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Repeat Length of Patterns on Weaving Products

By Zhuochen Liu

Abstract. On weaving products such as fabrics and silk, people use interlacing strands
to create artistic patterns. Repeated patterns form aesthetically pleasing products. This
research is a mathematical modeling of weaving products in the real world by using
cellular automata. The research is conducted by observing the evolution of the model
to better understand products in the real world. Specifically, this research focuses on
the repeat length of a weaving pattern given the rule of generating it and the configura-
tion of the starting row. Previous studies have shown the range of the repeat length in
specific situations. This paper will generalize the precise repeat length in one of those
situations using mathematical proofs. In the future, the goal is to further generalize the
findings to more situations.

1 Introduction

People began to create aesthetic patterns of weaving products (Fig. 1) in ancient times. A
pattern is a region on a weaving product that serves a decorative purpose. No matter
how complicated the patterns are, they are composed of strands interlacing each other.
To study the rules behind patterns, it is a good idea to model strands that generate those
patterns.

Figure 1: An example of weaving products. (Picture by USAID Biodiversity and Forestry)

Mathematics Subject Classification. 93A30
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2 Repeat Length of Patterns on Weaving Products

In weaving products, if we define the direction of one strand as straight upward, the
direction of all strands will be either straight or slanted. From aesthetic and practical
perspectives, there are only a limited number of directions of strands. Usually, there are
only two or three directions of strands in a weaving product, so it is safe to simply classify
a strand as straight, slanted to left, or slanted to right. With this simplified classification,
the states of two strands are certain. Both of them can be either straight or slanted. One
may cross with the other or not. If they do, it is also necessary to determine which one is
on top of the other. It is possible that two strands cross each other but one is straight and
the other is slanted, but to make the problem simpler, this situation is not covered in this
paper. Therefore, it is reasonable to divide the whole pattern into grids and use cellular
automata (Definition 2.1) to represent them. Normally, strands are either horizontal or
vertical, but to better observe them, the weaving product can be rotated by 45 degrees
and then divided into cells, as shown in Fig. 2.

Figure 2: Rotation of the weaving product and its division into cells. (Picture
by David C Todd, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?
curid=71461797)
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Z. Liu 3

Not all patterns on a weaving product are unique. In fact, a weaving product usually
contains patterns repeating across the surface, as shown in Fig. 3. To better understand
these patterns, we want to know when they start to repeat. However, the number of ways
to combine strands is large. To narrow the problem down, this paper will only focus on
slanted strands under certain crossing rules (Sections 2.3, 2.4).

Figure 3: Patterns on a weaving product. (Picture by Alfred Barlow)

When talking about the row where the pattern starts to repeat, the positions of cells
can be either considered or not. If positions are not considered, then a row can be
viewed as a closed loop, and two rows are the same if one can be obtained by rotating
(Definition 2.6) the other.

In Fig. 4, if positions are not considered, the pattern starts to repeat at row 9 counting
from bottom because if we regard the red unpaired strand as the beginning of the row
and read from left to right, then the two rows have the same configuration, and the
repeat length is 8. If positions are considered, the pattern does not repeat here because
the positions do not match.

Previous studies about slanted strands have already achieved significant results. In
all of these studies, positions of cells in the model are considered. Let m represent the
width of the starting row and let 2k < m ≤ 2k+1, Dr. Joshua Holden [3] proved that if
all strands are slanted, the maximum repeat length, wm , over all crossing rules and
starting rows will be lcm(2k+1,m) ≤ wm ≤ m2m −2m . In addition, if m < 5, then wm will
be exactly lcm(2k+1,m), and if m = 23, then wm > lcm(2k+1,m). Moreover, Hao Yang [2]
showed that under additive crossing rules (Definition 2.3), if there is no unpaired strand
in the starting row and m is a power of 2, then the maximum repeat length is 2.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



4 Repeat Length of Patterns on Weaving Products

Figure 4: Positions of cells affect if the pattern starts to repeat or not.

This research expands Dr. Holden’s work to get the exact repeat length for starting
rows with all slanted strands with only one unpaired strand, under additive crossing rules
(Definition 2.3) or inverse additive crossing rules (Definition 2.5). In this paper, positions
of cells are not considered when talking about the repeat length. Repeat patterns are
related to Pascal’s Triangle mod 2. The next section introduces necessary definitions,
and section 4 provides the repeat length and the detailed proof.

