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On the Construction and Mathematical Analysis
of the Wavelet Transform and its Matricial

Properties

By Diego Sejas Viscarra

Abstract. We study the properties of computational methods for the Wavelet Transform
and its Inverse from the point of view of Linear Algebra. We present a characterization
of such methods as matrix products, proving in particular that each iteration corre-
sponds to the multiplication of an adequate unitary matrix. From that point we prove
that some important properties of the Continuous Wavelet Transform, such as linearity,
distributivity over matrix multiplication, isometry, etc., are inherited by these discrete
methods.

This work is divided into four sections. The first section corresponds to the classical
theoretical foundation of harmonic analysis with wavelets; it is used for clarity only.
The second section presents the construction of the Discrete Wavelet Transform for
vectors and its Inverse, emphasizing on storage efficiency. The third section presents
the generalization of the Transform to matrices. It is equivalent to section 2, but some
methods and tools used are slightly different, showing an alternative approach to the
subject. The fourth section presents the main results of this work.

1 Introduction

The Wavelet Transform is a mathematical tool that has proved to be very useful on
different contexts. For instance, a very important problem of analysis, namely, the
representation of a signal1 by a sequence of coefficients, is satisfied by the wavelet
transform; moreover, the process is invertible, so a signal can be reconstructed from its
representing sequence [Daubechies, 1992]. Since this process is based on the decompo-
sition of functions into simpler objects (called wavelets), it also allows arbitrary approx-
imations [Mallat, 1999] and the extraction of valuable information [Daubechies, 1992,
Mallat, 1999].

Mathematics Subject Classification. Primary: 65T60, secondary: 45C40
Keywords. Matricial properties of the wavelet transform, wavelet transform, matrix product, linearity.

1The term signal is used as a synonym for function.



2 Matricial Properties of the Wavelet Transform

Although this is enough motivation to study the wavelet transform, there is another
important reason: it is a known fact that the Fourier transform suffers a major draw-
back, i.e., the sinusoids it uses lack of time localization, so it let us know the frequency
content—so to speak—of a signal, but not the lapse of time of the occurrence of a given
frequency. An adaptation to solve this problem is the Gabor transform, also called win-
dowed Fourier transform, which relies on the use of a “window”, that is, a function with
good time localization [Daubechies, 1992, Gomes and Velho, 1999, Sossa, 2009]. How-
ever, this method has its own drawback: If the details of function are much smaller than
the width of the window, they will be detected but not localized; if they are much bigger,
they won’t be detected properly. The wavelet transform, however, solves these both
problems, since it has good time localization and, there’s no matter how big or small are
the details of a function, they’ll be properly detected.

Surprisingly, these are not the only reasons to study it, since the wavelet transform
has a number of unexpected applications such as image compression [Beatty, 2004,
Daubechies, 1992, Mallat, 1999, Bultheel, 2006, Sossa, 2009] (e.g., the FBI fingerprint
database [Graps, 1995, Sossa, 2009]), signal denoising [Daubechies, 1992, Mallat, 1999,
Bultheel, 2006, Graps, 1995, Sossa, 2009] and fast matrix multiplication [Beatty, 2004],
among others.

1.1 Conventions and notations

Throughout this work, by vector we understand column vector. Vectors will be denoted
by lowercase letters such as u, v , w , while matrices will be denoted by uppercase letters
such as A, B, C. The elements of a vector are implicitly numbered starting with zero;
likewise, the rows and columns of a matrix are numbered starting with zero. If v is a
vector, its i th element will be denoted vi ; if A is a matrix, its (i , j )th element—the one

corresponding to its i th row and j th column—will be denoted as a j
i .

A thick dot like • indicates that a variable is to be placed in that position. For example,
f (•) must be understood as f (t) or f (s), i.e., f is a function of one variable. Two thick
dots indicate the positions of two different variables, unless they are located on different
sides of the equal sign. For example f (•, •) must be understood as f (s, t ), but f (•) = sin(•)
must be understood as f (t ) = sin(t ).

Unless otherwise explicitly stated, we will assume the set of variation of a variable as
the largest possible. For example, (ai ) stands for (ai )i∈Z in case i is an integer variable;∫

f (t )d t stands for the integral on the complete domain of f . If one variable is fixed in
an expression while other is not, it will be indicated showing the non fixed variable; for
example, (ai , j ) j indicates i is fixed while j is variable;

∑n−1
i=0 ai , j indicates j is fixed and i

is variable.
The notation x mod y stands for the remainder of the integer division x/y . The

complex conjugate of z ∈Cwill be denoted as z. Matrix transposition is indicated by an
apostrophe.

Further notations will be introduced when needed.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



Diego Sejas Viscarra 3

1.2 Mathematical preliminaries

This subsection is mainly intended as a brief exposition of the basic concepts neces-
sary for the following development. It also presents some results about the continuous
wavelet transform that we will prove later for the discrete case. No proof will be pre-
sented here since this is only an introduction, but the interested reader can consult
[Daubechies, 1992] or [Sejas, 2012] (in Spanish) for further detail.

1.2.1 On the the continuous wavelet transform. We start by considering the space of
square integrable signals on R, denoted L 2(R) and defined by

L 2(R) =
{

f : R→C :
∫

| f (t )|2 d t <∞
}

.

With the usual operations of sum of functions and multiplication by a scalar, this is
a complex vector space. Even more, with the scalar product 〈• | •〉 and the norm ‖•‖,
defined for f , g ∈L 2(R) by

〈 f | g 〉 =
∫

f (t ) g (t )d t

and

‖ f ‖ =
∫

| f (t )|2 d t ,

respectively, this is a Hilbert space.
Among all signals in L 2(R), the ones of our particular interest right now are wavelets.

Definition 1.1. For a signal ψ ∈L 2(R) we define

Cψ = 2π
∫ |ψ̂(ω)|2

|ω| dω ,

where ψ̂ denotes the Fourier Transform ofψ. Then, we say thatψ is a wavelet if it satisfies

0 < Cψ <∞ . (1)

The reason for this restriction will be clear later.

Example 1.2. Figure 1 shows two well-known wavelets. Observe their oscillatory behav-
ior from which they obtain the name.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



4 Matricial Properties of the Wavelet Transform

Figure 1: Two common wavelets: (a) the mexican hat and (b) Daubechies with four
vanishing moments.

The intuitive idea behind the wavelet transform is very simple: A wavelet ψ is “con-
centrated” around a given frequency and a given time. By means of a dilation (alterna-
tively, contraction) we decrease (alternatively, increase) this central frequency, and by
means of a translation we modify the central time, thus obtaining a new wavelet—let’s
denote it ψa,b . Given a function f ∈L 2(R), the scalar product 〈 f |ψa,b〉 gives us a sort
of measure of the behavior of f around the new time and frequency.

Definition 1.3. Let ψ be a wavelet. We call family of wavelets (generated by ψ) the family
(ψa,b) defined by

ψa,b(•) = |a|−1/2ψ

(
•−b

a

)
,

for a ∈R0 =R\{0}, called scale parameter, and b ∈R, called translation parameter. In this
case, we say that ψ is the mother wavelet.

The factor |a|−1/2 guaranties that ‖ψa,b‖ = ‖ψ‖, which is a very important condition to
obtain orthonormal wavelet bases.

Definition 1.4. Let ψ be a wavelet and f ∈L 2(R). The (continuous) wavelet transform
of f is the function W

(
f
)
, defined for a ∈R0 and b ∈R by

W
(

f
)
(a,b) = 〈 f |ψa,b〉 = |a|−1/2

∫
f (t )ψ

(
t −b

a

)
d t .

Example 1.5. Figure 2 shows two wavelet transforms of the signal

f (t ) =


cos

(2π
25 t

)
if 200 ≤ t < 400,

cos
(2π

70 t
)

if 400 ≤ t < 800,

0 otherwise.

