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DNA Self-Assembly Design for Gear Graphs

By Chiara Mattamira

Abstract. Application of graph theory to the well-known complementary properties
of DNA strands has resulted in new insights about more efficient ways to form DNA
nanostructures, which have been discovered as useful tools for drug delivery, biomolec-
ular computing, and biosensors. The key concept underlying DNA nanotechnology
is the formation of complete DNA complexes out of a given collection of branched
junction molecules. These molecules can be modeled in the abstract as portions of
graphs made up of vertices and half-edges, where complete edges are representations
of double-stranded DNA pieces that have joined together. For efficiency, one aim is to
minimize the number of different component molecules needed to build a nanostruc-
ture. Previously known flexible strand model results include optimal construction solu-
tions for cycles, trees, complete graphs, and complete bipartite graphs. In this work, we
provide results for all sizes of gear graphs within the context of three different restrictive
conditions.

1 Introduction

1.1 Introduction to DNA Self-Assembly

DNA self-assembly is the term used to describe the formation, without external direction,
of a collection of DNA molecules into a larger structure. These nanostructures are useful
for a variety of applications, including targeted drug delivery, biomolecular computing,
biosensors, and the transport and release of nanocargos [3, 4, 9, 5, 6]. Laboratories aim to
construct DNA complexes in an efficient and cost-effective way; frequently this translates
to using the smallest possible number of different component molecules. One method
for modeling DNA nanostructures and the self-assembly processes is to represent the
desired structures as discrete graphs. In this work we use a graph theoretical flexible tile
model introduced in [2]. In this model, self-assembling DNA structures form from star-
shaped molecules with k double-stranded DNA arms called k-armed branched-junction
molecules (see Figure 1).

Mathematics Subject Classification. 05C90, 92D20
Keywords. DNA, graph theory



2 DNA Self-Assembly

Figure 1: k-armed branched junction molecules [4]

The k arms have cohesive ends which can bond to any other cohesive end with a
complementary sequence of Watson-Crick bases and form a variety of DNA nanostruc-
tures. It is assumed that the arms are long enough to adhere together. When designing
the component molecules needed to construct a DNA complex, we require that the
resulting structure is complete, meaning there are no unmatched cohesive ends.

The work done in [2] also introduces the notions of tile and pot on which we base
our work. The graph theoretical abstraction of a k-armed branched junction molecule is
called a tile. A collection of tiles is called a pot (see Figure 2).

Figure 2: Pot of three tiles

The abstraction of complementary cohesive ends bonded together is called a bond-
edge as defined in [1]. We represent the bond-edge types by letters, such that a cohesive
end labeled with an “unhatted” letter can join to a cohesive end labeled with its comple-
mentary “hatted” label (see Figure 3). The tile type is the multiset of letters corresponding
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Chiara Mattamira 3

to the cohesive-end types for the tile [1]. Since we use the flexible tile model, we do not
distinguish between permutations of cohesive-end labels about a vertex. For this reason
we can identify a tile with the multiset of its cohesive-end labels. For example, the pot
of tiles shown in Figure 2 is denoted as P = {t1 = {a,b2, ĉ}, t2 = {â,b, b̂,c}, t3 = {a,b, b̂, ĉ}},
where the exponent indicates a repeat in bond-edge type.

Figure 3: Labeling of a complete graph

In order to efficiently construct a given target graph G, we must find the minimum
number of tiles types and bond-edge types that must be included. We consider this
question in three scenarios, representing three levels of restriction [1]:

• Scenario 1. The incidental construction of a graph smaller than G is acceptable.
• Scenario 2. The incidental construction of a graph smaller than G is not acceptable,

but a graph with the same size as G is acceptable.
• Scenario 3. Any graph incidentally constructed must be larger than G.

We let Ti (G) for i = 1,2,3 denote the minimum number of tiles required to construct
a complex in each of the scenarios above. Similarly, Bi (G) denotes the minimum number
of bond-edge types needed for each scenario. Currently known results include opti-
mal solutions for cycles, trees, complete graphs and complete bipartite graphs for all
scenarios [1].

Definition. Given a pot P, we define C(P) to be the set of graphs that can be con-
structed from P. The set of graphs of minimum size that may be constructed from P is
denoted Cmi n(P) [1].

In order to prove that a pot P does not create graphs smaller than the target graph,
we often use a matrix derived from a system of equations that any pot of tiles forming
complete complexes must satisfy.