2 Definitions

2.1 Stranded Cellular Automata

Definition 2.1. A cellular automaton (pl. cellular automata) is a discrete model consist-
ing of a regular grid of cells, each in one of a finite number of states. For each cell, a set of
cells called its neighborhood is defined relative to the specified cell. In our model, each
cell has two neighbors, which are the two adjacent cells that generate it, as Fig. 5 shows.
The stranded cellular automaton (SCA) is a cellular automaton whose cells represent the
state of strands. This paper will only introduce slanted strands, and all possible states of
slanted strands are shown in Fig. 6.

Figure 5: The cell at the top and its two neighbors at the bottom.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021
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Figure 6: States of slanted strands in an SCA. (Picture based on J. Holden[3])

2.2 Crossing Rules

Two slanted strands can either cross or not. If they cross, we need to determine which
strand is on top of the other. If they do not cross, then the two strands are in the same
direction and there will be just one strand in the cell. Such a strand is called an unpaired
strand. In practice, there can be an empty cell with no strand in it, but in this paper, we
will not cover the occurrence of empty cells, except in Fig. 8 for demonstration only.

Definition 2.2. In the SCA, a new cell is generated from two adjacent cells in the previous
row, as shown in the bottom part of Fig. 2, and the crossing rule is used to determine the
crossing state of the new cell based on states of the two adjacent cells.

To generate a new crossing, there are 3 possible states for each of the two adjacent
cells: left strand on top, right strand on top, and unpaired strand. Although an unpaired
strand has two possible directions, to generate a new crossing, its direction is determinis-
tic. Therefore, we consider unpaired strand as a single state. There are 3×3 = 9 possible
combinations of adjacent cells, and we use 9 bits to represent them. 9 combinations
together form a crossing rule. As for bit representations, we use “1” to represent left
strand on top and “0” to represent right strand on top. The value of an unpaired strand is
undetermined, and is represented as “N” (which stands for “nonspecific”). Fig. 7 shows
how a crossing rule looks.

Since 9 bits are used to represent one crossing rule, there are a total of 29 = 512
crossing rules.

Note that the outputs of crossing rules do not contain unpaired strands. The reason
is that there are only 8 specific situations that generate unpaired strands, as shown in
Fig. 8, and these situations can be applied to all crossing rules. Besides, since the strand
is unpaired, we don’t need to care about its crossing state.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



6 Repeat Length of Patterns on Weaving Products

Figure 7: Bit representations of a crossing rule. The value of an unpaired strand is
undetermined and is represented by “N”.

Figure 8: Eight states that generate an unpaired strand.

2.3 Additivity

Definition 2.3. Among all crossing rules, the additive rules are those whose values of
generated cells are equal to the sum of values in the two cells that generate them modulo
2. If one or both of the two adjacent cells contain an unpaired strand and thus the
value is undetermined, then we will regard such situations as satisfying the condition of

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021
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additivity. Let xi−1 and xi be the two adjacent cells and let x ′
i be the generated cell. We

have x ′
i = xi−1 +xi mod 2. Note that the value of the unpaired strand is undetermined,

so the unpaired strand will not affect the additivity.

Fig. 9 is an example of an additive crossing rule.

Figure 9: An example of an additive rule.

Remark 2.4. Because unpaired strands will not affect the additivity, the additivity is
determined by only the 4 situations at the 4 corners in the example shown above. Specif-
ically, additive rules must have a configuration of 1_0___0_1 ordered the same as in the
example. Hence, there are a total of 25 = 32 additive rules.

2.4 Inverse Additivity

Definition 2.5. Inverse additive rules are similar to additive ones but values of “0” and
“1” are flipped. Therefore, in inverse additive rules, we have x ′

i = xi−1 + xi +1 mod 2.
Accordingly, the configuration of inverse additive rules must be 0_1___1_0 and the
number of inverse additive rules is also 25 = 32.

Fig. 10 is an example of an inversely additive crossing rule.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



8 Repeat Length of Patterns on Weaving Products

Figure 10: An example of inversely additive rule.