(2)

You can observe the good time localization.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



Diego Sejas Viscarra 5

Figure 2: Two wavelet transforms of the signal (2), (a) using the mexican hat and (b)
using Daubechies with four vanishing moments. (Data obtained with Scilab v6.0.1 and
the Scilab Wavelet Toolbox v0.3.1-3.)

One of the most important properties of the wavelet transform is its invertibility.
Indeed, for all f ∈L 2(R),

f = 1

Cψ

Ï
W

(
f
)
(a,b)ψa,b

d a db

a2
. (3)

Equation (3) is called resolution of the identity, and gives us a formula for the inverse
wavelet transform, which we denote W−1(•). Here we can see the reason for the restriction
in (1) in definition 1.1.

Convergence of the double integral in (3) must be understood in the weak sense, i.e.,
taking the scalar product with a signal g ∈L 2(R) on both sides, an equation is obtained
that is proved to be true in the following result:

Theorem 1.6. Let ψ be a wavelet. For f , g ∈L 2(R) we have that

Cψ 〈 f | g 〉 =
Ï

W
(

f
)
(a,b)W

(
g
)
(a,b)

d a db

a2
. (4)

There is also a slightly stronger sense of convergence of the right-hand side expression
in (3):

Theorem 1.7. Let ψ be a wavelet. For f ∈L 2(R) we have that

lim
A1→0

A2,B→∞

∥∥∥∥ f − 1

Cψ

Ï
A1≤|a|≤A2

|b|≤B

W
(

f
)
(a,b)ψa,b

d a db

a2

∥∥∥∥= 0, (5)

where the double integral stands for the unique element in L 2(R) which inner product
with g ∈L 2(R) is given by (4).

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



6 Matricial Properties of the Wavelet Transform

We can interpret (5) as a guarantee that any signal in L 2(R) can be arbitrarily approxi-
mated by a superposition of wavelets [Daubechies, 1992].

The following is a direct consequence of theorem 1.6.

Corollary 1.8. Let L 2(R2,dµ) denote the space of functions square integrable on (R\{0})×
Rwith respect to the measure dµ= d a db

Cψa2 , then:

1. If f , g ∈L 2(R), then W
(

f
)

,W
(
g
) ∈L 2(R2,dµ), and

〈W(
f
) | W

(
g
)〉 = 〈 f | g 〉,

i.e., W(•) is an isometry.

2. If F,G ∈L 2(R2,dµ), then W−1(F) ,W−1(G) ∈L 2(R), and

〈W−1(F) | W−1(G)〉 = 〈F | G〉,

i.e., W−1(•) is an isometry.

1.2.2 On the discrete wavelet transform. It is important to count with a discrete version
of the wavelet transform for practical purposes. That is, we want to be able to compute
the transform on a discrete subset of its domain, but in such a way that the important
properties of representation and reconstruction of signals are not lost.

One possible discretization of the scale parameter is a = a j
0 , where a0 > 1 is fixed and

j ∈ Z is variable. To discretize the translation parameter, let’s observe that for narrow
wavelets (for small a), small translations are necessary in order to cover the complete
domain, while for wide wavelets (for large a), only large translations are necessary. So a
natural discretization is b = kb0a, where b0 > 0 is fixed and k ∈Z is variable. The set of
pairs

(
a j

0 ,kb0a j
0

)
will be called discrete lattice or discrete grid, and will be denoted ∆a0,b0 .

In order to compute the wavelet transform on a discrete lattice, only a subset of the
whole family of wavelets is necessary

Definition 1.9. Let ψ be a wavelet and ∆a0,b0 a lattice. We call family of wavelets gener-
ated by ψ (associated to ∆a0,b0 ) the doubly indexed sequence (ψ j ,k ) defined by

ψ j ,k (•) = a− j /2
0 ψ

(
a− j

0 •−kb0
)

for j ,k ∈Z. The function ψ is called mother wavelet.

The definition of the wavelet transform is not different at all in this case, but now we
can regard it a sequence.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



Diego Sejas Viscarra 7

Definition 1.10. Let ψ be a wavelet and ∆a0,b0 a lattice. The discrete wavelet transform
of f (associated to ∆a0,b0 ) is the doubly indexed sequence

W
(

f
)= (〈 f |ψ j ,k〉

)
.

In general, not every choice of ψ and ∆a0,b0 will guarantee the representation and
reconstruction of signals by the wavelet transform; however, a very special—but not too
restrictive case—where these properties are not lost is when the family of wavelets (ψ j ,k )
is an orthonormal base [Mallat, 1999].

Definition 1.11. A family (F j ,k ) in L 2(R) is an orthonormal basis if the following condi-
tions hold:

1. 〈Fm,n | Fp,q〉 = δm,pδn,q , for every m,n, p, q ∈Z, where δ denotes Kronecker’s delta
function,2 and

2. for f ∈L 2(R),
‖ f ‖2 =∑

j

∑
k

∣∣〈 f | F j ,k〉
∣∣2.

The following result gives us an expression for the discrete inverse wavelet transform,
which we will denote W−1(•).

Theorem 1.12. If the family of wavelets (ψ j ,k ) associated to the lattice ∆a0,b0 is an or-
thonormal basis of L 2(R), then, for f ∈L 2(R),

f =∑
j

∑
k
〈 f |ψ j ,k〉ψ j ,k , (6)

where convergence holds in the L 2(R) sense.

Notice that (6) is very similar to (3); actually, this is a discrete version of the resolution of
the identity.

Remark. In the case of the wavelet ψ having a compact support,3 the wavelet transform
can be applied to signals that are square integrable over finite intervals.

2 Construction of the vectorial method

This section deals with the construction of a fast and efficient method to compute the
wavelet transform and its inverse, which can also be generalized to be applied on vectors.
Our method differs slightly from the canonical one, in that we build and use periodic
signals, instead of compact-supported ones, in order to obtain a discrete equivalent of
the wavelet transform and its inverse.

2Defined by δi , j = 1, if i = j , and δi , j = 0, otherwise.
3The subset of the domain of a signal where it takes non-zero values.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



8 Matricial Properties of the Wavelet Transform

2.1 The multiresolution analysis

The multiresolution analysis is a very important tool in wavelet analysis. Among its
advantages we can count the construction of a fast and efficient algorithm to compute
the wavelet transform and its inverse, a method to construct orthonormal wavelet bases,
and the easy generalization of concepts to vectors and matrices.

The idea behind multiresolution analysis consists an decomposing the space L 2(R)
into a decreasing sequence (V j ) of subspaces with some important properties. Given a
signal f ∈L 2(R), its orthogonal projection P j f over V j is an approximation with certain
level of detail (level of resolution). The signal P j−1 f −P j f is in a space W j —which is the
orthogonal complement of V j in V j−1—, where an orthonormal wavelet basis exists. The
coefficients of this signal with respect to this basis are the values of the wavelet transform
with the corresponding level of resolution.

For what’s left of this article, let’s use the dyadic lattice ∆2,1. So we implicitly adopt
the notation ψ j ,k (•) = 2− j /2ψ(2− j •−k).

Definition 2.1. A multiresolution analysis (of L 2(R)) is a sequence (V j ) of closed sub-
spaces that satisfies:

1. V j ⊂ V j−1 for j ∈Z,

2.
⋃

V j =L 2(R),

3.
⋂

V j = {0},

4. f (•) ∈ V j if and only of f (2 j •) ∈ V0 for j ∈Z, and

5. there exists φ ∈ V0 such that (φ(•−k)) is an orthonormal basis of V0.

Every V j is called scale space and φ is called scale function or father wavelet.

Notice that the multiresolution aspect comes from condition item 4, that states that
every V j is a scaled version of V0.