We follow the notation from [1]. Given a pot P = {t1, ...tp }, we define Ai , j to be the
number of cohesive ends of type ai on tile t j , and Âi , j to be the number of cohesive ends
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4 DNA Self-Assembly

of type âi on tile t j . Let zi , j = Ai , j − Âi , j and let ri be the proportion of tile type ti used in
the assembly process. The relationship between zi , j and ri can be described with the
following equations:

z1,1r1 + z1,2r2 +·· ·+ z1,p rp = 0
...

zm,1r1 + zm,2r2 +·· ·+ zm,p rp = 0

r1 + r2 +·· ·+ rp = 1

From these equations we can write the construction matrix M(P) for the pot P:

M(P) =


z1,1 z1,2 · · · z1,p 0

...
...

...
zm,1 zm,2 · · · zm,p 0

1 1 · · · 1 1


Note that this is the augmented matrix formed from the system of equations above.

Solutions to this matrix give the proportion of tile types needed to construct a com-
plete graph G, which allow us to determine the size of the smallest graph that may be
constructed from P [1].

1.2 Gear Graphs

In this work we build upon previously known graph theoretical methods for optimizing
the self-assembly process to find minimum numbers of tile and bond-edge types for the
family of gear graphs.

Definition. A wheel graph, denoted Wn , is a graph formed by connecting a single
universal vertex to all vertices of the cycle Cn .

Definition. A gear graph, denoted Gn , is a graph obtained by inserting an extra vertex
between each pair of adjacent vertices on the perimeter of a wheel graph Wn .

Figure 4: Gear graphs Gn for n = 4,5,6,7,8

The gear graph Gn consists of 2n + 1 vertices and 3n edges. All gear graphs are
bipartite. One partition consists of all degree 2 tiles together with the central tile of
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Chiara Mattamira 5

degree n, and the other partition consists of all degree 3 tiles. Throughout this paper, we
will refer to an edge incident to both a degree 3 tile and the degree n tile as a spoke. We
will refer to the largest cycle in the graph as the perimeter of the graph.

Gear graphs are examples of squaregraphs, which are graphs that can be drawn in
the plane in such a way that every bounded face is a quadrilateral and every vertex
with three or fewer neighbors is incident to an unbounded face. Squaregraphs share
many similarities with lattice graphs. The primary difference is that a tiling formed by
squaregraphs is not made of regular polygons (with the exception of the the one made by
squares). Squaregraphs and lattice graphs can be considered graphical representations
of meshes, which are potentially useful nanostructures. In particular, a DNA mesh or
lattice could be wrapped to form a DNA nanotube, a sought-after structure in DNA
self-assembly [8] [5].

2 Scenario 1

Recall that in scenario 1 the incidental construction of graph-theoretical complexes of
smaller size than the target graph is allowed.

Since B1(G) = 1 for any graph G [1], B1(Gn) = 1 for all n.

Lemma 2.1. T1(G3) = 3.

Proof. Theorem 1 in [1] states that av(G) ≤ T1(G) ≤ ev(G)+2ov(G). Here, av(G) denotes
the number of different degrees of vertices in G, ev(G) denotes the number of different
even degrees of vertices in G, and ov(G) denotes the number of different odd degrees of
vertices in G.

By inspection, 2 ≤ T1(G3) ≤ 3. When n = 3 there are only two different vertex degrees,
2 and 3. However, at least three tile types are still needed. Let P = {t1, t2} be a pot with
t1 a degree 3 tile and t2 a degree 2 tile. In order for P to realize G3 the proportion of t1

must be r1 = 4/7 and the proportion of t2 must be r2 = 3/7. Thus the pot must satisfy the
linear Diophantine equation(s)

3zi ,1 +4zi ,2 = 0

where zi , j is the net number of cohesive ends of type ai on tile t j . All integer solutions to
this equation are of the form (zi ,1, zi ,2) = (−4x,3x) with x ∈Z. This is impossible since t1

is a degree 3 tile and t2 is a degree 2 tile.

Proposition. For any gear graph Gn , T1(Gn) = 3.

Proof. Theorem 1 in [1] states that av(G) ≤ T1(G) ≤ ev(G)+2ov(G).
By inspection, 3 ≤ T1(Gn) ≤ 5 when n > 3 and n is odd, and 3 ≤ T1(Gn) ≤ 4 when n > 3

and n is even. Lemma 2.1 accounts for the case of n = 3.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



6 DNA Self-Assembly

The following pot realizes the lower bound for all n.