2.5 Rotation of a Row

In our modeling, a row of a pattern is regarded as a closed loop. Therefore, the cell at
one end of the row is adjacent to the cell at the other end. If half of the cell exceeds the
border of a row, the other half of the cell will go to the other end of the row.

Definition 2.6. Suppose c1, ...,cn is a row of cells read from left to right. Then if another
row contains cells ci+1, ...,cn ,c1, ...,ci (for some 1 ≤ i < n) read from left to right, it is said
to be a rotation of the original row.

For example, we can obtain the 9th row from bottom in Fig. 4 by rotating the first row.
This is why we say the two rows are the same if positions of cells are not considered.

Remark 2.7. If a starting row is rotated, the generated pattern will be the same as before
but also rotated by the same number of cells.

2.6 Effective Width

Although the unpaired strand has an undetermined value, its behavior can still be
represented by “1” or “0” based on the values of its adjacent cell and the generated cell.
In Fig. 11, for the example at the top, a left unpaired strand and a crossing of value 0
generate a value of 1, so the unpaired strand behaves as a “1” in this situation. For the
example at the bottom, a left unpaired strand and a “1” generate a “1”, so the unpaired
strand behaves as a “0”. Note that in starting rows with just one unpaired strand, not
all cells can change their values during the evolution of pattern because the unpaired
strand always exists. For example, if the behavior of the unpaired strand is fixed, the
value of this cell will not change. Moreover, if the left unpaired strand behaves as a “0”,
then the value x of cell to the right of it will also not change because 0+ x = x. For the

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021
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right unpaired strand that behaves as a “0”, the value of cell to its left will not change for
the same reason.

Definition 2.8. Given a starting row with width m, the effective width, me , is the number
of cells whose values will change during the evolution of the pattern, plus 1.

Figure 11: The value of unpaired strands.

To be more specific, if there is only one unpaired strand, me is determined as follows:

1. If the unpaired strand behaves as “1”, then me = m.

2. If the unpaired strand behaves as “0” and is a left strand, then counting from the
unpaired strand to right, me is the number of cells from the first “1” to the last cell,
which is the cell to the left of the unpaired strand because the row can be rotated.

3. If the unpaired strand behaves as “0” and is a right strand, then counting from the
unpaired strand to left, me is the number of cells from the first “1” to the last cell,
which is the cell to the right of the unpaired strand because the row can be rotated.

4. If the behavior of the unpaired strand can be both “1” and “0” based on the
neighboring cell, we treat it as “0”. The reason is that if the unpaired strand
behaves as “0” in the starting row, then the value of the neighboring cell will not
change during the pattern evolution because for any value x in the neighboring
cell, 0+x = x. Therefore, the behavior of the unpaired strand will also not change.
If it behaves as “1” in the starting row, then the value of the neighboring cell will be
flipped in the next row. Afterwards, the behavior of the unpaired strand will also
be flipped to “0” and then remain unchanged.

Remark 2.9. In the latter situation, we need to calculate me from the second row
because the value change of the cell next to the unpaired strand will affect me .

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



10 Repeat Length of Patterns on Weaving Products

Fig. 12 and Fig. 13 show how the effective width is calculated. Cells whose values are
changeable and the leading “1” are represented in yellow-green in the starting row. In
the first example, the effective width is 3, and in the second example, the effective width
is 5.

Figure 12: A starting row with an effective width of 3.

Figure 13: A starting row with an effective width of 5.

Remark 2.10. The rotation of the row will not affect the effective width. Therefore, in
the following parts of this paper, we will put the unpaired strand at the beginning or the
end of the starting row to make it easier for us to observe.

3 Introduction to Pascal’s Triangle

This paper’s work is highly related to properties of Pascal’s Triangle. Therefore, it is
important to first introduce some concepts of it.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021
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Pascal’s Triangle is a special array of integers in triangular shape. Let n denote the
nth row of Pascal’s Triangle and let k denote the kth entry of the row, then the entry has
a value equal to

(n
k

)
, where n ≥ 0 and 0 ≤ k ≤ n.

In Pascal’s Triangle, the amount of entries in each row is incremented by 1 from its
previous row, and the first row has 1 entry. Therefore, if we define the first row in Pascal’s
Triangle as row 0, then the number of entries in row i , also called the width of row i and
denoted as wi , is equal to i +1.