Example 2.2. The well-known Haar multiresolution analysis (also called Daubechies
with one vanishing moment) is given by

V j =
{

f ∈L 2(R) : f is constant over
[
2 j k,2 j (k +1)

)
for k ∈Z

}
and

φ(t ) =
{

1 if t ∈ [0,1),

0 otherwise.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



Diego Sejas Viscarra 9

We can see that conditions items 4 and 5 of a multiresolution analysis imply that
(φ j ,k )k is an orthonormal basis of V j . Since φ ∈ V0 ⊂ V−1, we can write

φ=∑〈φ |φ−1,k〉φ−1,k , (7)

where convergence holds in the L 2(R) sense.

Definition 2.3. Let φ be the father wavelet of a multiresolution analysis. The sequence
(hk ) = (〈φ |φ−1,k〉

)
is called scale filter.

The following result is the link point between MRA and the wavelet transform. More
on this theorem can be found in [Daubechies, 1992]

Theorem 2.4. Let (V j ) be a multiresolution analysis and (hk ) the corresponding scale
filter. Then there exists a wavelet ψ such that

1. the sequence (ψ j ,k )k is an orthonormal basis of W j ;

2. the sequence (ψ j ,k ) is an orthonormal basis of L 2(R);

3. for f ∈L 2(R) and j ∈Z,

P j−1 f −P j f =∑
k
〈 f |ψ j ,k〉ψ j ,k . (8)

One possible choice for ψ is
ψ=∑

k
(−1)k h1−k φ−1,k .

Notice that (8) contains the values of the wavelet transform for a = 2 j fixed and b = k2 j

variable with k ∈Z.

Definition 2.5. Let (V j ) be a multiresolution analysis with associated scale filter (hk ).
The wavelet induced by the MRA (V j ) is the signal

ψ=∑
k

(−1)k h1−k φ−1,k .

The sequence (gk ) = (
(−1)k h1−k

)
is called wavelet filter.

Example 2.6. Figure 3 show the scale functions and induced wavelets for the four first
Daubechies MRA’s.

The following result is a direct consequence of theorem 1.12 and theorem 2.4.

Corollary 2.7. If ψ is a wavelet induced by a multiresolution analysis, the corresponding
wavelet transform is invertible.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



10 Matricial Properties of the Wavelet Transform

Figure 3: Left to right: Scale function and associated wavelet. Top to bottom:
Daubechies with one, two, three and four vanishing moments.

2.2 The decomposition algorithm for vectors

2.2.1 The fast wavelet transform: The decomposition equations. Fast wavelet transform
is the name given to a hierarchical algorithm based on the MRA. Right now we are only
interested on the equations that characterize this method.

Let (V j ) be a MRA, φ the corresponding scale function, ψ the corresponding induced
wavelet, and f ∈L 2(R). Let’s adopt the following notation:

• c j = (
c j

k

)= (〈 f |φ j ,k〉
)
, and

• d j = (
d j

k

)= (〈 f |ψ j ,k〉
)
.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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Let j ,k ∈Z. It is evident that

c j+1
k = 〈P j f |φ j+1,k〉. (9)

We have that
P j f =∑

p
c j

p φ j ,p . (10)

On the other hand, by (7),

φ j+1,k = 2−( j+1)/2φ
(
2−( j+1)•−k

)
= 2−( j+1)/2

∑
q

hq φ−1,q

(
2−( j+1)•−k

)
=∑

q
hq 2− j /2φ

(
2− j •− (2k +q)

)
=∑

q
hq φ j ,2k+q . (11)

Replacing (10) and (11) in (9),

c j+1
k =

〈∑
p

c j
p φ j ,p

∣∣∣ ∑
q

hq φ j ,2k+q

〉
=∑

p

∑
q

c j
p hq〈φ j ,p |φ j ,2k+q〉.

Remembering that (φ j ,p )p is an orthonormal set,

c j+1
k =∑

p
hp−2k c j

p . (12)

A similar procedure leads to

d j+1
k =∑

p
gp−2k c j

p . (13)

Let us suppose that the sequence c0 is known for some f ∈ L 2(R). By means of
equations (12) and (13) we obtain a hierarchical decomposition scheme, called pyra-
midal decomposition, which is schematically represented in fig. 4. Every use of these
equations (corresponding to one iteration) gives us the wavelet transform with a new
level of resolution, i.e, the sequences d j .

2.2.2 Construction of the vector decomposition algorithm. When studying a phenomenon
with continuous behavior, it is generally impossible to have but a discrete finite sample
of this behavior (a vector). It is thus very important to count with a version of the wavelet
transform suitable to be applied to vectors.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



12 Matricial Properties of the Wavelet Transform

- - - -c0 c1 c2 c3 · · ·
@
@
@R

@
@
@R

@
@
@R

@
@
@R

d 1 d 2 d 3 · · ·

Figure 4: The classical representation of pyramidal decomposition.

For what’s left of this work, by saying that a sequence s is finite we mean that it has a
finite number of non-zero terms; in this case we may use the notation s = (sn1 , . . . , sn2 )′,
where sn1 and sn2 are the first and last non-zero terms, respectively, and define its length
|s| = n2 −n1 +1. By an abuse of notation, for every vector v , we shall also write |v | = n0

to mean that it has n0 elements.
Since we are trying to construct an algorithm, it is reasonable to think that the filters

(hk ) and (gk ) are finite;4 this implies that φ and ψ have compact support.5

Convention. Let’s assume from now on that, by means of adequate translations, the
scale filter and wavelet filter have the forms (hk ) = (h0, . . . ,hn−1)′ and (gk ) = (g0, . . . , gn−1)′,
respectively, where n = |(hk )|.

Let v ∈Cn0 . Since the pyramidal decomposition can’t be directly applied to vectors,
but to signals, we define a function fv ∈ L 2(R) that characterizes the elements of v .
Intuition dictates that the natural way to do this is by defining

fv =
n0−1∑
k=0

vk φ0,k .

By taking the scalar products 〈 fv |φ0,k〉 for k ∈Z, we have

c0
k =

{
vk if k ∈ {0, . . . ,n0 −1},

0 otherwise,

so this seems to be a good choice. However, this definition of fv leads to an infor-
mation increment problem. Indeed, let’s consider the following example: Suppose
(hk ) = (h0, . . . ,h5)′, (gk ) = (g0, . . . , g5)′, and v = (v0, . . . , v9)′. If we proceed as described
above, applying the decomposition equations (12) and (13) we get

c1 = (
c1
−2, . . . ,c1

4

)′
and d 1 = (

d 1
−2, . . . ,d 1

4

)′
.

We see that starting with a vector with ten elements, we obtain two vectors6 with
seven elements. In general, the increment of information after n iterations with filters

4Notice that they both have the same length.
5This contributes to the convergence of series defined with this signals.
6Remember they are actually sequences.
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Diego Sejas Viscarra 13

with even length L will be n(L−2). This is an obvious problem when trying to implement
the algorithm in a computer where the storage space is limited.

We propose a simple yet elegant and ingenious solution: Define fv to be periodic.7

In this case, the sequences c j and d j will be infinite but periodical, so only the non-
redundant information must be stored.

Without any loss of generality we assume n0 = |v | is even; if this is not the case, a null
element can always be added. We define

fv =∑
k

vk mod n0 φ0,k . (14)

Then we have that

Figure 5: The function fv as defined in (14) using different Daubechies filters: (a) one,
(b) four, (c) ten, and (d) twenty vanishing moments. Notice that fv approximates very
well the original signal, although there is an interesting translation phenomenon directly
proportional to the length of the filter.

c0
k = vk mod n0 .

7This is also proposed independently of the author in [Gomes and Velho, 1999], where other alterna-
tives for fv are also studied.
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14 Matricial Properties of the Wavelet Transform

Applying the decomposition equations (12) and (13) we get

c1
k = c1

k mod (n0/2) and d 1
k = d 1

k mod (n0/2).