P = {t1 = {ân}, t2 = {a2, â}, t3 = {a, â}}

Figure 5 below illustrates a complete labeling of G3, G4, and G5 using pot P.

Figure 5: Labeling of G3, G4, and G5 in scenario 1

3 Scenario 2

Recall that in scenario 2 the incidental construction of graph-theoretical complexes of
smaller size than the target graph is not allowed. However, a graph with the same size as
G is acceptable.

Proposition. For any gear graph Gn , T2(Gn) = 3.

Proof. For any graph G, T1(G) ≤ T2(G) by Proposition 1 in [1], then T2(Gn) ≥ 3.
The following pot P realizes Gn using 3 tile types: P = {t1 = {ân

1 }, t2 = {a2
1, â2}, t3 =

{â1, a2}} The construction matrix M(P) and its reduced row echelon form follow.

M(P) =
−n 2 −1 0

0 −1 1 0
1 1 1 1

∼
1 0 0 1/(2n +1)

0 1 0 n/(2n +1)
0 0 1 n/(2n +1)


M(P) has unique solution 〈1/(2n+1),n/(2n+1),n/(2n+1)〉. Thus P realizes no graphs

smaller than 2n +1 vertices by Proposition 3 in [1].

Proposition. For any gear graph Gn , B2(Gn) = 2.

Proof. B2(G)+ 1 ≤ T2(G) by Theorem 2 in [1]. Since T2(Gn) = 3 by Proposition 3, it
suffices to prove that B2(Gn) 6= 1. Assume P is a pot of tiles with only one bond-edge
type constructing Gn . The tiles of degree 2 in the pot P can only be labeled with a2 or â2,
since otherwise a single loop graph can form. Moreover, all tiles of degree 2 must be of
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Chiara Mattamira 7

the same tile type; otherwise they can combine with each other and create a graph with
two vertices and a double-edge between them.

Without loss of generality, assume all tiles of degree 2 are the same tile type t1 = {a2}.
It follows that all perimeter tiles of degree 3 have two half-edges labeled with â. The
un-labeled half-edge can either be labeled as a or â, resulting in two possible second tile
types of t2 = {â3} or t2 = {â2, a}.

If t2 = {â3}, then a graph of size 5 can be constructed using two of t2 and three of t1.
If t2 = {â2, a}, then t3 = {ân}. If n is even, then t1 and t3 can combine and create a graph
H of size n/2+1. If n is odd, then t1 and t3 can combine and create a graph J of size n+2.
Since Gn has size 2n +1 with n ≥ 3, both H and J have fewer vertices than Gn .

Figure 6: Labeling of G3, G4, and G5 using pot P given in Proposition 3.

4 Scenario 3

Recall that in scenario 3 the incidental constructions of a graph smaller than G or a graph
with the same size as G but not isomorphic to G are not acceptable.

Lemma 4.1. For any gear graph Gn , if P is a pot such that {Gn} = Cmi n(P), then no bond-
edge type present on the tiles in P used in the construction of Gn may appear more than
twice on the perimeter of Gn .

Proof. Assume a bond-edge type appears three times on the perimeter of a gear graph
Gn . Then, at least two of the three edges have the same orientation around the perimeter.
These two edges may detach and break the perimeter cycle of size 2n as shown in step
1 of figure 7. In this event, the middle tile becomes a cut vertex. To see this, note that
if the middle vertex is deleted the perimeter cycle decomposes into two disjoint parts,
which we will now refer to as “potential components”. Each potential component has
two unpaired half-edges of the same bond-edge type, one hatted and one unhatted.
It follows that each pair of complementary half-edges can join together within each
potential component as shown in step 2 of figure 7. If the unpaired edges rejoin in this
way, no edge is formed between the two components. Then, the middle tile remains a
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8 DNA Self-Assembly

cut vertex even after the two edges rejoin. Since any two vertices of a gear graph lay on
a common cycle, gear graphs have no cut vertices ([7], Theorem 4.2.4). Therefore, the
resulting graph is not isomorphic to Gn .

Figure 7: Edges with the same orientation and bond-edge type break and join to create a
graph that is not isomorphic to Gn .

