ · x) < n}

)
n

definition of entropy

= limsup
n→∞

log
(
#{γ ∈ Γ | dΩ(x,γ · x) < n −M′}

)
n −M′

≤ limsup
n→∞

log
(
#
{
γ ∈ Γ

∣∣∣ 1
2 log σ1(γ)

σ3(γ) < n
})

n −M′ · n −M′

n
Lemma 5.1

≤ limsup
n→∞

log
(
#
{
γ ∈ Γ

∣∣∣ 1
2 log σ1(γ)

σ3(γ) < n
})

n
.

Now, we show the other inequality holds.

hΓ = limsup
n→∞

log
(
#{γ ∈ Γ | dΩ(x,γ · x) < n′}

)
n

definition of entropy

= limsup
n→∞

log
(
#{γ ∈ Γ | dΩ(x,γ · x) < n −M′}

)
n −M′

≥ limsup
n→∞

log
(
#{γ ∈ Γ | 1

2 log σ1(γ)
σ3(γ) < n −M′}

)
n

· n

n −M′ Lemma 5.1

≥ limsup
n→∞

log
(
#
{
γ ∈ Γ

∣∣∣ 1
2 log σ1(γ)

σ3(γ) < n −M′
})

n −M′

≥ limsup
n→∞

log
(
#
{
γ ∈ Γ

∣∣∣ 1
2 log σ1(γ)

σ3(γ) < n
})

n
.

Now that we have defined entropy in terms of singular values, the proof for the
theorem on duality invariance follows from our work above.

Proof of Theorem 1.2. To prove hΓT = hΓ 1
T

, we show hΓT = h(Γ−1
T )> , as we already know

h(Γ−1
T )> = hΓ 1

T
from the beginning of SECTION 5. We first note that it is simple to show,

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



Marisa O’Gara, Marianne DeBrito, and Andrew Nguyen 21

using linear algebra, that for γ ∈ ΓT, (γ−1)> and γ have the same singular values. Lemma
5.2 shows that entropy depends on (and can be computed) with only knowledge of
the singular values. Hence, since the singular values of (γ−1)> and γ are the same, the
entropies of the groups ΓT and Γ 1

T
are the same as well.

Returning to the symmetry observed in Figure 9, we see that our code provides
numerical evidence that agrees with this theorem.

6 Numerical Approximations of Entropy

6.1 Estimating Entropy via Programming

Theorem 1.1 states that ΩΓT converges to the base triangle in the affine chart and implies
the degeneration of the Hilbert Metric. The proof would not be possible without us first
seeing its likelihood when working on the software described in this section.

Our team made a program in order to approximate entropy and generate images of
tilings of ΩΓT for various values of T. We worked in Python to approximate and generate
these properly convex sets (see Fig. 6 for pictures of ideal pants group tilings). For those
who are interested, the code is accessible and open to the public at https://gitlab.
eecs.umich.edu/logm/wi20/entropy-project-outputs. In the following section,
we describe our method to estimate entropy, along with a flowchart of the method in
Figure 8.

Figure 8: A chart describing how we approximated entropy.

6.2 Method of Approximating Entropy hΓT
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22 Degenerating Hilbert Metric and on Ideal Pants

1. Choose the value of parameter T where T is the parameter used in the matrices
that generate a finite area ideal pants groups, as mentioned in SECTION 3. T can
be any positive value in R.

2. Generate the elements of the group recursively by forming words in the generators.
There is a parameter Threshold which controls how many group elements are
generated (by controlling the possible word length). Our results use a Threshold
value of 12. The group elements are generated by multiplying the initial generators
together many times.

3. Multiplying the generators in such a way creates many duplicates of the same
elements in our list. We then remove any duplicates to make sure we have a list of
unique group elements.

4. In order to use the Hilbert metric, we must first approximate ∂ΩΓT . We can do this
in two ways; the first is to use all the vertices of the triangles, and the second is to
use the orbit of a point already on the boundary. In our work, we combined these
two lists.