We can observe that it is necessary to store only n0 numbers, so no extra storage space is
needed.

In general, c j and d j have period n0/2 j , so it is enough to store c1
0 , . . . , c1

n0/2−1, d 1
0 , . . . ,

d 1
n0/2−1 in the first iteration; c2

0 , . . . , c2
n0/4−1, d 2

0 , . . . , c2
n0/4−1, c1

0 , . . . , c1
n0/2−1 in the second

iteration, and so on8—exactly n0 numbers every time.

2.2.3 The wavelet transform of a vector. For the rest of this article, the notation xn1:n2 ,
where x is a vector or sequence, and n1,n2 ∈Zwith n1 ≤ n2, is equivalent to (xn1 , . . . , xn2 )′.

Definition 2.8. Let v be a vector with convenient length n0. We call (discrete) wavelet
transform of v with n levels of resolution, and denote Wn(v), the vector(

cn
0:n0/2n−1,d n

0:n0/2n−1, . . . ,d 1
0:n0/2−1

)′
When n = 1 we can make omission and simply write W(v). We also agree that W0(v) = v .

Example 2.9. Let us consider

(hk ) =
(

1p
2

, 1p
2

)′
, (gk ) =

(
1p
2

,− 1p
2

)′
, v = (0,1,2,3)′.

We have the following:

• Wavelet transform of v with one level of resolution:

W(v) =
(

1p
2

,
5p
2

,− 1p
2

,− 1p
2

)′
,

• wavelet transform of v with two levels of resolution:

W2(v) =
(
3,−2,− 1p

2
,− 1p

2

)′
.

8We have implicitly assumed here that |v | = k2n , for some k ∈N, with k ≥ 1, and n is the number of
iterations. In this case we say that v has convenient length.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



Diego Sejas Viscarra 15

Figure 6 gives a more graphical idea of the effect of the wavelet transform.

Figure 6: The wavelet transforms of discrete samplings of sin(t ) on [0,2π) with different
levels of resolution.

2.3 The reconstruction algorithm for vectors

2.3.1 The fast inverse wavelet transform: The reconstruction equation. Let j ,k ∈ Z. It
is evident that

c j
k = 〈P j f |φ j ,k〉. (15)

By (8) we have that

P j f =∑
p

c j+1
p φ j+1,p +∑

p
d j+1

p ψ j+1,p . (16)

On the other hand, by (11),

φ j+1,p =∑
q

hq φ j ,2p+q , (17)

and with a similar deduction,

ψ j+1,p =∑
q

gq φ j ,2p+q . (18)
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16 Matricial Properties of the Wavelet Transform

Replacing (16), (17) and (18) in (15),

c j
k =

〈∑
p

c j+1
p

∑
q

hq φ j ,2p+q +
∑
p

d j+1
p

∑
q

gq φ j ,2p+q

∣∣∣φ j ,k

〉
=∑

p

∑
q

c j+1
p hq 〈φ j .2p+q |φ j ,k〉+

∑
p

∑
q

d j+1
p gp 〈φ j ,2p+q |φ j ,k〉.

Finally, remembering (φ j ,k )k is an orthonormal set,

c j
k =∑

p
hk−2p c j+1

p +∑
p

gk−2p d j+1
p . (19)

Suppose the sequences cn , d n , . . . , d 1 are known for some f ∈ L 2(R) and n ∈ N.
By means of (19) we obtain a reconstruction scheme, called pyramidal reconstruction,
which is schematically represented in fig. 7. After n iterations the sequence c0 is obtained.

- - - -· · · c3 c2 c1 c0

�
�
��

�
�
��

�
�
��

�
�
��

· · · d 3 d 2 d 1

Figure 7: The classical representation of pyramidal reconstruction.

2.3.2 Construction of the vector reconstruction algorithm. Let w be of the form

w =
(
um

0 , . . . ,um
n0/2m−1, w m

0 , . . . , w m
n0/2m−1, . . . ,u1

0, . . . ,u1
n0/2−1

)′
for m ∈N and n0 a convenient number, i.e., w = Wm(v) for some v ∈Cn0 . Following the
ideas previously presented regarding periodicity, we define for k ∈Z,

cm
k = um

k mod (n0/2m ), d m
k = w m

k mod (n0/2m ), . . . , d 1
k = w 1

k mod (n0/2).

By applying the reconstruction equation (19), after n iterations, with n ≤ m, we obtain

cm−n
k = cm−n

k mod (n0/2m−n ), d m−n
k = d m−n

k mod (n0/2m−n ), . . . , d 1
k = d 1

k mod (n0/2).

As before, it is sufficient to store only the non-redundant information, exactly n0 = |w |
elements in every iteration.

2.3.3 The inverse wavelet transform of a vector.

Definition 2.10. Let w be a vector of the form w = Wm(v) for some m ∈N and v ∈Cn0 ,
and let n ≤ m. We call (discrete) inverse wavelet transform of w with n levels of resolution,
and denote W−n(w), the vector Wm−n(v).

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



Diego Sejas Viscarra 17

3 Construction of the matricial method

This section presents a generalization of the constructed methods to matrices.

3.1 The bidimensional multiresolution analysis

The multiresolution used up to this point can be considered unidimensional (1D-MRA,
from now on) due to the objects involved, e.g., functions over R, vectors, etc. In order
to be able to generalize the methods derived from it to matrices it is necessary to count
with a bidimensional version (2D-MRA, from now on).

The space of square integrable functions on R2, denoted L 2(R2), is defined by

L 2(R2) =
{

f : R2 →C :
∫ ∣∣ f (s, t )

∣∣2 d s d t <∞
}

.

Definition 3.1. A (bidimensional) multiresolution analysis of L 2(R2) is a sequence (V j )
of closed subspaces that satisfies:

1. V j ⊂V j−1 for j ∈Z,

2.
⋃
V j =L 2(R2),

3.
⋂
V j = {0},

4. f (•) ∈V j if and only if f (2 j •) ∈V0 for j ∈Z, and

5. there exists Φ ∈V0 such that (Φ(•−k))k∈Z2 is an orthonormal basis of V0.

Every V j is called scale space and Φ is called scale function or father wavelet.

There exists a tool that allows the generation of a 2D-MRA starting from a 1D-MRA:
The tensor product ⊗, defined for F and G closed subspaces of L 2(R) by

F⊗G = {
h(s, t ) = f (s) g (t ) : f ∈ F and g ∈ G

}
.

(F⊗G is a closed subspace of L 2(R2).)
Let’s consider a 1D-MRA (V j ) with scale function φ and associated wavelet ψ. We

define

• V j = V j ⊗V j ,

• W j = (W j ⊗V j )⊕ (V j ⊗W j )⊕ (W j ⊗W j ),

• Φ(s, t ) =φ(s)φ(t ),

• Ψh(s, t ) =φ(s)ψ(t ),

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



18 Matricial Properties of the Wavelet Transform

• Ψv (s, t ) =ψ(s)φ(t ),

• Ψd (s, t ) =ψ(s)ψ(t ).

(The superindexes h, v and d stand for horizontal, vertical and diagonal, respectively,
which reason will be seen later.) Defined this way, (V j ) is a 2D-MRA with scale function
Φ, and wavelets Ψh , Ψv and Ψd .9 The wavelet transform is defined for f ∈L 2(R2) by

W
(

f
)

: ( j ,k) 7→
(
〈 f |Ψh

j ,k〉,〈 f |Ψv
j ,k〉,〈 f |Ψd

j ,k〉
)

.

Figure 8: Bidimensional scale function and wavelets obtained from the Daubechies MRA
with four vanishing moments. Left to right and top to bottom: Scale function Φ, and
wavelets Ψh , Ψv and Ψd .