Lemma 4.2. For any gear graph Gn , if P is a pot such that {Gn} = Cmi n(P), then the half-
edges of the tiles in P used in the construction of Gn that are in the same partition must
have the same version (hatted or unhatted) of any given bond-edge type.

Proof. Let X be the partition with all degree 2 tiles and the degree n tile and Y be the par-
tition with all perimeter degree 3 tiles. By Lemma 2 of [1] no tile used in the construction
of Gn may have both the hatted and unhatted version of a bond-edge type.

If any two tiles t1 and t2 in X each have a half-edge labeled with opposite versions of
the same bond-edge type, then these two edges may be detached and re-join so that t1

and t2 are adjacent. If the degree of both t1 and t2 is 2, then this forms a non-isomorphic
graph since no degree 2 tiles in Gn are adjacent to one another. Now consider if t1 is a
degree 2 tile and t2 is the degree n tile. If t1 and t2 each have a half-edge labeled with
opposite versions of the same bond-edge type, then a cycle of length 3 can form between
the degree 2 tile, the degree n tile, and the tile neighboring both of those tiles (see Figure
8). Gn has no odd cycles, so this also produces a non-isomorphic graph. If any two tiles
in Y each have a half-edge labeled with opposite versions of the same bond-edge type,
the these two edges can detach and re-join the two degree 3 tiles to one another. Since
no degree 3 tiles are adjacent in Gn , this produces a non-isomorphic graph.

Hence, if a bond-edge type appears on any two (or more) tiles in the same partition,
it must appear as the same version on each, otherwise the tiles can reconfigure to form a
graph not isomorphic to Gn . Therefore, all half-edges in either partition must be labeled
with the same version of any given bond-edge type.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



Chiara Mattamira 9

Figure 8: A degree 2 tile and the degree n tile of G4 are labeled with the opposite version
of the same bond type. A length three cycle is formed.

Lemma 4.3. If P is a pot such that {Gn} = Cmi n(P), and a perimeter edge and spoke edge
of Gn use the same bond-edge type, then these two edges are incident to the same vertex.

Proof. Assume that a spoke s and an edge e on the perimeter have the same bond-edge
type a and that they are not incident to the same vertex. Let t1 be the degree 3 tile
containing a half-edge of e. Then, the spoke adjacent to t1 is not s since it is assumed
that s and e are not incident to the same vertex. Without loss of generality, let’s label t1’s
spoke half-edge with the bond-edge type x (this could be any bond-edge type including
a). Then, t1 has one half-edge labeled a (or â), and one half-edge labeled with x (or x̂).
The central tile has two half-edges labeled with the same bond-edge types as t1. The
middle tile and t1 are in different partitions, so Lemma 4.2 guarantees that if a bond-edge
type appears in one version (hatted/unhatted) on one tile, it will appear in the opposite
version on the other tile. It follows that t1 and the middle tile can combine and create a
double edge, which creates a graph not isomorphic to Gn .

Lemma 4.4. For any gear graph Gn , if P is a pot such that {Gn} = Cmi n(P), then no two
half-edges of a tile type used twice in the construction of Gn can be labeled with the same
bond-edge type.

Proof. If two half-edges of two tiles of the same tile type are labeled with the same bond-
edge type, then there are four edges in Gn labeled with that bond-edge type. At most two
of these four edges can be on the perimeter by Lemma 4.1, so two edges must be spoke
edges.

Since no two spoke edges and a perimeter edge are incident with the same vertex,
Lemma 4.3 dictates that these two spoke edges must be labeled with a different bond-
edge type, making this construction impossible.

Lemma 4.5. For any gear graph Gn , if P is a pot such that {Gn} = Cmi n(P), then no three
tiles in P used in the construction of Gn can be of the same tile type.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



10 DNA Self-Assembly

Proof. In any gear graph, if three tiles are the same then they are either all degree 2 tiles
or all degree 3 tiles. If three degree 2 tiles are the same, then those three tiles are on
the perimeter and non-adjacent. In this case, a bond-edge type used on the tile would
appear at least three times around the perimeter, a violation of Lemma 4.1.

Assume three degree 3 tiles have the same tile type. Each arm of the tile type will
have a different bond-edge type, as dictated by Lemma 4.4. Label any one of the spokes
with bond-edge type a. The spokes of the other two tiles must be labeled with a, since
by Lemma 4.3 no two spokes and one perimeter edge can be labeled using the same
bond-edge type and no two non-incident perimeter edges and a spoke can be labeled
with the same bond-edge type. The six perimeter edges (two per tile) must be labeled
with the remaining two bond-edge types. It follows that at least one bond-edge type is
repeated more than twice on the perimeter, a violation of Lemma 4.1.