5. For simplicity, the Hilbert distance is measured inside the affine chart as opposed
to inside R3 (A.1 proves why this simplification is valid). To find an approximation
of entropy, we need to know the Hilbert distance between x and γ ·x or how far a
group element moves a point in the set ΩΓT . Each group element γ is a 3×3 matrix.
x can be any fixed value in ΩΓT . This step needs to be repeated for every group
element, attaching a distance to each element to be used in the next step.

6. To estimate entropy, we find a sequence of the values of

zn = log #{γ ∈ Γ | dΩ(x,γ · x) < n}

n
,

increasing n each time. As a reminder, our definition of entropy is

hΓT = limsup
n→∞

log
(
#{γ ∈ Γ | dΩ(x,γ ·x) < n}

)
n

.

In terms of zn , entropy is equal to the limsup of zn as n goes to infinity. One way
to approximate this limit is to increase n until we see a convergence in zn . We
calculate zn for increasing values of n and stop once we reach max(dΩΓT

(x,γ ·x)) <
n where max(dΩΓT

(x,γ · x)) is the largest distance measured for all γ ∈ ΓT or the
maximum distance a group element moves the point x.

7. Once we have stopped increasing n, we output an estimation of hΓT as the final
value in the sequence.
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6.3 Results of Entropy Estimates

Figure 9: The Entropy estimates for Ideal Projective Pants Groups

Looking at our results, we see that many entropy estimates that are within
(1

2 ,1
]
, and

it is clear that entropy varied for the different values of T we tested. This is a possible sign
that the entropy of these groups surjects onto the interval

(1
2 ,1

]
, aligning with Conjecture

3.2.

6.3.1 Inaccuracies. We also observe that our estimation achieves values outside of the
range

(1
2 ,1

]
. We suspect that this is because our approximation for the Hilbert distance

becomes less accurate as ΩΓT converges to the base triangle. More specifically, as T →∞,
the approximation for the intersection of the line through x and γ ·x and ∂ΩΓT is greatly
compromised due to an inadequate representation of ∂ΩΓT .

6.4 Interpretation of Results

Our program’s results and generated tilings of various ΩΓT was one of the main moti-
vations for Theorem 1.1. Initially, we saw ΩΓT converging to a triangle as a problem
and a source of inaccuracy for the Hilbert Metric, but the phenomenon quickly became
interesting to explore. In terms of entropy, another observation that can be made is that
the entropy estimates for a group ΓT plotted against the value of T seem to be symmetric
around T = 1. This is part of the empirical evidence that inspired our later work on the
projective dual.

A Proofs and Computations

Lemma A.1. Given RT1,RT2,RT3 as generators of our group. For any i , j where i 6= j and
i , j ∈ {1,2,3}, RTi RT j have one eigenvector, specifically ek where k 6= i ,k 6= j ,k ∈ {1,2,3}.
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24 Degenerating Hilbert Metric and on Ideal Pants

Proof. We prove this lemma for case of generators RT1 and RT2. The same method will
prove the lemma for all other combinations of generators. We have that

RT1 =
−1 0 0

2T 1 0
2
T 0 1

 ,RT2 =
1 2

T 0
0 −1 0
0 2T 1

 , and RT1RT2 =
−1 −2

T 0
2T 3 0

2
T

4
T2 +2T 1

 .

To find the eigenvalues of this parabolic, RT1RT2, we take the determinant of RT1RT2−λI.

det(RT1RT2 −λI) = det

−1−λ −2
T 0

2T 3−λ 0
2
T

4
T2 +2T 1−λ


= (1−λ)

[
(λ+1)(λ−3)+ 4T

T

]
.

Simplifying the characteristic polynomial, we see det(RT1RT2 −λI) = (λ−1)3. And we
observe RT1RT2 has only one eigenvalue λ1 = 1. In order to find the of eigenvectors of
λ1 = 1 we compute [RT1RT2 − I].

[RT1RT2 − I] =
−2 −2

T 0
2T 2 0

2
T

4
T2 +2T 0

 .