9According to a criterion which is not of our particular interest.
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3.2 The matrix decomposition algorithm

3.2.1 Construction of the matrix decomposition algorithm. Let us adopt the following
notation:

• C j = (〈 f |Φ j ,k〉
)
,

• Dh, j = (〈 f |Ψh
j ,k〉

)
,

• Dv, j = (〈 f |Ψv
j ,k〉

)
,

• Dd , j = (〈 f |Ψd
j ,k〉

)
.

Let A = (a j
i ) be a matrix with order m0 ×n0, where, without any loss of generality, we

suppose that m0 and n0 are even. Following the same logics of the previous section, we
define a signal fA that characterizes the elements of A by letting

fA =∑
k1

∑
k2

ak2 mod n0
k1 mod m0

Φ0,(k1,k2) . (20)

Taking the scalar product with every Φ0,(k1,k2) we get

C0
k1,k2

= ak2 mod n0
k1 mod m0

.

We can rewrite fA in terms of Φ, Ψh , Ψv and Ψd . Indeed, due to the definition of Φ,

fA =∑
k1

∑
k2

C0
(k1,k2)Φ0,(k1,k2)

=∑
k1

∑
k2

C0
(k1,k2)

(
φ0,k1φ0,k2

)
=∑

k1

(∑
k2

C0
(k1,k2)φ0,k2

)
φ0,k1 . (21)

For k1 ∈ Z fixed, the expression in parenthesis defines a signal in V0 ⊂ L 2(R), which
we denote f r

k1
—where the superindex r stands for rows—, that characterizes the vector(

C0
k1,0, . . . ,C0

k1,n−1

)
, i.e., the k1-th row of A. We use the 1D-MRA to decompose this signal:

f r
k1

=∑
k
〈 f r |φ1,k〉φ1,k +

∑
l
〈 f r |ψ1,l 〉ψ1,l . (22)

Replacing (22) in (21),

fA =∑
k1

(∑
k
〈 f r |φ1,k〉φ1,k +

∑
l
〈 f r |ψ1,l 〉ψ1,l

)
φ0,k1

=∑
k1

(∑
k
〈 f r

k1
|φ1,k〉φ1,k

)
φ0,k1 +

∑
k1

(∑
l
〈 f r

k1
|ψ1,l 〉

)
φ0,k1

=∑
k

(∑
k1

〈 f r
k1

|φ1,k〉φ0,k1

)
φ1,k +

∑
l

(∑
k1

〈 f r
k1

|ψ1,l 〉φ0,k1

)
ψ1,l . (23)
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20 Matricial Properties of the Wavelet Transform

These last expressions in parenthesis define new signals, the first denoted f c
k —where

the superindex c stands for columns—, and the second denoted g c
l , characterizing the

elements of the vectors

(〈 f r
0 |φ1,k〉, . . . ,〈 f r

m0−1 |φ1,k〉
)

,(〈 f r
0 |ψ1,k〉, . . . ,〈 f r

m0−1 |ψ1,k〉
)

,

respectively, i.e., f c
k characterize the k-th column of the matrix resulting from the de-

composed rows of A, where 0 ≤ k < n0/2, while g c
l characterizes the l-th column of the

same matrix, where n0/2 ≤ l < n0. Decomposing these signals, we get

f c
k =∑

p
〈 f r

k |φ1,p〉φ1,p +∑
q
〈 f r

k |ψ1,q〉ψ1,q , (24)

g c
l =∑

r
〈g c

l |φ1,r 〉φ1,r +
∑

s
〈g c

l |ψ1,s〉ψ1,s . (25)

Replacing (24) and (25) in (23),

fA =∑
k

∑
p
〈 f c

k |φ1,p〉φ1,p φ1,k +
∑
k

∑
q
〈 f c

k |ψ1,q〉ψ1,q φ1,k

+∑
l

∑
r
〈g c

l |φ1,r 〉φ1,r ψ1,l +
∑

l

∑
s
〈g c

l |ψ1,s〉ψ1,sψ1,l .

Finally, remembering the definitions of Φ, Ψh , Ψv and Ψd , we get

fA =∑
k

∑
p
〈 f c

k |φ1,p〉Φ1,(p,k) +
∑
k

∑
q
〈 f c

k |ψ1,q〉Ψh
1,(k,q)

+∑
l

∑
r
〈g c

l |φ1,r 〉Ψv
1,(l ,r ) +

∑
l

∑
s
〈g c

l |ψ1,s〉Ψd
1,(l ,s).

Although this procedure appears to be very complicated, is actually very simple:
Since the signals f r

k1
defined by the parenthesis in (21) characterize the rows of the ma-

trix A, the decomposition made in (22) is equivalent to applying the vectorial wavelet
transform to these rows; on the other hand, since the signals f c

k and g c
l defined by the

parenthesis in (23) characterize the columns of the matrix resulting from the decom-
posed rows, the decomposition made in (24) and (25) is equivalent to apply the vectorial
wavelet transform to these columns. As before, the periodicity guaranties that the quan-
tity of information that needs to be stored is constant and equal to m0n0. So the relevant
(non-redundant) information can be stored in a matrix of the same dimensions as A, as
indicated in fig. 9.
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c1

0:n0/2−1 d 1
0:n0/2−1




C
1

0:m
0
/2
−1,0:n 0

/2
−1

D
h,1

0:m
0
/2
−1,0:n 0

/2
−1

D
v,1

0:m
0
/2
−1,0:n 0

/2
−1

D
d ,1

0:m
0
/2
−1,0:n 0

/2
−1

Figure 9: The way to store the relevant information from the wavelet transform of a
matrix. Left to right: The information of the vectorial transform applied to the rows,
and the information of the first iteration (after applying the vectorial transform to the
columns of the matrix on the left).

The second iteration of this procedure consists simply on decomposing the left supe-
rior fourth part of the matrix obtained during the first iteration; the result can be stored
in the corresponding submatrix. We have thus obtained the pyramidal decomposition
for matrices, which is schematized in fig. 10.

- - - -C0 C1 C2 C3 · · ·
- - - -

- - - -

- - - -

Dh,1

Dv,1

Dd ,1

Dh,2

Dv,2

Dd ,2

Dh,3

Dv,3

Dd ,3

· · ·
· · ·
· · ·

Figure 10: The classical representation of the pyramidal decomposition for matrices.

3.2.2 The wavelet transform of a matrix.

Definition 3.2. Let A be a matrix with convenient dimensions m0 ×n0. We call (discrete)
wavelet transform of A with n levels of resolution, and denote Wn(A), the matrix

Cn
0:m0/2n−1,0:n0/2n−1 Dh,n

0:m0/2n−1,0:n0/2n−1

· · · Dh,1
0:m0/2−1,0:n/2−1

Dv,n
0:m0/2n−1,0:n0/2n−1 Dd ,n

0:m0/2n−1,0:n0/2n−1
...

. . .

Dv,1
0:m0/2−1,0:n0/2−1 Dd ,1

0:m0/2−1,0:n0/2−1


.

When n = 1 we can make omission and write simply W(A). We also agree that W0(A) = A.
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22 Matricial Properties of the Wavelet Transform

Example 3.3. Let us consider

(hk ) =
(

1p
2

,
1p
2

)′
, (gk ) =

(
1p
2

,− 1p
2

)′
, A =


64 2 3 61
9 55 54 12

17 47 46 20
40 26 27 37

.

We have the following:

• Wavelet transform of A with one level of resolution: W(A) =


65 65 8 −8
65 65 −8 8
1 −1 54 −50
−1 1 −22 18

,

• wavelet transform of A with two levels of resolution: W2(A) =


130 0 8 −8

0 0 −8 8
1 −1 54 −50
−1 1 −22 18

.

Example 3.4. A more graphical idea of the effect of the wavelet transform is presented
in fig. 11.

