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The Optimal Double Bubble for Density r p

By Jack Hirsch, Kevin Li, Jackson Petty, and Christopher Xue*

Abstract. In 2008 [13] proved that the optimal Euclidean double bubble—the least-
perimeter way to enclose and separate two given volumes in Rn—is three spherical caps
meeting along a sphere at 120 degrees. We consider Rn with density r p , joining the surge
of research on manifolds with density after their appearance in Perelman’s 2006 proof
of the Poincaré Conjecture. [1] proved that the best single bubble is a sphere through
the origin. We conjecture that the best double bubble is the Euclidean solution with the
singular sphere passing through the origin, for which we have verified equilibrium (first
variation or “first derivative” zero). To prove the exterior of the minimizer connected, it
would suffice to show that least perimeter is increasing as a function of the prescribed
areas. We give the first direct proof of such monotonicity in the Euclidean plane. Such
arguments were important in the 2002 Annals proof [7] of the double bubble in Euclidean
3-space.

1 Introduction

The isoperimetric problem is one of the oldest in mathematics. It asks for the least-
perimeter way to enclose given volume. For a single volume in Euclidean space of any
dimension with uniform density, the well-known solution is any sphere. In Euclidean
space with density r p , [1] found that the solution for a single volume is a sphere through
the origin. For two volumes in Euclidean space, [13] showed that the standard double
bubble of Figure 3, consisting of three spherical caps meeting along a sphere in threes
at 120◦ angles, provides an isoperimetric cluster. Conjecture 3.2 states that the isoperi-
metric cluster for two volumes in Rn with density r p for p > 0 is the same Euclidean
standard double bubble, with the singular spherical cap (enclosed between the two outer
spherical caps) passing through the origin, as in Figure 1.

Corollary 3.4 verifies equilibrium (first variation or “first derivative” zero) by scaling
arguments and by direct computation. As to whether our candidate is the minimizer,
it is not even known whether for the minimizer each region and the whole cluster are
connected. Focusing on the 2D case, Proposition 5.6 notes that to prove the exterior is
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2 The Optimal Double Bubble for Density r p

Figure 1: A standard double bubble with vertex at the origin is our conjectured double
bubble in the plane with density r p .

connected, it would suffice to show that the least perimeter P(A1, A2) for the two areas is
increasing in each variable. Proposition 5.8 gives the first direct proof in the Euclidean
plane of the “obvious" but nontrivial fact that P(A1, A2) is an increasing function of
the prescribed areas. The original proof of the Euclidean planar double bubble by [4]
finessed the question by considering the alternative problem of minimizing perimeter
for areas at least A1 and A2, which is obviously nondecreasing. Later [6] deduced that
least perimeter is increasing in higher dimensions from his ingenious proof of concavity.
Such arguments were important in the 2002 Annals proof [7] of the double bubble in
Euclidean space.

For our direct proof that P(A1, A2) is increasing in the Euclidean plane (Proposi-
tion 5.8), we consider the consequences of local minima. In particular, if P(A1, A2) is
not strictly increasing in A1 for fixed A2, there is a local minimum never again attained.
Because it is a local minimum, in a corresponding isoperimetric cluster, the first region
has zero pressure. Because this minimum is never again attained, the exterior must be
connected; otherwise a bounded component could be absorbed into the first region,
increasing A1 and decreasing perimeter. It follows that the dual graph has no cycles.
Since one can show that components are surrounded by many other components as in
Figure 4, the cluster would have infinitely many components, a contradiction of known
regularity.
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Hirsch, Li, Petty, and Xue 3

History

Examination of isoperimetric regions in the plane with density r p began in 2008 when
[2] showed that the isoperimetric solution for a single area in the plane with density r p

is a convex set containing the origin. It was something of a surprise when [3] proved
that the solution is a circle through the origin. In 2016 [1] extended this result to higher
dimensions. In 2019 [5] studied the 1-dimensional case, showing that the best single
bubble is an interval with one endpoint at the origin and that the best double bubble
is a pair of adjacent intervals which meet at the origin. As for the triple bubble, the
minimizer in the plane with density r p cannot just be the Euclidean minimizer [15] with
central vertex at the origin, because the outer arcs do not have constant generalized
curvature.