Looking at [RT1RT2 − I]v = 0, we get the following system of equations that we solve to
find the eigenvector(s): 

−2v1 − 2v2
T = 0

2Tv1 +2v2 = 0
2v1

T + ( 4
T2 +2T)v2 = 0.

The only values that fulfill this system of equations are v1 = v2 = 0, and v3 = c where c
is any real number. We conclude RT1RT2 has one eigenvalue that corresponds to a one
dimensional eigenspace. Thus, RT1RT2 fixes a projective point, namely e3.

Proposition A.1. Let Ω be a properly convex set in an affine chart A in RP2. Let x and y
be in Ω. Then, the Hilbert distance between x and y, dΩ, is preserved by the projection
onto the x y-plane.

Proof. Let a and b be the points where the line through x and y intersects with the
boundary ofΩ. It suffices to show that the absolute value of the cross product is preserved
by the projection onto the x y-plane.

Let P be the matrix which projects any point in R3 onto the x y-plane by left matrix
multiplication, given by

P =
(
1 0 0
0 1 0

)
.
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Figure 10: Similar triangles in B created by a, x, y,b and their projections a′, x ′, y ′,b′.

Let a′ = Pa, b′ = Pb, x ′ = Px, y ′ = Py . Then the line through a, x, y,b is co-planar with
the line through a′, x ′, y ′,b′, call this plane B. Note that because Ω is properly convex in
A, A cannot be parallel to the x y-plane. Thus, A must intersect the x y-plane at some
line q̄ . But this implies that B intersects q̄ at one point, since it contains both the line
through a, x, y,b and the line through a′, x ′, y ′,b′. Denote this point p.

Now, we have the similar triangles 4(a, p, a′), 4(x, p, x ′), 4(y, p, y ′), and 4(b, p,b′),
all contained in B (Figure 10). We can use properties of similar triangles to show
[a, x, y,b] = [a′, x ′, y ′,b′]. Notice that since ratios of the lengths of segments are the
same in similar triangles, we have

|x −b|
|b − y | =

|x ′−b′|
|b′− y ′| and

|y −a|
|x −a| =

|y ′−a′|
|x ′−a′| .

Multiply the two inequalities to get

|x −b||y −a|
|b − y ||x −a| =

|x ′−b′||y ′−a′|
|b′− y ′||x ′−a′| ,

which gives us equality of the cross ratios, [a, x, y,b] = [a′, x ′, y ′,b′]. Thus, the cross ratio
is preserved by P, and therefore dΩ(x, y) = dΩ(Px,Py).

Lemma (4.5). Let ` be a line segment in R2, and let `T be a sequence of line segments
whose endpoints converge to those of `. More specifically, suppose ` has endpoints
x, y and `T has endpoints xT, yT where xT → x and yT → y as T tends to ∞. Assume
furthermore that for all T, the intersection of the segments ` and `T is xT. Then, `T

converges to ` as T tends to ∞ with respect to the Gromov-Hausdorff distance.

Proof (A). The Hausdorff distance, dH between the two lines `T and ` is given by

dH(`T,`) := max

{
sup
a∈`T

inf
b∈`

d(a,b), sup
b∈`

inf
a∈`T

d(a,b)

}
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where d represents the Euclidean distance in R2. Define

mT := sup
a∈`T

inf
b∈`

d(a,b) and nT := sup
b∈`

inf
a∈`T

d(a,b) so that

dH(`T,`) = max{mT,nT}.

The Gromov-Hausdorff distance, dGH, is at most the Hausdorff distance, so we aim to
show that dH(`,`T) vanishes. Note that mT and nT both exist since `T and ` are compact
sets (so in fact, sup and inf may be replaced with max and min). In order to show that `T

converges to ` in this setting, we aim to prove that both mT and nT go to 0 as T tends to
∞. Let’s first prove that mT vanishes.

Without loss of generality, we may assume that x is the origin, ` lies on the x-axis, and
`T has positive slope. Since `T and ` are compact sets, we also know that there exists a
point a′ on `T such that infb∈`d(a′,b) = mT.