Figure 11: Wavelet transform of a discrete sampling of the signal f (s, t ) = 3
2 sin(s2 + t 2)−

2
15 (s3+ t 3). Left to right and top to bottom: Zero, one, two and three levels of resolution.
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Figure 12 shows the effect of the wavelet transform on an image (a matrix of colors).
If we pay attention to the result of the first iteration, we can observe that the original
image has been reduced by a factor of four and has been confined to the left superior
section of the matrix; this section corresponds to the coefficients of the sequence C1.
The rest of the image has become dark; this section of the matrix corresponds to the
coefficients of the sequences Dh,1, Dv,1 and Dd ,1. The reason for them to be dark is that
they contain coefficients close to zero, which is the number assigned to color black on
the chosen scale.

Figure 12: Wavelet transform of an image using the MRA of Daubechies with four van-
ishing moments. Left to right and top to bottom: Original image, wavelet transform by
rows, and wavelet transforms with one and two levels of resolution.

However, they are not completely black. Because of the way the wavelets Ψh , Ψv

and Ψd have been defined, the bidimensional wavelet transform analyses an image in
three different directions: horizontal, vertical and diagonal (that is where they get their
superindexes). As a result, a sort of “directional border detection” is performed, as seen
on fig. 13: The wavelet transform detects an abrupt change of color in the direction of
analysis.
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24 Matricial Properties of the Wavelet Transform

Figure 13: Detection of borders with the wavelet transform. The dark zones have been
enhanced. Left to right: Original image and wavelet transform with one level of resolu-
tion.

3.3 The matrix reconstruction algorithm

Although it is completely possible to formally deduce the inversion algorithm of the
matrix wavelet transform, it is completely unnecessary since the procedure is very clear:
Apply the vector inverse wavelet transform, first to columns and the to rows.

3.3.1 The inverse wavelet transform of a matrix.

Definition 3.5. Let B be a matrix of the form B = Wm(A) for some m ∈ N and some
matrix A with convenient dimensions, and let n ∈N such that n ≤ m. We call (discrete)
inverse wavelet transform of B with n levels of resolution, and denote W−n(B), the matrix
Wm−n(A).

4 The matricial properties of the wavelet transform

This section documents the properties of the methods we have built from the point of
view of linear algebra. The main result is that the wavelet transform and its inverse can
be written as matrix products. From this property we will derive others such as linearity,
distributivity with respect to multiplication, isometry, etc. This section’s material largely
generalizes the results and proofs presented in [Beatty, 2004].

4.1 The wavelet transform as a matrix product

Definition 4.1. Let n0,n ∈N and j ∈ {1, . . . ,n}. We define the matrix Λ j
n0,n by

Λ
j
n0,n =

(
Λp j×q j Op j×r j

Or j×q j Ir j

)
,
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where

• p j =
{

q j /2+n0/2 j if j < n,

n0/2n−1 if j = n;

• q j = min
{
r ∈N : r n0/2n−1 ≥ |(hk )|}n0/2 j−1;

• r j =
j−1∑
i=1

n0/2i = n0

(
1− 1

2 j−1

)
, where we adopt the convention that∑n2

i=n1
ai = 0 if n2 < n1;

• Λp j×q j = (λi ,k ) is the matrix defined by

λi ,k =
{

h(k−2i ) mod q j if i < p j −n0/2 j ,

g(k−2(i−p j+n0/2 j )) mod q j
if i ≥ p j −n0/2 j ,

for i ∈ {0, . . . , p j −1}, k ∈ {0, . . . , q j −1}, and some scale filter h and associated wavelet
filter g ;

• On1×n2 is the matrix of order n1 ×n2, and

• Ir j is the identity matrix of order r j × r j .

It is impossible to clearly justify this definition right now, but the following example
shows that these matrices are easily constructed.

Example 4.2. Let (hk ) = (h0, . . . ,h3)′. For Λ2
8,3 we have p2 = 6, q2 = 8, r2 = 4 and

Λ6×8 =



h0 h1 h2 h3 h4 h5 h6 h7

h6 h7 h0 h1 h2 h3 h4 h5

h4 h5 h6 h7 h0 h1 h2 h3

h2 h3 h4 h5 h6 h7 h0 h1

g0 g1 g2 g3 g4 g5 g6 g7

g6 g7 g0 g1 g2 g3 g4 g5


Definition 4.3. Let n ∈ N and v = (v0, . . . , vn0−1)′ a vector with convenient length. We
define the vector ξn(v) by

[ξn(v)]i = vi mod n0

for i ∈ {0, . . . ,r n0 −1}, where r = min
{
m ∈N : mn0/2n−1 ≥ |(hk )|}.

Example 4.4. Let v = (v0, . . . , v3)′, (hk ) = (h0, . . . ,h5)′ and n = 2. Then r = 3 and

ξ2(v) = (v0, . . . , v3, v0, . . . , v3, v0, . . . , v3)′.
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26 Matricial Properties of the Wavelet Transform

Remark. If we define the matrix 1p,q , for all p, q ∈N, by

1p,q =

Iq
...

Iq

 , (26)

where there are exactly p identity matrices, then we can write

ξn(v) = 1r,n0 v,

where r and n0 are the same as in definition 4.3

The idea behind definition 4.1 and definition 4.3 is that the matrix Λ j
n0,n corre-

sponds to the j th iteration of the wavelet transform, while the vector ξn(v) corresponds
to the sequence c0, such that

W(v) =Λ1
n0,1 ξ1(v),

W2(v) =Λ2
n0,2Λ

1
n0,2 ξ2(v),

W3(v) =Λ3
n0,3Λ

2
n0,3Λ

1
n0,3 ξ3(v),

and so on. (This result is formally established in theorem 4.5.) Here, the role of matrix

Λ
j
n0,n is to compute exactly p j −n0/2 j elements of the sequence c j and exactly n0/2 j

elements of the sequence d j , while keeping constant the elements of the sequences
d j−1, . . . , d 1 computed by the previous matrices. For j ∈ {1, . . . ,n −1}, p j −n0/2 j ≥ |(hk )|,
so there are enough elements of c j to compute c j+1; for j = n, p j −n0/2 j = n0/2n , so the
last matrix computes only the needed (non redundant) elements of cn . On the other
hand, the role of vector ξn(v) is to contain enough elements of c0—by repeating v a given
number of times—to start the process.

Theorem 4.5. Let n ∈N and v be a vector with convenient length n0. The wavelet trans-
form of v with n levels of resolution can be written as a matrix product:

Wn(v) =
1∏

j=n
Λ

j
n0,n ξn(v) .

Proof. Let j ∈ {1, . . . ,n}, and p j and q j be as in definition 4.1. Since q j ≥ |(hk )|, for
0 ≤ i < p j −n0/2 j ,

c j
i =

2i+q j−1∑
k=2i

hk−2a c j−1
k mod q j

.
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By an adequate reordering,

c j
i =

q j−1∑
b=0

h(k−2i ) mod q j c j−1
k

=
q j−1∑
b=0

λi ,k c j−1
k .

A similar reasoning leads to

d j
i =

q j−1∑
k=0

g(k−2i ) mod q j c j−1
k

for 0 ≤ i < n0/2 j , or, by an adequate change of variable,

d j

i−p j+n0/2 j =
q j−1∑
k=0

g(k−2(i−p j+n0/2 j )) mod q j
c j−1

k

=
q j−1∑
k=0

λi ,k c j−1
k

for p j −n0/2 j ≤ i < p j . We conclude that(
c j

0:p j−n0/2 j−1
,d j

0:n0/2 j−1

)′
=Λp j×q j c j−1

0:q j−1.

Therefore, since q1 = |ξn(v)|, and, for j ∈ {2, . . . ,n}, q j = q j−1/2 = p j−1−n0/2 j−1, then

Wn(v) =
1∏

j=n
ξn(v).