Acknowledgements
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(SUMRY) Geometry Group, advised by Frank Morgan. The authors would like to thank
Morgan for his advice, guidance, and support throughout the program, as well as Yale
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2 Definitions

Definition 2.1 (Density Function). Given a smooth Riemannian manifold M, a density
on M is a positive continuous function that weights each point p in M with a certain
mass f (p). Given a regionΩ⊂ M with piecewise smooth boundary, the weighted volume
and perimeter of Ω are given by

V(Ω) =
∫
Ω

f dV0 and A(Ω) =
∫
∂Ω

f dP0 ,

where dV0 and dP0 denote Euclidean volume and perimeter. We may also refer to the
perimeter of Ω as the perimeter of its boundary.

Definition 2.2 (Isoperimetric Region). A region Ω ⊂ M is isoperimetric if it has the
smallest weighted perimeter of all regions with the same weighted volume. The boundary
of an isoperimetric region is also called isoperimetric.

We can generalize the idea of an isoperimetric region by considering two or more
volumes.

Definition 2.3 (Isoperimetric Cluster). An isoperimetric cluster is a set of disjoint open
regions Ωi of volume Vi such that the perimeter of the union of the boundaries is
minimized.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



4 The Optimal Double Bubble for Density r p

(a) f = 1 (b) f = r 2

Figure 2: Known single-volume isoperimetric solutions. In the Euclidean plane, it is any
circle of the prescribed area; for density r p , it is a circle through the origin.

Figure 3: The standard double bubbles for volumes V1 = V2 and V1 > V2. John M. Sullivan,
http://torus.math.uiuc.edu/jms/Images/double/, used with permission.

To provide an example of the concepts we have introduced, consider the isoperimet-
ric solution for a single unit volume in Rn with constant density 1. The solution is simply
a sphere.

For density r p , the solution in the plane is a circle passing through the origin [3,
Thm. 3.16], as shown in Figure 2; in higher dimensions, the solution is a sphere passing
through the origin [1, Thm. 3.3].

[7] proved in 2002 that the isoperimetric solution for two volumes in Euclidean
space with constant density is the standard double bubble, so called because of how
soap bubbles combine in three-dimensional space, as in Figure 3. The standard double
bubble illustrates the existence, boundedness, and regularity theorems:

Lemma 2.4. Consider Rn with radial non-decreasing density f such that f (r ) →∞ as
r →∞. If a sequence of clustersΩi with uniformly bounded perimeter converge toΩ, there
is no loss of volume at infinity in the limit.

Proof. This fact is shown almost identically in the proof of one region by [14, Thm. 2.1].
Consider each region of the sequence of clusters separately to obtain a sequence of
regions of fixed volume and uniformly bounded perimeters. The proof of [14, Thm. 2.1]

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021
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Hirsch, Li, Petty, and Xue 5

implies that there is no loss in volume at infinity for each region and therefore for the
whole cluster.

Theorem 2.5 (Existence). Consider Rn endowed with a nondecreasing radial density f
such that f (r ) → ∞ as r → ∞. Given volumes V1, . . . ,Vn , there exists an isoperimetric
cluster that separates and encloses the given volumes.

Proof. The proof is almost identical to the proof of one region by [14, Thm. 2.5], because
their argument does not depend on the number of regions. We give the generalization
of the proof here to multiple regions for the convenience of the reader. Consider a se-
quence of clusters enclosing and separating volumes V1, . . . ,Vn such that their perimeter
approaches I(V1, . . . ,Vn) and is less than I(V1, . . . ,Vn)+1. By the Compactness Theorem
[9, Sect. 9.1], we may assume this sequence converges. By Lemma 2.4, there is no loss of
volume at infinity, so the limit gives the isoperimetric region.

Proposition 2.6 (Boundedness). In Rn with radial non-decreasing C1 density f , a perimeter-
minimizing cluster is bounded.

Proof. The proof follows [10, Thm. 5.9], generalizing their proof to clusters. Some anal-
ogous details of their proof are omitted for brevity. Note that while their proof is em-
phasized for n ≥ 3, it nonetheless applies for n = 2. Assume to the contrary that E is an
unbounded isoperimetric set with unbounded regions E1, . . . ,Eb and bounded regions
Eb+1, . . . ,En . Each region has bounded perimeter.