4 Repeat Length

Many factors can affect the length of repeat pattern given the starting row. To narrow
the problem down, we will focus on the additive or inverse additive crossing rules and a
single unpaired strand in the starting row.

Proposition 4.1. Under additive crossing rules, if the starting row contains one unpaired
strand and one “1”, no matter if it is an actual “1” or an unpaired strand equivalent to a
“1”, and no empty cell, then the generated pattern will be a partial upside down Pascal’s
Triangle modulo 2. If the width of corresponding row in Pascal’s Triangle is bigger than
the effective width, the generated pattern will discard the exceeded parts and become a
partial Pascal’s Triangle modulo 2.

Proof. In Pascal’s Triangle, each number is the sum of two neighboring numbers in the
previous row. This is also true for numbers on the borders of Pascal’s Triangle if we regard
the numbers outside the borders as “0”s. Let x ′

i denote a number in Pascal’s Triangle and
let xi−1 and xi denote the two neighboring numbers in the previous row. Then we have
x ′

i = xi−1 +xi . Note that a +b mod 2 = ((a mod 2)+ (b mod 2)) mod 2.
In the starting row of the weaving pattern, there is only one “1”. All other cells are

filled with “0”. According to Definition 2.3, the value of generated cell in the next row is
x ′

i = xi−1+xi mod 2. Therefore, the ways of generating Pascal’s Triangle and the weaving
pattern are the same, and a row in the weaving pattern corresponds to a row in Pascal’s
Triangle at the same row index.

Because Pascal’s Triangle starts with one “1” and there is one “1” in the starting row of
the weaving pattern, the generated pattern is an upside-down Pascal’s Triangle modulo 2
if the width of corresponding row in Pascal’s Triangle is less than or equal to the effective
width, me .

When the width of corresponding row in Pascal’s Triangle exceeds me , a crossing
that is supposed to neighbor with another crossing will neighbor with the unpaired
strand. In this case, an unpaired strand instead of a new crossing is generated (Fig. 8).
Therefore, the unpaired strand will remain and isolate the entries of that row in Pascal’s
Triangle within and outside the effective width. Note that for each generated cell, x ′

i ,
its value is determined by xi−1 and xi , and i < me because all of these cells are in the

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



12 Repeat Length of Patterns on Weaving Products

pattern. Hence, if the corresponding row in Pascal’s Triangle exceeds me , extra cells will
be discarded as shown in Fig. 14, and these cells would not affect the value of cells in the
pattern. Consequently, the generated Pascal’s Triangle is partial.

Figure 14: The generated pattern(top) with me = 5 and the corresponding Pascal’s
Triangle(bottom). The red part in the Pascal’s Triangle is discarded because it exceeds
me .

Note that the discarded part is on the right because the direction of the unpaired
strand is left and hence behaves as the left border of the upside down Pascal’s Triangle. If
the direction of the unpaired strand is right, the discarded part will be on the left.

Lemma 4.2. The pattern described in Proposition 4.1 starts to repeat at a row with all
“0”s between two “1”s on borders, which looks like “1 0 ... 0 1”.

Proof. Because there is only one “1” in the starting row of weaving pattern, the pattern
will repeat when in the corresponding row in Pascal’s Triangle, the total number of
consecutive “0”s following the “1” on the border, plus 1, exceeds me . Therefore, when
the pattern repeats, the first me numbers in the corresponding row in Pascal’s Triangle
are “1 0 ... 0”.

If we shade the odd numbers in Pascal’s Triangle and leave the even numbers blank,
we will get a Sierpiński Triangle[5]. Note that we also take the modulus by 2 of Pascal’s

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021
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Triangle so that odd numbers become 1 and even numbers become 0. Therefore, the
Sierpiński Triangle is equivalent to Pascal’s Triangle modulo 2. Because the Sierpiński
Triangle is recursive, Pascal’s Triangle modulo 2 is also recursive in the same way[1]. The
recursion of Pascal’s Triangle modulo 2 is defined as follows:

• Base case: the base case of Pascal’s Triangle modulo 2 contains only a single “1”.

• Recursive step: the next iteration of the recursion is formed by arranging 3 copies
of current iteration as an equilateral triangle and fill all entries in the middle with
“0”s.

Fig. 15 and Fig. 16 shows the recursive structure.

Figure 15: Base case and first few iterations of the recursive structure.