Lemma 4.6. If P is a pot such that {Gn} = Cmi n(P) and three edges of G use the same
bond-edge type, then these three edges must be incident with a common vertex.

Proof. No three edges on the perimeter can have the same bond-edge type by Lemma
4.1. Lemma 4.3 dictates that no two spoke edges and one perimeter edge can have the
same bond-edge type. Thus, three edges with the same bond-edge type must be either
two perimeter edges and one spoke edge, all adjacent to a single vertex, or three spoke
edges.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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Proposition. For any gear graph Gn , T3(Gn) = n +2.

Proof. By Lemma 4.5, if {Gn} = Cmi n(P) then P must consist of at least dn
2 e degree 2 tile

types and at least dn
2 e degree 3 tile types. A distinct tile type is needed for the middle tile

since it has degree n, which is a greater degree than all other tiles in Gn for n > 3. In the
case of n = 3 a distinct tile type is still needed to label the middle tile, otherwise Lemma
4.4 is violated. This results in a minimum of dn

2 e+dn
2 e+1 = n +1 distinct tile types when

n is even and dn
2 e+dn

2 e+1 = n +2 distinct tile types when n is odd.
Assume by way of contradiction that {Gn} = Cmi n(P) where n is even and P is a pot

with n +1 tile types. Then, by Lemma 4.5 each tile type must appear exactly twice on
the perimeter. It follows that each bond-edge type on the perimeter is used twice, which
implies no spoke can be labeled with those same bond-edge types by Lemma 4.3.

Consider an arbitrary degree 2 tile, which we will call t1, on the perimeter of Gn . Sup-
pose t1’s half-edges are labeled with â and b̂. Label the matching half-edges connecting
t1 to the two adjacent degree 3 tiles. Next, consider the degree 3 tile with one half-edge
labeled with b. Its other perimeter half-edge cannot be labeled with b by Lemma 4.4, it
cannot be labeled with â or b̂ by Lemma 4.2, and it cannot be labeled with a because the
labeling of that edge would have the same bond-edge type and direction as one of the
edges of tile t1. Then, label that edge with a new bond-edge type c. Label the matching
half-edge. Consider the degree 2 tile with a half-edge label ĉ. Its other edge has to be
labeled with a new bond-edge type which we call d̂ . Label the matching half-edge. Con-
sider the degree 3 tile with one half-edge labeled with d . Its other perimeter half-edge
cannot be labeled with any of the bond-edge types already used because of Lemmas
4.2, 4.4, and the fact that two perimeter edges with the same bond-edge type must have
opposite orientation around the perimeter as explained above. Since a new bond-edge
type is required to label any additional tile on the perimeter, the initial degree 2 tile t1

can never be repeated in Gn . This necessarily results in two unmatched degree 2 tile
types that each appear only once on the perimeter of Gn . This leaves 2n −2 other tiles
on the perimeter, n of which are degree 3 and n −2 of which are degree 2. All other tile
types on the perimeter can be used exactly twice, resulting in n/2 degree 3 tile types and
(n −2)/2 degree 2 tile types that are repeated. In sum, n +1 tile types must be used on
the perimeter of Gn .

The following two pots, one for n even and one for n odd, achieve this bound:

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



12 DNA Self-Assembly

Peven = {t1 = {a2
1, an+1}, ti = {âi−1, ai } for i = 2,4...n, ti = {âi−1, ai , an+1} for i = 3,5...n −

1, tn+1 = {â2
n , an+1}, tn+2 = {ân

n+1}}

Podd = {t1 = {a2
1, an+1}, ti = {âi−1, ai } for i = 2,4...n−1, ti = {âi−1, ai , an+1} for i = 3,5...n, tn+1 =

{â2
n , }, tn+2 = {ân

n+1}}

To see that these two pots do not realize any graphs of smaller size than Gn , consider the
construction matrix for each.

M(Peven) =



2 −1 0 0 0 · · · 0 0 0
0 1 −1 0 0 · · · 0 0 0
0 0 1 −1 0 · · · 0 0 0
...

...
. . . . . . . . . . . . . . .

...
...