Definition 4.6. Let n ∈N and A = (ai , j ) be a matrix with convenient order m0 ×n0. We
define the matrix ξn(A) by

[ξn(A)]
j
i = a j mod n0

i mod m0

for i ∈ {0, . . . ,r m0 −1} and j ∈ {0, . . . , sn0 −1}, where

r = min
{
m ∈N : mm0/2n−1 ≥ |(hk )|}

and

s = min
{
m ∈N : mn0/2n−1 ≥ |(hk )|} .
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Remark. Seen as a function, ξn operates on a matrix doing to its rows and columns the
same it does to a vector, so, for every matrix A with order m0 ×n0, we can write

ξn(A) = 1r,m0 A1s,n0
′,

where r and s are as in definition 4.6

Theorem 4.7. Let n ∈N and A be a matrix with convenient order m0 ×n0. The wavelet
transform of A with n levels of resolution can be written as a matrix product:

Wn(A) =
1∏

j=n
Λ

j
m0,n ξn(A)

n∏
j=1

Λ
j
n0,n

′
.

Proof. Since the wavelet transform of a matrix corresponds to just computing the vecto-
rial transform of its rows and columns, this result follows from theorem 4.5.

Corollary 4.8. The wavelet transform of a matrix with n levels of resolution can be com-
puted as a sequence of n iterations of the vectorial transform on its rows and n iterations
on its columns, independently on how the first ones are combined with the second ones.

Proof. This is a direct consequence of theorem 4.7, associativity of matrix multiplication

and the fact that every multiplication by a matrix Λ j
m,n is equivalent to the j th iteration

of the wavelet transform.

Proposition 4.9. The wavelet transform is a linear function of vectors (alternatively,
matrices).

Proof. This is evident from theorem 4.5 and theorem 4.7, and from the linearity of ξn ,
seen as a function of vectors (alternatively, matrices).

4.2 The inverse wavelet transform as a matrix product

Definition 4.10. Let n0,n ∈N and j ∈ {1, . . . ,n}. We define the matrix Ω j
n0,n by

Ω
j
n0,n =

(
Ωp j×q j Op j×r j

Or j×q j Ir j

)
,

where

• p j =
{

n0 if j = 1,

q j if j > 1;

• q j = min
{
r ∈N : r n0/2n−1 ≥ |(hk )|}n0/2 j−1;
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• r j =
j−1∑
i=1

2i q j = q j

(
2 j−1 −1

)
, where we adopt the convention that

∑n2
i=n1

ai = 0 if

n2 < n1;

• Ωp j×q j = (ωi ,k ) is the matrix defined by

ωi ,k =
{

h(i−2k) mod q j if k < q j /2,

g(i−2(k−q j /2)) mod q j
if k ≥ q j /2,

for i ∈ {0, . . . , p j −1}, k ∈ {0, . . . , q j −1}, and some scale filter h and associated wavelet
filter g ;

• Or×s is the matrix with order r × s, and

• Ir j is the identity matrix with order r j × r j .

Once more, an example will show how easy is to construct these matrices.

Example 4.11. Let (hk ) = (h0, . . . ,h3)′. For Ω2
8,3 we have p2 = 8, q2 = 8, r2 = 8 and

Ω8×8 =



h0 h6 h4 h2 g0 g6 g4 g2

h1 h7 h5 h3 g1 g7 g5 g3

h2 h0 h6 h4 g2 g0 g6 g4

h3 h1 h7 h5 g3 g1 g7 g5

h4 h2 h0 h6 g4 g2 g0 g6

h5 h3 h1 h7 g5 g3 g1 g7

h6 h4 h2 h0 g6 g4 g2 g0

h7 h5 h3 h1 g7 g5 g3 g1


.

Definition 4.12. Let n ∈N and w = (w0, . . . , wn0−1)′ a vector with convenient length. We
define the vector ζn(v) by

[ζn(w)]i =
{

wi mod n0/2n if 0 ≤ i < r n0/2n ,

wi mod n0/2n−p+n0/2n−p if r n0/2n−p ≤ i < r n0/2n−p−1, p ∈ {0, . . . ,n −1},

for i ∈ {0, . . . ,r n0 −1}, where r = min
{
m ∈N : mn0/2n−1 ≥ |(hk )|}.

Remark. Notice that functions ξn and ζn are related by

ζn(w) =



ξ0(w0:n0/2n−1)
ξ0(wn0/2n :n0/2n−1−1)
ξ1(wn0/2n−1:n0/2n−2−1)
ξ2(wn0/2n−2:n0/2n−3−1)

...
ξn−1(wn0/2:n0−1)


,
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so we have
ζn(v) = diag

(
1r,n0/2n ,1r,n0/2n ,1r,n0/2n−1 , . . . ,1r,n0/2

)
v,

where diag indicates a block-wise diagonal matrix.

The idea behind definition 4.10 and definition 4.12 is that Ω j
n0,n inverts the j th

iteration of the wavelet transform, while vector ζn(w) corresponds to w = Wn(v) for
some v ∈Cn0 , such that

W−1(w) =Ω1
n0,1 ζ1(w),

W−2(w) =Ω1
n0,2Ω

2
n0,2 ζ2(w),

W−3(w) =Ω1
n0,3Ω

2
n0,3Ω

3
n0,3 ζ3(w),

and so on. (This result is formally established in theorem 4.13.) The role of vector
ζn(v) is to contain enough elements of the sequences cn , d n , . . . , d 1, be repeating the
corresponding parts of vector w = Wn(v) a given number of times.

The role of matrixΩ j
n0,n is to compute exactly p j elements of the sequence cn− j while

keeping constant the elements corresponding to the sequences d n− j , . . . , d 1.

Theorem 4.13. Let n ∈N and w be a vector with convenient length n0. The inverse wavelet
transform of w with n levels of resolution can be written as a matrix product:

W−n(w) =
n∏

j=1
Ω

j
n0,n ζn(w) .

Proof. Let j ∈ {1, . . . ,n}, and p j and q j be as in definition 4.10. Since q j ≥ |(hk )|, for
0 ≤ a < p j ,

c j
i =

bi /2c∑
k=bi /2c−q j /2+1

hi−2k c j+1
k mod q j /2 +

bi /2c∑
k=bi /2c−q j /2+1

gi−2k d j+1
k mod q j /2.

By means of an adequate reordering,

c j
a =

q j /2−1∑
k=0

h(i−2k) mod q j c j+1
k +

q j /2−1∑
b=0

g(i−2k) mod q j d j+1
k ,

or, by a change of variable,

c j
i =

q j /2−1∑
k=0

h(i−2k) mod q j c j+1
k +

q j−1∑
k=q j /2

g(i−2(k−q j /2)) mod q j
d j+1

k

=
q j /2−1∑

k=0
ωi ,k c j+1

k +
q j−1∑

k=q j /2
ωi ,k d j+1

k .
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We conclude that
c j

0:p j−1 =Ωp j×q j

(
c j+1

0:q j /2−1,d j+1
0:q j /2−1

)′
.

Therefore, since qn = ∣∣w0:r n0/2n−1−1 =
(
cn

0:r n0/2n−1,d n
0:r n0/2n−1

)′∣∣, for j ∈ {2, . . . ,n}, and
q j−1 = 2q j , then

W−n(w) =
n∏

j=1
Ω

j
n0,n ζn(w).

Definition 4.14. Let n ∈ N and A = (ai , j ) a matrix with convenient order m0 ×n0. We
define the matrix ζn(A) by

[ζn(A)]
j
i =



a j mod n0/2n

i mod m0/2n if 0 ≤ i < r m0/2n

and 0 ≤ j < sn0/2n ;

a j mod n0/2n−p+n0/2n−p

i mod m0/2n if 0 ≤ i < r m0/2n

and sn0/2n−p ≤ j < sn0/2n−p−1,

for p ∈ {0, . . . ,n −1};

a j mod n0/2n

i mod m0/2n−p+M/2n−p if r m0/2n−p ≤ i < r m0/2n−p−1

and 0 ≤ j < sn0/2n , for p ∈ {0, . . . ,n −1};

a j mod n0/2n−q+n0/2n−q

i mod m0/2n−k+m0/2n−p if r m0/2n−p ≤ i < r m0/2n−p−1

and sn0/2n−q ≤ j < sn0/2n−q−1,

for p, q ∈ {0, . . . ,n −1},

where

r = min
{
m ∈N : mm0/2n−1 ≥ |(hk )|}

and

s = min
{
m ∈N : mn0/2n−1 ≥ |(hk )|} .