Figure 16: General recursive structure. (Picture based on Andrew Granville’s work[1])

Suppose, for contradiction, that the pattern starts to repeat at row i with addi-
tional “1”s in between the two “1”s on borders. Since Pascal’s Triangle is horizontally
symmetric[4], we know that row i is “1 0 ... 0 1 ### 1 0 ... 0 1”, where “...” is filled with
“0”s and “###” is undetermined.

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



14 Repeat Length of Patterns on Weaving Products

Let l be the width of row i so that l = i +1 and let l ′ be the width of “1 0 ... 0 1”, so
l ′ ≤ l

2 . Because the starting row of the pattern contains only one 1 and the pattern starts
to repeat at row i , the first me numbers of row i must contain only one 1, which is the 1
on the border. Therefore, me < l ′.

Let Tk+1 be the sub-triangle in Pascal’s Triangle modulo 2 such that row i is in Tk+1

but not in Tk . According to the recursive structure shown in Fig. 16, row i is made of two
copies of a same row, say row j , in Tk , and the middle of the two copies is filled with with
“0”s. Note that the “1 0 ... 0 1” cannot be split across the two copies of row j . The reason
is that “...” is filled with all 0’s, but if it is split across the two copies of row j, then there
will be at least one 1 in the “...” part because a row has at least two 1’s(except the first
row). Therefore, row j contains the first “1 0 ... 0 1” part that is in row i and some of the
“###” part if not all entries in “###’ are “0”. Let the width of row j be l j so that l j = j +1,
so l j ≥ l ′ > me . Therefore, the weaving pattern also starts to repeat at row j , but row j is
before row i , which contradicts the assumption that the pattern starts to repeat at row i .

Therefore, in the row that the pattern starts to repeat, there must be no “1”s between
the two “1”s on borders, which means that the row is “1 0 ... 0 1”.

Lemma 4.3. All rows of form “1 0 ... 0 1” are located at rows of indices 2n in Pascal’s
Triangle where n is a positive integer, and for every positive integer n, the row at index 2n

has the form “1 0 ... 0 1”.

Proof. Note that the row “1 0 ... 0 1” is generated from the row “1 1 ... 1 1”. The reason is
that consecutive “0”s must be generated from either consecutive “0”s or consecutive
“1”s. Otherwise, adjacent 0 and 1 will generate additional “1”s. Since the borders of
Pascal’s Triangle are composed of “1”s, the row “1 0 ... 0 1” must be generated from row
“1 1 ... 1 1”.

Let row “1 0 ... 0 1” be in Tk such that row “1 0 ... 0 1” is in Tk but not in Tk−1. Such row
corresponds to the two triangles at the bottom in Fig. 16. If we look at the bottom half of
the recursive structure, it is clear that there are at least four “1”s in each row except the
row at the beginning of the bottom half. Therefore, row “1 0 ... 0 1” must correspond to
this row in Pascal’s Triangle. Note that the height of any Tk is a power of 2 because its
height is twice as the height of Tk−1, and the height of the smallest recursive structure,
which contains a single “1”, is 1. Because the index of the first row in Pascal’s Triangle is
0, the index of row “1 0 ... 0 1” is 0+1×2n = 2n . For the same reason, for any positive
integer n, the 2n rows starting from top of Pascal’s Triangle modulo 2 form a complete
recursive iteration Tlog2 n , whose last row is of the form “1 1 ... 1 1” and has an index of
2n −1. Therefore, the next row is of the form “1 0 ... 0 1” and has an index of 2n .

Proposition 4.4. When the pattern starts to repeat, the repeat length is 2k+1, where 2k <
me ≤ 2k+1.

Proof. From Lemma 4.2 we know that the pattern starts to repeat at row “1 0 ... 0 1”, and

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021
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from Lemma 4.3 we know that such a row is located at index 2n for some positive integer
n.