Let B(r ) and S(r ) be the closed ball and sphere of radius r , and let H k
f denote the

k-dimensional Hausdorff measure in Rn with density f . Define

Ei (r ) := Ei ∩B(r ) Er
i := Ei ∩S(r )

Pi (r ) :=H n−1
f (∂Ei \B(r )) Vi (r ) :=H n

f (Ei \B(r )).

Since E1 is unbounded, the proof of [10, Thm. 4.3] shows

P(E1(r )) < P(E1),

which, as P(E1(r )) = P(E1)−P1(r )+H n−1
f (Er

1), is equivalent to

P1(r ) >H n−1
f (Er

1).

After a careful application of the isoperimetric inequality on the (n −1)-sphere and
some manipulations, the above inequality yields for sufficiently large r

P1(r )
n

n−1 ≥ cV1(r ) (1)

for some positive constant c.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



6 The Optimal Double Bubble for Density r p

Note that there must be some unbounded region with a component C which borders
the exterior. Without loss of generality, let this be the unbounded region E1. Pick an
R such that B(R) completely contains the bounded components of E and such that
Inequality 1 holds for any r > R, and such that the part of C which borders the exterior
has nonzero measure H n−1

f in B(R). There exists a constant ε such that, for any 0 < ε< ε,

it is possible to make small variations to C along the exterior and replace the set E1 with
another set Eε such that

Eε\B(R) = E1\B(R), V(Eε) = V(E1)+ε, P(Eε) ≤ P(E1)+ε(H(E1)+1),

where H is the generalized mean curvature (2.7), well defined because the density f is
C1.

Now, for any r sufficiently large, set ε= V1(r ) < ε and Ẽ = Eε∩B(r ). By construction,

V(Ẽ) = V(E1)

and

P(Ẽ) = P(Eε)−P1(r )+H n−1
f (Er

1)

≤ P(E1)+ε(H(E1)+1)−P1(r )+H n−1
f (Er

1).

Since the volume of Ẽ equals the corresponding volume V(E1) and the variation was
made only to E1 and only along the exterior, i.e., no shared perimeter changes, it must
be that

P(E1) ≤ P(Ẽ),

as E is isoperimetric for its given volumes.
Hence, taking ε arbitrarily small by picking arbitrarily large r > R and using Inequal-

ity 1, it follows that

H n−1
f (Er

1) ≥ c
n−1

n V1(r )
n−1

n ,

which is equivalent to

− ∂

∂r

(
V1(r )

1
n

)
≥ c

n−1
n

n
,

contradicting the fact that V1(r ) > 0 for all r .

Definition 2.7 (Generalized Curvature). In R2 with density f , the generalized curvature
κ f of a curve with inward-pointing unit normal N is given by the formula

κ f = κ0 − ∂ log f

∂N
,

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021
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where κ0 is the (unweighted) geodesic curvature. This comes from the first variation
formula, so that generalized curvature has the interpretation as minus the perimeter
cost dP/dA of moving area across the curve, and constant generalized mean curvature is
the equilibrium condition dP = 0 if dA = 0 (see [14, Sect. 3]).

More generally, for a smooth open region Ω in Rn+1 with boundary Σ with smooth
density f = eψ, we can define the generalized mean curvature to be

H f = H0 −〈∇ψ,N〉,
where N is the inward normal unit vector to Σ, and H0 is the Euclidean mean curvature
(sum of principal curvatures) with respect to N.

Theorem 2.8 (Regularity). An isoperimetric cluster in R2 with smooth density consists of
smooth constant-generalized-curvature curves meeting in threes at 120◦. The sum of the
curvatures encountered along a generic closed path is 0.

Proof. An isoperimetric cluster is a so-called (M,Cr α,δ)-minimal set, and therefore con-
sists of curves meeting in threes at 120◦ (see [9, Sect. 13.10]). The rest is the equilibrium
conditions (see [14, Sect. 3]).

For regularity in higher dimensions, see [9, Sect. 13.10] for a detailed discussion.

Remark 2.9. Consider, in the plane of density r p , a circle C of radius R centered at
(x0, y0). At some point (a,b) ∈ C, the normal vector is 1

R (a − x0,b − y0). If (a,b) ̸= (0,0),
the generalized curvature is

κr p = κ0 − ∂ log f

∂n
= 1

R
− p

2

∂ log
(
a2 +b2

)
∂n

= 1

R
− p

R

a(a −x0)+b(b − y0)

a2 +b2

= 1

R
− p

R

(
1− ax0 +by0

a2 +b2

)
.