Then,

inf
b∈`

d(a′,b) ≤ inf
b∈`

d(yT,b) `T has positive slope

sup
a′∈`T

inf
b∈`

d(a′,b) ≤ sup
a′∈`T

inf
b∈`

d(yT,b) = inf
b∈`

d(yT,b) ≤ mT taking suprema

mT ≤ inf
b∈`

d(yT,b) ≤ mT =⇒ inf
b∈`

d(yT,b) = mT definition of mT

Since we are working in Euclidean geometry, we know that

mT = inf
b∈`

d(yT,b) = d(yT, i )
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where i is the point on ` such that the line through i and yT is perpendicular to `. By the
Pythagorean theorem,

mT = d(yT, i ) < d(yT, y),

and since yT converges to y as T tends to ∞, we have that

0 ≤ lim
T→∞

mT = lim
T∈∞

d(yT, i ) ≤ lim
T→∞

d(yT, y) = 0.

Using the squeeze theorem, we conclude that mT vanishes. Now we show that nT

vanishes.
Again, without loss of generality, we make the same assumptions that x is the origin,

` lies on the x-axis, and `T has positive slope. Separate ` into two δ1 and δ2 by ‘cutting’
at xT. Then,

nT := sup
b∈`

inf
a∈`T

d(a,b) = max

{
sup
b∈δ1

inf
a∈`T

d(a,b), sup
b∈δ2

inf
a∈`T

d(a,b)

}
.

We will show that both quantities in the max go to 0 as T tends to ∞.

Let’s show that supb∈δ1
infa∈`T d(a,b) vanishes. Again, using the fact that `T and ` are

compact sets, we also know that there exists a point b′ on δ1 such that

sup
b∈δ1

inf
a∈`T

d(a,b) = inf
a∈`T

d(a,b′).

It is clear from Euclidean geometry that infa∈`T d(a,b′) = d(xT,b′). Since b′ ∈ δ1, b′ is
between xT and x, and we know d(xT,b′) ≤ d(xT, x) which implies

0 ≤ sup
b∈δ1

inf
a∈`T

d(a,b) = d(xT,b′) ≤ d(xT, x).

Taking limits as T tends to ∞, we get

0 ≤ lim
T→∞

sup
b∈δ1

inf
a∈`T

d(a,b) ≤ lim
T→∞

d(xT, x) = 0.

And applying the squeeze theorem, we see that supb∈δ1
infa∈`T d(a,b) vanishes.
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Finally, we show that supb∈δ2
infa∈`T d(a,b) vanishes. Using compactness, let b′ be a

point on δ2 such that
inf

a∈`T

d(a,b′) = sup
b∈δ2

inf
a∈`T

d(a,b),

and let a′ be a point on `T such that

sup
b∈δ2

inf
a∈`T

d(a,b) = d(b′, a′).

Since we are now working with the Euclidean distance in R2, we know that the line
through a′,b′ will be perpendicular to `T. Define i ∈ `T such that the line through b′

and i is perpendicular to `. Similarly, let’s define j ∈ ` such that line through j and yT is
perpendicular to `. Then,

0 ≤ sup
b∈δ2

inf
a∈`T

d(a,b) = d(b′, a′) by definition of a′,b′

≤ d(b′, i ) by Pythagorean theorem

≤ d( j , yT) since positive slope

≤ d(yT, y) by Pythagorean theorem

Taking limits and applying the squeeze theorem once more, we have that supb∈δ2
infa∈`T d(a,b)

vanishes.
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Thus, we have shown that supb∈δ2
infa∈`T d(a,b) and supb∈δ1

infa∈`T d(a,b) go to 0 as T
tends to ∞ which implies that nT vanishes.

We conclude that dH(`T,`) = max{mT,nT} goes to 0 as T tends to ∞. Since the
Gromov-Hausdorff distance is at most the Hausdorff distance we have that `T converges
to ` in the Gromov-Hausdorff distance as T goes to infinity, proving the lemma.
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