Note that the width of row i in Pascal’s Triangle is equal to i +1 as mentioned in
section 3, so the width of row “1 0 ... 0 1” where the pattern starts to repeat and whose
index is 2n for some positive integer n, is 2n+1. When the pattern starts to repeat, the row
width must be greater than the effective width me , so we get me < 2n +1. Hence, me ≤ 2n .
Also note that because row 2n is the first row for the pattern to repeat, the pattern does
not repeat at row 2n−1, which is also “1 0 ... 0 1”. Since the pattern does not repeat at row
2n−1, its width, 2n−1 +1, must be no longer than the effective width. Therefore, we get
me ≥ 2n−1+1, which means that me > 2n−1. Let k = n−1, so 2k < me ≤ 2k+1. Because the
pattern starts to repeat at the row with index 2n , the repeat length = 2n −0 = 2k+1.

Lemma 4.5. If all unpaired strands are in the same direction, then the number of cells
between two unpaired strands will not change in the generated rows.

Proof. If the unpaired strands are in the left direction, we count from left to right; if the
unpaired strands are in the right direction, we count from right to left. In this way, if we
denote the cell of an unpaired strand as ci , then ci and ci−1 will generate an unpaired
strand and ci and ci+1 will generate a new crossing if ci+1 is not an unpaired strand.

Suppose there are k crossings between the two unpaired strand in a given row. Let
the first unpaired strand be c0, the second unpaired strand be c ′0, and crossings be c1,
c2, ... , ck . Let the cell prior to the first unpaired strand be c−1. Therefore, c−1 and c0,
and ck and c ′0, will generate an unpaired strand. For 1 ≤ i ≤ k, ci−1 and ci will generate
a crossing. Accordingly, the number of cells between two unpaired strands does not
change in the generated cell.

Proposition 4.6. When in the starting row, there are multiple unpaired strands that are
in the same direction, we divide the starting row into sub-rows by unpaired strands and
calculate the effective width of each sub-row. The effective width, me , of the starting row
is equal to the largest effective width among all sub-rows.

Proof. Each unpaired strand has two adjacent cells. It will generate a new crossing with
one of the two cells and transfer the unpaired strand to the next row with the other,
according to Fig. 8.

Because in the generated rows the number of cells between two unpaired strands
does not change (Lemma 4.5), we can divide the starting row into sub-rows by unpaired
strands. Each unpaired strand ci will be assigned to the sub-row that contains cell ci+1.
Crossings in different sub-rows will not affect the value of each other. Hence, we can
treat the generated patterns of sub-rows separately.

Each sub-row contains 1 unpaired strand so that we can calculate the repeat length
of its generated pattern according to Proposition 4.4. The generated pattern of the entire
starting row is to simply combine patterns of all sub-rows. Therefore, the repeat length

Rose-Hulman Undergrad. Math. J. Volume 22, Issue 1, 2021



16 Repeat Length of Patterns on Weaving Products

of the entire starting row is determined by the sub-row with the largest effective width.
In other words, the effective width of the starting row is equal to the largest effective
width among all sub-rows.

5 Conclusion

5.1 Results

We have proved the exact repeat length of the generated pattern under additive or
inversely additive crossing rules with at least one unpaired strand in the starting row and
all unpaired strands in the same direction. To get the repeat length under such situations,
we first calculate the effective width, me , of the starting row, and the repeat length is
equal to 2k+1, where 2k < me ≤ 2k+1. Note that positions of cells are not considered in
this paper.

5.2 Future Work

Currently, this paper only covers situations with one unpaired strand or multiple un-
paired strands with the same direction. The next thing to do is to generalize the repeat
length to starting rows with no unpaired strands or multiple unpaired strands in different
directions.

For starting rows with one “1”, no unpaired strands, its width even and not a power
of 2, under additive or inversely additive crossing rules, there are three conjectures on
the row where the pattern starts to repeat.

Conjecture 5.1. When the pattern starts to repeat, there are two “1”s in that row. Note
that the starting row is not contained in the repeat pattern in this case.

Conjecture 5.2. For a row with two “1”s, if it is a row where the pattern starts to repeat,
the number of “0”s between the two “1”s is equal to 2n −1 counting from both inner and
outer side, n ∈N, not necessarily the same for both.

Conjecture 5.3. For a row with two “1”s, if it is not the row where the pattern starts to
repeat, the number of “0”s between the two “1”s is equal to 2n −1 counting from either
inner or outer side, but not for both, n ∈N.

6 Code for Simulation

The code for generating a simulated weaving pattern is available at: https://github.
com/kevin1zc/Weaving-Pattern-Simulation. Instructions for how to use it is in the
README.md file.
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