From
(a −x0)2 + (b − y0)2 = R2,

we find that
a2 +b2 +x2

0 + y2
0 = R2 +2(ax0 +by0).

Therefore (ax0 +by0)/(a2 +b2) is constant if and only if (x2
0 + y2

0 −R2)/(a2 +b2) is as well.
This happens if and only if either x2

0 + y2
0 = R2 or a2 +b2 is constant. In other words, C

has constant generalized curvature if and only if it either passes through, or is centered
at, the origin.

This result extends nicely to Rn : the spheres in Rn with density r p with constant
generalized curvature are precisely those passing through, or centered at, the origin.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



8 The Optimal Double Bubble for Density r p

3 Double Bubble in density r p

We conjecture that the isoperimetric cluster for two regions in Rn with density r p has
the exact same shape as the Euclidean standard double bubble, but with the singular
sphere passing through the origin. Notice that every cap is now part of a sphere through
the origin, proved by [1] to be the best single bubble.

Proposition 3.1. For any two given volumes, there is a standard double bubble with
singular sphere passing through the origin, unique up to rotation.

Proof. This proof follows directly from [9, Prop. 14.1], the existence of unique standard
bubbles in unit density.

Conjecture 3.2. Consider Rn with density r p for positive p. The isoperimetric solution
for two regions in space is the standard double bubble with singular sphere passing
through the origin, unique up to rotation.

The proof (Corollary 3.4) that our candidate is in equilibrium (first variation zero)
will require the following scaling lemma.

Lemma 3.3. In the space Rn with density r p , if a surface is scaled by λ about the origin,
then the generalized curvature is scaled by 1/λ.

Proof. In space with density r p , perimeter is scaled by λp+n−1, and volume is scaled by
λp+n . Since generalized curvature has the interpretation of dP/dV, it is scaled by 1/λ.

Corollary 3.4. The standard double bubble in Rn with density r p for some p > 0 and
singular sphere passing through the origin is in equilibrium.

Proof. [13] showed that the standard double bubble in Rn with unit density is isoperimet-
ric, in particular in equilibrium. Thus, the three spherical caps meet at 120 degrees, have
constant Euclidean curvature, and the sum of the Euclidean curvatures encountered
along a generic closed path is 0. Observe that the spherical caps also have constant
generalized curvature since they all pass through the origin. By Lemma 3.3, their gen-
eralized curvatures are in proportion to their inverse radii, i.e., Euclidean curvature. It
follows that the sum of the generalized curvatures encountered along a generic closed
path must be 0.

Proposition 3.5. In a bounded isoperimetric cluster in Rn with non-decreasing radial
density, the region farthest from the origin must have positive pressure.

Proof. Since at the point farthest from the origin the cluster lies in a halfspace, the
tangent cone must be a hyperplane and the cluster must be regular by [8], with nor-
mal vector pointing toward the origin. Also, at the point farthest from the origin, the
unweighted Euclidean curvature is positive. Since the log of the density is radially non-
decreasing, the generalized curvature also must be positive, and hence the region must
have positive pressure.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021
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4 Geodesics in plane with density r p

Geodesics in the plane with density r p can be completely analyzed by mapping the
plane with density to a Euclidean cone with area density.

Proposition 4.1. The conformal map w = zp+1/(p +1) takes the plane with area and
perimeter density r p to a Euclidean cone with angle (p +1)π about the origin, with area
density r−p ∼ |w |−p/(p+1) (and perimeter density 1).

Proof. Since the derivative zp has modulus r p , the image perimeter density is r−2p r p =
r−p and the image area density is r−p r p = 1.

Note that in the image, a geodesic is either a straight line or two straight lines meeting
at the origin.

Corollary 4.2. In the plane with density r p , the unique geodesic from any point to the
origin is the straight line. For two points with ∆θ at least π/2(p +1), the unique geodesic
consists of two lines to the origin. For two points with ∆θ less than π/2(p +1), there is a
unique geodesic corresponding to a straight line segment in the Euclidean cone.