Remark. Seen as a function, ζn operates on A doing to its rows and columns exactly
what it does to a vector, so, for every matrix A with convenient order m0 ×n0,

ζn(A) = diag
(
1r,m0/2n ,1r,m0/2n , . . . ,1r,m0/2

)
Adiag

(
1s,n0/2n ,1s,n0/2n , . . . ,1s,n0/2

)′.
The following results have similar proofs to the ones of their counterparts in the

precedent subsection.
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Theorem 4.15. Let n ∈N and A be a matrix with convenient order m0 ×n0. The inverse
wavelet transform of A with n levels of resolution can be written as a matrix product:

W−n(A) =
n∏

j=1
Ω

j
m0,n ζn(A)

1∏
j=n

(
Ω

j
n0,n

)′
.

Corollary 4.16. The inverse wavelet transform of a matrix with n levels of resolution can
be computed as a sequence of n iterations of the vectorial inverse transform on its rows
and n iterations on its columns, independently on how the first ones are combined with
the second ones.

Proposition 4.17. The inverse wavelet transform is a linear function of vectors (alterna-
tively, matrices).

4.3 Other matricial properties

Much of the complexity of the definitions of matrices Λ j
n0,n and Ω

j
n0,n , and functions

ξn and ζn comes from the need to obtain vectors and matrices “big enough” for the
respective calculations. For n ∈N and a vector v with convenient length n0, if

n0/2n−1 ≥ |(hk )|, (27)

then ξn(v) = ζn(v) = v , and matrices Λ j
n0,n and Ω

j
n0,n become much simpler. Same

happens for a matrix with convenient order m0 ×n0 such that

m0/2n−1 ≥ |(hk )| and n0/2n−1 ≥ |(hk )|. (28)

This subsection studies the consequences of these conditions.

Proposition 4.18. Let n ∈N and n0 ∈N be a convenient number. If (27) holds, then

(Λ j
n0,n)−1 =Ω j

n0,n

for j ∈ {1, . . . ,n}.

Proof. We prove by induction on n. First, we notice that condition (27) implies that

Λ
j
n0,n−1 =Λ

j
n0,n and Ω j

n0,n−1 =Ω
j
n0,n for j ∈ {1, . . . ,n −1}.

By theorem 4.5 and theorem 4.13, for every vector v ∈Cn0 ,

v = W
(
W−1(v)

)
= W

(
Ω1

n0,1 v
)

=Λ1
n0,1Ω

1
n0,1 v,

so Λ1
n0,1Ω

1
n0,1 = In0 . A similar procedure shows Ω1

n0,1Λ
1
n0,1 = In0 .
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Let n > 1. Once again, by theorem 4.5 and theorem 4.13, for every v ∈Cn0 ,

v = Wn(
W−n(v)

)
= Wn

(
n∏

j=1
Ω

j
n0,n v

)

=
1∏

j=n
Λ

j
n0,n

n∏
j=1

Ω
j
n0,n v.

By induction hypothesis,
∏1

j=n−1Λ
j
n0,n

∏n−1
j=1 Ω

j
n0,n = In0 , so

v =Λn
n0,nΩ

n
n0,n v.

We conclude that Λn
n0,nΩ

n
n0,n = Im . A similar procedure shows Ωn

n0,nΛ
n
n0,n = Im .

Corollary 4.19. If n0 is a even number such that n0 ≥ |(hk )|, then

n0−1∑
i=0

[x]i [y](i−2 j ) mod n0 = δ j ,0δx,y ,

for j ∈ {0, . . . ,n0/2−1}, where x, y ∈ {(hk ), (gk )} and δ is the Kronecker’s delta function.

Proof. The result is obtained by multiplying

Λ1
n0,1Ω

1
n0,n = In0 .

Proposition 4.20. Let n ∈N and n0 ∈N be a convenient number. If (27) holds, then

(
Λ

j
n0,n

)′ =Ωn0,n

for j ∈ {1, . . . ,n}.

Proof. This result is evident from definition 4.1 and definition 4.10.

Corollary 4.21. Let n ∈N and n0 ∈N be a convenient number. If (27) holds, then Λ
j
n0.n

(alternatively, Ω j
n0,n) is a unitary matrix.

Proof. Direct consequence of proposition 4.18 and proposition 4.20.

The following result is presented in [Beatty, 2004], but it is proved there only for Haar
wavelets, and for very particular versions of the wavelet transform, based on a couple
of ideas called multiresolution expansion and ψn-expansion, which are analogous to
multiresolution analysis. The proof presented here is not only more general, simpler and
more elegant, but it also implies that result.
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Proposition 4.22. Let n ∈N, and A and B matrices with convenient orders m0 ×p0 and
p0×n0, respectively. If the scale filter (hk ) is real and q/2n−1 ≥ |(hk )| for 1 < q ∈ {m0,n0, p0},
then

1. the wavelet transform is distributive with respect to matrix multiplication:

Wn(AB) = Wn(A) Wn(B) ;

2. the inverse wavelet transform is distributive with respect to matrix multiplication:

W−n(AB) = W−n(A) W−n(B) .

Proof.

1. By theorem 4.7 and associativity of matrix multiplication,

Wn(A) Wn(B) =
1∏

j=n
Λ

j
m0,n A

(
n∏

j=1

(
Λ

j
p0,n

)′ 1∏
j=n

Λ
j
p0,n

)
B

n∏
j=1

(
Λ

j
n0,n

)′
.

Since the scale filter is real and by corollary 4.21,
∏n

j=1

(
Λ

j
p0,n

)′ ∏1
j=nΛ

j
p0,n = In0 ,

so

Wn(A) Wn(B) =
1∏

j=n
Λ

j
m0,n AB

n∏
j=1

(
Λ

j
n0,n

)′
.

Therefore, once again by theorem 4.7,

Wn(A) Wn(B) = Wn(AB).

2. The proof of the second part is similar.

The following result is a discrete equivalent of corollary 1.8

Corollary 4.23. Let n ∈N and n0 ∈N be a convenient number. If the scale filter (hk ) is real
and (27) holds, then the wavelet transform with n levels of resolution and its inverse are
isometries on Rn0 , i.e.,

〈Wn(u) | Wn(v)〉 = 〈u | v〉 ,

and

〈W−n(u) | W−n(v)〉 = 〈u | v〉 ,

for u, v ∈Rn0 , where 〈• | •〉 stands for the euclidean product.

Proof. This follows directly from the fact that matricesΛ j
n0,n andΩ j

n0,n are unitary (corol-
lary 4.21). Alternatively, is a direct consequence of the fact that the euclidean product
can be written as a matrix product and proposition 4.22.
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5 Concluding remarks

We have presented a comprehensive study of the wavelet transform and its inverse from
the point of view of linear algebra, putting emphasis on practical and computational
aspects.

First, we have studied the canonical theoretical foundations. From that starting point,
we have constructed versions of the transform and its inverse that preserve storage space
during computation, just by constructing periodical functions fv and fA, as defined in
(14) and (20), that represent vectors v and matrices A, respectively. Finally, we have
studied the linear properties of these tools.

The main results presented here are that the wavelet transform and its inverse can
be written as matrix products. From that property we have derived others very impor-
tant, like distributivity over multiplication, isometry, which are inherited from their
continuous version.
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