0 0 · · · 0 1 −1 0 0 0
0 0 0 · · · 0 1 −2 0 0
1 0 1 · · · · · · 0 1 −n 0
1 1 1 · · · 1 1 1 1 1



M(Podd ) =



2 −1 0 0 0 · · · 0 0 0
0 1 −1 0 0 · · · 0 0 0
0 0 1 −1 0 · · · 0 0 0
...

...
. . . . . . . . . . . . . . .

...
...

0 0 · · · 0 1 −1 0 0 0
0 0 0 · · · 0 1 −2 0 0
1 0 1 · · · 0 1 0 −n 0
1 1 1 · · · 1 1 1 1 1



Both matrices have the following reduced row echelon form.

1 0 0 0 · · · 0 1/(2n +1)
0 1 0 0 · · · 0 2/(2n +1)
...

. . . . . . . . .
...

...
...

0 0
. . . . . . 0 0 2/(2n +1)

0 0 0
. . . 1 0 1/(2n +1)

0 0 0 · · · 0 1 1/(2n +1)



Hence, both matrices have the unique solution 〈1/(2n +1),2/(2n +1), ...,
2/(2n +1),1/(2n +1),1/(2n +1)〉.
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To see that no graph of size 2n + 1 not isomorphic to Gn may be realized by this
pot(s), consider G′ ∈ Cmi n(P). Note that G′ must be constructed with the exactly the
same number of each tile type as Gn , since the construction matrix has a unique solution.
The tile tn+2 has n half-edges labeled ân+1. Notice that no other tiles have half-edges
labeled ân+1. Also notice that there are exactly n half-edges labeled an+1, each appearing
on a distinct degree 3 tile type. It follows that tn+2 must join with all n degree 3 tile types
via one half-edge each. This is shown in the figure below.

Figure 9: Tile tn+2 joins with degree 3 tiles

The only tile types remaining in the pot are those of degree 2. Moreover, no other half-
edge can combine at this point since half-edges of all degree 3 tiles have the same version
of any given bond-edge type as dictated by Lemma 4.2. The same is true for all degree 2
tiles, and therefore they cannot form any bond between each other. It follows that each
degree 2 tile must bond together with two degree 3 tiles. By doing so G′ becomes a graph
isomorphic to Gn .

Proposition. For any gear graph Gn , B3(Gn) = n +1.
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Proof. First we show B3(Gn) ≥ n +1. Suppose P is a pot such that {Gn} = Cmi n(P). There
are two possible cases in the labeling of Gn using the tiles of P: (1) At least one spoke is
labeled with a bond-edge type different from all bond-edge types of the perimeter edges;
(2) No spoke is labeled with a bond-edge type different from all bond-edge types of the
perimeter edges.

In the first case, Lemma 4.1 requires at least n +1 bond-edge types be used to label
the perimeter and spokes. Let’s now consider case 2. If spokes are of the same bond-edge
types as perimeter edges, then all n spokes must be of distinct bond-edge types by
Corollary 4.3. Assume that only those n bond-edge types are used to label all tile types
in P. This results in each bond-edge type being used exactly three times when labeling
Gn , twice for perimeter edges and once for a spoke edge. By Lemma 4.6 this forces a
labeling in which degree 3 tiles have half-edges labeled with the same version of the
same bond-edge type. Let t1 and t2 be two degree 3 tiles adjacent to the same degree 2
tile, t3, in this gear graph labeling. Then, a graph G′ of size 5 can be constructed from the
pot {t1, t2, t3}. This violates the conditions for scenario 3.

The pots given in Proposition 4 achieve this bound. A complete labeling of G3, G4,
and G5 using these pots is shown below in Figure 10.

Figure 10: Labeling of G3, G4, and G5 in scenario 3

5 Conclusion

This work built upon previously known graph theoretical methods for optimizing the
self-assembly process to find minimum numbers of tile and bond-edge types for the
family of gear graphs. This task was accomplished for three different scenarios, with
scenario 3 being the most restrictive. Optimal results found for scenarios 1 and 2 are
constant and do not depend on the size of Gn . However, minimum numbers of tile and
bond-edge types for scenario 3 are size dependent and thus increase as n increases.

We anticipate that the results on gear graphs presented in this work could aid others
in finding optimal solutions for grid graphs, as the gear graph Gn has a grid-like structure
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of n squares around a central vertex. Future work includes exploration of tilings of
repeated gear graphs to form grid-like DNA meshes.
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