5 Properties of the Isoperimetric Function

Understanding the isoperimetric function, and thus how least perimeter depends on
volume, has important consequences for the shape of minimizers. We begin with some
preliminary results about scaling. As noted by [3, Sect. 3.6] for the plane and mentioned
in our proof of Lemma 3.3, the density r p has nice scaling properties. If a cluster Ω has
perimeter P and volume V, then λΩ has perimeter λp+n−1P and volume λp+nV.

Lemma 5.1. In Euclidean space with density r p , if a cluster Ω is scaled such that the

volume is scaled by λ, then the perimeter is scaled by λ
p+n−1

p+n .

Proof. When the clusterΩ is scaled toλ
1

p+nΩ, the volume is scaled byλ and the perimeter

is scaled by λ
p+n−1

p+n .

Definition 5.2 (Isoperimetric Function). The isoperimetric function I(V1,V2) has the
least perimeter to enclose and separate volumes V1 and V2. In our applications, mini-
mizers exist. In general, I would be defined as an infimum.

The isoperimetric function I reflects the nice scaling properties of density r p .

Proposition 5.3. In Rn with density r p , for any volumes v and w,

I(λv,λw) = λ
p+n−1

p+n I(v, w).

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



10 The Optimal Double Bubble for Density r p

Proof. By Lemma 5.1, I(λv,λw) ≤ λ
p+n−1

p+n I(v, w). Reapplying the lemma with 1/λ yields
the opposite inequality.

The following proposition that the isoperimetric profile is continuous is by no means
clear for spaces of infinite measure. Indeed, [11] and [12] give examples of (noncompact)
two- and three-dimensional Riemannian manifolds with discontinuous isoperimetric
profile.

Proposition 5.4. In Rn with density r p , the isoperimetric profile I(v, w) is continuous.

Proof. To prove upper semicontinuity, note that small changes in volume can be at-
tained by a small change in perimeter. For lower semicontinuity, consider a sequence of
volumes (vi , wi ) → (v, w). Let Ωi be an isoperimetric cluster of volume (vi , wi ). By the
Compactness Theorem [9, Sect. 9.1], we may assume that Ωi →Ω, and by Lemma 2.4,
volume does not escape to infinity, so Ω encloses and separates volumes v and w . By
the lower semicontinuity property [9, Ex. 4.22] A(Ωi ) ≤ liminfi→∞ I(vi , wi ). Since I(v, w)
is the perimeter of the isoperimetric cluster, we must have I(v, w) ≤ liminfi→∞ I(vi , wi ).
Therefore I is lower semicontinuous, and hence continuous.

Properties of the isoperimetric profile imply connectivity properties of an isoperi-
metric cluster. Proposition 5.5 gives the trivial implication that if I subadditive, then
that the cluster is connected.

Proposition 5.5. Consider a Riemannian manifold with density in which an isoperimetric
cluster exists for all volumes. If the isoperimetric profile is strictly subadditive, then any
isoperimetric cluster is connected.

Proof. Suppose the isoperimetric cluster of volumes (v, w) is not connected. Then the
cluster can be separated into two disjoint clusters, one with volumes (v1, w1) and another
with volumes (v2, w2) with v1 + v2 = v and w1 +w2 = w . Then

I(v, w) ≥ I(v1, w1)+ I(v2, w2),

which contradicts strict subadditivity.

The following proposition proves in a general context that I increasing implies that
the exterior is connected.

Proposition 5.6. Consider Rn with radial density f (r ) such that liminfr→∞ f (r ) > 0.
If the isoperimetric profile is non-decreasing, the exterior of an isoperimetric cluster is
connected.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021
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Proof. Since liminf f (r ) does not vanish, an unbounded hypersurface yields infinite
weighted perimeter. Therefore the unbounded component of the exterior is connected.
If there is a bounded component, simply absorb it into an adjacent region, which de-
creases the perimeter and increases volume, a contradiction of the assumption that the
isoperimetric profile is non-decreasing.

On the other hand, focusing on the plane, the following proposition shows that if the
isoperimetric profile is not increasing, at least one of the regions is not connected.

Proposition 5.7. In the plane with density r p , if the isoperimetric profile I is not (strictly)
increasing in each variable, then there exists an isoperimetric cluster such that the region
farthest from the origin has at least two components.

Proof. Since I is not increasing, there exist v0 and w0 such that say I(v0, w0) is a local
minimum of Iv0 (w) = I(v0, w) and

I(v0, w0) ≤ I(v0, w) for all w > w0. (⋆)

Since w0 is a local minimum, the second region R2 must have 0 pressure. The image
of each component of R2 under the map of Proposition 4.1 to the flat cone with only
area density is bounded by geodesics and negative curvature curves meeting at 120◦,
bounding alternately R1 and the exterior. If it does not pass through the origin, it has
at least eight edges. Since regularity does not hold at the origin, where the density is 0,
a geodesic could turn at a small angle there, but it still has at least four edges, two of
which border R1. To see that they are different components of R1, note that the exterior
cannot have a bounded component, because such a component could be absorbed
into R2, contradicting (⋆). Therefore the component is bounded by at least two distinct
components of R1.

The following proposition proves for the Euclidean plane the “obvious” but nontrivial
fact that least perimeter I(v, w) is an increasing function of the prescribed areas. The
original proof of the Euclidean double bubble by [4] finessed the question by considering
the alternative problem of minimizing perimeter for areas at least v and w , which is
obviously nondecreasing. Later [6] deduced I increasing in higher dimensions from his
ingenious proof of I concave.

Proposition 5.8. In the Euclidean plane, the isoperimetric profile I(v, w) is (strictly)
increasing in each variable.

Proof. If not, there exists a v0 such that Iv0 (w) = I(v0, w) is not increasing. Since Iv0 (w) →
∞ as w →∞ and is continuous, there exists a w0 such that Iv0 (w0) is a local minimum
and Iv0 (w0) < Iv0 (w) for all w > w0. Let Ω be an isoperimetric cluster of areas v0 and w0,
and let R1 and R2 denote the regions of areas v0 and w0 respectively. The second region

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 2, 2021



12 The Optimal Double Bubble for Density r p

P = 0

P = 0 P = 0

P = 0

P = 0

P = 0 · · ·

· · ·

· · ·

· · ·

...

...

Figure 4: Our direct proof that the isoperimetric function I(A1, A2) in the Euclidean plane
is increasing shows that otherwise there would be a region of pressure 0 and infinite
branching.

R2 must have zero pressure, since otherwise, it is possible to decrease perimeter while
changing area. On the other hand, by Proposition 3.5 the region farthest from the origin
must have positive pressure and hence must be R1.

The exterior of Ω is connected; otherwise, since the cluster is bounded (Proposi-
tion 2.6), there would be a bounded component of the exterior, which could be absorbed
into R2, contradicting Iv0 (w0) < Iv0 (w) for all w > w0. Therefore the dual graph of Ω,
with a labeled vertex for each component of R1 and of R2, does not have any cycles.
Since as in Figure 4 a component of R2 is bounded by alternating geodesic and strictly
concave segments meeting at 120◦, it has at least eight edges. Since a component of
R1 is convex with 120◦ angles, it must have two or four edges (alternately shared with
R2 and the exterior). If it has two edges as in Figure 5, the two adjacent geodesics are
collinear. Hence at least two components of R1 on the boundary of every component
of R2 both have four edges. Since the dual graph has no cycles, starting at a compo-
nent of R2, moving to an adjacent component of R1 with four edges, moving to the
other adjacent component of R2, moving to another adjacent component of R1, etc.,
would yield infinitely many components, a contradiction of boundedness and regularity
(Proposition 2.6, Theorem 2.8).

Remark 5.9. Note that this argument does not extend to R3, since the dual graph may
contain cycles even if the exterior is connected.

Remark 5.10. For an isoperimetric double bubble in R3 with unit density, [6, Sect. 4.5]
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R1

R2

Exterior

Figure 5: If a component of R1 has just two edges, then the adjacent two edges bounding
R2 are two collinear geodesics.

proved the much stronger result that there are at most three components. In particular,
the larger region has exactly one component, and the smaller region has at most two
components.

6 Connectedness

Although a priori we do not know that an isoperimetric cluster is connected, we can say
something about what multiple components would look like.

Lemma 6.1. In Rn with radial density, components of an isoperimetric cluster must lie in
disjoint open hyperspherical shells.

Proof. If components are not in disjoint open hyperspherical shells, then one can ro-
tate a component about the origin until it contacts another component, contradicting
regularity (Theorem 2.8).

In general, a conformal map takes a surface with density to a surface with different
area and perimeter densities. For the right conformal map, however, one of the densities
could be made to be 1. With unit area density it is easier to find transformations that
preserve area.

Now we focus on the two-dimensional problem. A conformal map takes a surface
with density to a surface with different area and perimeter densities. For the right
conformal map, however, one of the densities can be made to be 1. With unit area
density it is easier to find transformations that preserve area.

Proposition 6.2. The conformal map

w = 2

p +2
z

p+2
2

takes the plane with area and perimeter density r p to a Euclidean cone with perimeter
density r p/2 ∼ |w |p/(p+2) (and area density 1).
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14 The Optimal Double Bubble for Density r p

Proof. Since the derivative zp/2 has modulus r p/2, the image perimeter density is r−p/2r p =
r p/2 ∼ |w |p/(p+2) and the image area density is r−p r p = 1.

The following lemma gives a nice map that preserves area.

Lemma 6.3. Consider an open set U in the plane with area density 1 such that U is outside
some ball B(0,

p
ϵ). Let ϕϵ(r ) :=

p
r 2 −ϵ. The polar map

Φϵ : (r,θ) 7→ (ϕϵ(r ),θ)

preserves the area of U.

Proof. Note that Φϵ : U → R2 is injective. A computation shows that the determinant of
the Jacobian det(DΦϵ) = 1, so the area of U is preserved.

Remark 6.4. Given ϵ> 0, the maps Φα for α≤ ϵ are actually the only radially symmet-
ric differentiable maps that preserve area outside B(0,

p
ϵ). Indeed, suppose Φ(r,θ) =

(ϕ(r ),θ) preserves area outside that ball. For every open set V ⊆R2 \ B(0,
p
ϵ),∫

V
r dr dθ=

∫
V
ϕ(r )det(DΦϵ)dr dθ=

∫
V
ϕ(r )ϕ′(r )dr dθ .

Thus, ϕ must satisfy

r =ϕ(r )ϕ′(r ) = 1

2
(ϕ(r )2)′

for almost all r ≥p
ϵ. One can extend this equation to all r ≥p

ϵ by continuity and solve
to conclude that ϕ takes the form ϕ(r ) =

p
r 2 −α for some α≤ ϵ.

Next we consider how the map Φϵ affects the perimeter.

Lemma 6.5. Consider a smooth curve in the plane with perimeter density r k with k > 1,
outside some ball B(0,

p
ϵ). The map Φϵ strictly decreases the length of the curve.

Proof. Note that Φϵ clearly decreases the length of infinitesimal tangential elements.
Therefore it suffices to consider an infinitesimal radial element at r . The Euclidean
length is scaled by

λ= d

dr

√
r 2 −ϵ= rp

r 2 −ϵ
> 1

by Φϵ. The density changes from r k to (r 2 −ϵ)k/2, scaled by λ−k . So the weighted length
is scaled by λ1−k , which is less than 1 because by hypothesis k > 1.

Now we use the map Φϵ to show that the cluster is connected for certain densities.

Proposition 6.6. In the plane with density r p , p <−2, any isoperimetric cluster (including
the interior) must be connected and unbounded.
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Proof. We work in the Euclidean cone of Proposition 6.2 with only perimeter density
and origin corresponding to infinity back in the plane. For small enough ϵ we can apply
the map Φϵ of Lemma 6.3 to a component that does not contain the origin, yielding
a cluster with the same area and less perimeter by Lemma 6.5. Thus in the cone the
cluster must be connected and contain the origin, which implies that back in the plane
the cluster must be connected and unbounded.

Remark 6.7. Consider the plane with density r p for p > 0. Note that under the conformal
map given in Proposition 6.2, the perimeter density is always in the form |w |k for some
0 < k < 1. Therefore this map does not decrease perimeter.

Consider maps in the form (r k −ϵ)1/k . The determinant of the Jacobian is given by

det(DΦϵ) = r k−2(r k −ϵ)2/k−1.

For 0 < k < 2 and any R > 0, there exists a small enough ϵ such that [det(DΦϵ)](r ) < 1 for
all r > R. For k > 2 and any R > 0, there exists a small enough ϵ such that [det(DΦϵ)](r ) > 1
for all r > 1. Therefore there are no area-increasing maps in this form that decrease
perimeter for perimeter density r p for 0 < p < 1.

7 Comparisons with Other Candidates

In this section we focus on the plane and compare our standard double bubble with
vertex at the origin against three other candidates, offering numerical and theoretical
evidence that our standard double bubble is isoperimetric. All candidates are in equilib-
rium and separate and enclose two regions of equal area 1. Without loss of generality,
they are plotted symmetric about the y-axis and shown here for density r 2.

Figure 6 shows our conjectured champion, the standard Euclidean double bubble
with one vertex at the origin. Figure 7 shows the next best candidate, a double bubble
symmetric about the y-axis, composed of two constant-generalized-curvature arcs and a
segment of the y-axis, meeting at 120◦. Note that the arcs do not have constant Euclidean
curvature and hence are not circular. Figure 8 shows the next best candidate, two circles
meeting tangentially at the origin. Recall that a circle at the origin is the isoperimet-
ric solution for the single bubble problem. Adding another circle, despite sharing no
perimeter, does reasonably well, closely matching the perimeter of the symmetric double
bubble for large p. The general 120◦ equilibrium condition does not apply at the origin,
because the density vanishes there; indeed, Section 4 shows that shortest paths can have
sharp (but not arbitrarily sharp) corners at the origin. Equilibrium still holds for varia-
tions that are smooth diffeomorphisms, because each circle is minimizing. Nevertheless,
Proposition 7.1 below shows that in fact equilibrium fails because perimeter can be
reduced to first order by a Lipschitz deformation that pinches the two circles together,
the very kind of deformation used in proving that curves meet at 120◦ angles where the
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16 The Optimal Double Bubble for Density r p
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Figure 6: The standard double bubble, our conjectured champion, p = 2.
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Figure 7: The symmetric double bubble, p = 2.

density is positive. Figure 9 shows two concentric circles, evidently worse even than the
previous two-circle candidate, because each of its bubbles does worse than a circle at
the origin, the isoperimetric single bubble. Nonetheless, circles centered at the origin
have constant generalized curvature, so the configuration is in (unstable) equilibrium.
Table 1 gives the perimeters of the computed configurations in the plane with densities
r p , for 1 ≤ p ≤ 10.

The following proposition shows that although the candidate of Figure 8 is in equi-
librium under smooth diffeomorphisms (because each circle is minimizing), it is not in
equilibrium under small Lipschitz deformations about the origin that can pinch pieces

-1.0 -0.5 0.5 1.0

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 8: The two circles double bubble, p = 2.
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Figure 9: The concentric double bubble, p = 2.

p 1 2 3 4 5 6 7 8 9 10

standard 6.490 7.597 8.979 10.493 12.085 13.731 15.416 17.132 18.872 20.632
symmetric 6.720 7.837 9.176 10.650 12.212 13.835 15.502 17.203 18.932 20.683
two circles 6.868 7.858 9.177 10.650 12.212 13.835 15.502 17.203 18.932 20.683
concentric 9.931 12.009 14.346 16.820 19.379 21.998 24.661 27.359 30.085 32.834

Table 1: Perimeters of equilibrium double bubble candidates, rounded to the nearest
thousandth. Computations are done numerically in Mathematica.

together.

Proposition 7.1. A double bubble consisting of two circles tangent to each other at the
origin is not in equilibrium under (small) area-preserving Lipschitz deformations.

Proof. Given small ϵ> 0, there is a δ> 0 such that part of the portion of the smaller circle
C1 in the lower half of an ϵ-ball about the origin can be Lipschitz deformed to a chord
to reduce area by any amount less than δ. As in Figure 10, for small r > 0 first Lipschitz
deform the top half of the arc of the smaller circle C1 inside the circle C about the origin
of radius r onto the other circle and a portion of C. The perimeter saved is greater than
the weighted length of a ray, which is

∫
r p ∼ r p+1. The arc of C adds perimeter on the

order of r 2r p = r p+2. Hence for small r , perimeter is reduced. The area added to the first
region can now be returned by deforming an initial arc of C1 below the origin to a chord,
with further reduction of perimeter, all inside the ϵ-ball.
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18 The Optimal Double Bubble for Density r p

r

C1C2

C

Figure 10: Deforming the dashed portion of C1 onto the bold portion of C and C2 reduces
perimeter, belying equilibrium.
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