
Rose-Hulman Undergraduate Mathematics Journal Rose-Hulman Undergraduate Mathematics Journal 

Volume 21 Issue 2 Article 5 

Gordian Adjacency for Positive Braid Knots Gordian Adjacency for Positive Braid Knots 

Tolson H. Bell 
Georgia Institute of Technology, tbell37@gatech.edu 

David C. Luo 
Emory University, david.luo@emory.edu 

Luke Seaton 
Louisiana Tech University, lukeseaton98@gmail.com 

Samuel P. Serra 
University of Colorado Boulder, samuel.serra@colorado.edu 

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj 

 Part of the Geometry and Topology Commons 

Recommended Citation Recommended Citation 
Bell, Tolson H.; Luo, David C.; Seaton, Luke; and Serra, Samuel P. (2020) "Gordian Adjacency for Positive 
Braid Knots," Rose-Hulman Undergraduate Mathematics Journal: Vol. 21 : Iss. 2 , Article 5. 
Available at: https://scholar.rose-hulman.edu/rhumj/vol21/iss2/5 

https://scholar.rose-hulman.edu/rhumj
https://scholar.rose-hulman.edu/rhumj/vol21
https://scholar.rose-hulman.edu/rhumj/vol21/iss2
https://scholar.rose-hulman.edu/rhumj/vol21/iss2/5
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol21%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol21%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol21/iss2/5?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol21%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages


Gordian Adjacency for Positive Braid Knots Gordian Adjacency for Positive Braid Knots 

Cover Page Footnote Cover Page Footnote 
This research was conducted as part of the SURIEM REU program at Lyman Briggs College of Michigan 
State University, under the supervision of Dr. Robert Bell. We gratefully acknowledge support from the 
National Security Agency (NSA Award No. H98230-18-1-0042), the National Science Foundation (NSF 
Award No. 1559776), and Michigan State University. We thank our mentors Dr. Katherine Raoux and David 
Storey for their guidance throughout this project. In addition, we would like to thank Dr. Peter Feller for his 
advice. Finally, we thank Eric Zhu for coding support. 

This article is available in Rose-Hulman Undergraduate Mathematics Journal: https://scholar.rose-hulman.edu/rhumj/
vol21/iss2/5 

https://scholar.rose-hulman.edu/rhumj/vol21/iss2/5
https://scholar.rose-hulman.edu/rhumj/vol21/iss2/5


Rose-Hulman Undergraduate Mathematics Journal
VOLUME 21, ISSUE 2, 2020

Gordian Adjacency for Positive Braid Knots

By Tolson H. Bell, David C. Luo, Luke Seaton, and Samuel P. Serra

Abstract. A knot K1 is said to be Gordian adjacent to a knot K2 if K1 is an interme-
diate knot on an unknotting sequence of K2. We extend previous results on Gordian
adjacency by showing sufficient conditions for Gordian adjacency between classes of
positive braid knots through manipulations of braid words. In addition, we explore un-
knotting sequences of positive braid knots and give a proof that there are only finitely
many positive braid knots for a given unknotting number.

1 Introduction

A mathematical knot is a non-intersecting embedding of a closed curve in three- dimen-
sional space that is considered unique only up to isotopy, a continuous deformation
of this embedding without passing the curve through itself. We can visualize a knot by
projecting the embedding onto a two-dimensional plane to form a knot diagram. A knot
diagram contains crossings, where parts of the curve intersect in the projection. When
we do pass one part of the curve through another, we have made a crossing change.

crossing
−−−→
change

≈
isotopy

Unknot

Figure 1: Crossing Change and Isotopy of the Left-handed Trefoil Knot

From these definitions, we obtain the concepts of unknotting numbers and Gordian
distance between knots [1].

Definition 1.1 . The Gordian distance dg (K1,K2) between two knots K1 and K2 is the
minimal number of crossing changes needed to change K2 into K1.
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2 Gordian Adjacency for Positive Braid Knots

Definition 1.2 . The unknotting number u(K) of a knot K is given by dg (O,K), where O is
the unknot.

Figure 1 shows that the unknotting number of the trefoil knot is no more than one,
as it demonstrates how the trefoil can be made into the unknot with only one crossing
change.

An important class of knots we study in great detail is torus knots. A torus knot is a
closed curve on the surface of an unknotted torus that does not intersect itself anywhere
[1]. We denote a torus knot by T(p, q), where p and q denote the number of longitudinal
and meridional twists around the torus respectively such that p is coprime to q . Note
that T(p, q) is isotopic to T(q, p), that is, T(p, q) = T(q, p) [1].

Longitude

Meridian

Figure 2: T(2,5) and the Axes of the Torus

In 2014, Peter Feller introduced the concept of Gordian adjacency between knots [6],
an idea closely related to the description of unknotting sequences.

Definition 1.3 (Feller Definition 1). A knot K1 is said to be Gordian adjacent to a knot
K2, K1 ≤g K2, if dg (K1,K2) = u(K2)−u(K1).

Definition 1.4 . An unknotting sequence of a knot K is a series of knots beginning with K
and ending with the unknot O such that for any two consecutive knots K2 followed by K1

in the series, u(K2)−u(K1) = 1 and dg (K1,K2) = 1.

Note that in our definition of an unknotting sequence, it is optimal in the sense that
it is the fewest number of knots needed to get from a particular knot to the unknot.

In general, the Gordian distance is difficult to compute. However, if K1 and K2 are
Gordian adjacent, then their Gordian distance is the difference of their unknotting
numbers. An equivalent definition for Gordian adjacency between knots K1 and K2 is
that K1 ≤g K2 if K1 appears in an unknotting sequence of K2 [6].

Feller was able to show that under certain circumstances, Gordian adjacencies are
guaranteed between certain classes of torus knots [6].
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Tolson H. Bell, David C. Luo, Luke Seaton, and Samuel P. Serra 3

Theorem 1.1 (Feller Theorem 2). If (n,m) and (a,b) are pairs of coprime positive integers
with n ≤ a and m ≤ b, then T(n,m) ≤g T(a,b).

Theorem 1.2 (Feller Theorem 3). If n and m are positive integers with n odd and m not
a multiple of 3, then T(2,n) ≤g T(3,m) if and only if n ≤ 4

3 m + 1
3 .

Our main goal in this paper is to build off Feller’s results by finding Gordian ad-
jacencies among other classes of positive braid knots. In Section 3, we describe new
techniques which help prove our results by representing positive braid knots by their
braid words. In Section 4, we present our results on Gordian adjacency for certain classes
of positive braid knots. Listed below are the major theorems we obtain.

Theorem 4.2. If n and k are positive integers, then T(n,n2k+1) ≤g T(n+1,(n2−1)k+1).

Theorem 4.3. If n and k are positive integers, then T(n,n2k +n +1) ≤g T(n +1,(n2 −
1)k +n).

Theorem 4.4. If a and b are positive integers, then T(3, a) ≤g T(4,b) if a ≤ 9b+5
8 .

Theorem 4.5. If a and b are positive integers, then T(2, a) ≤g T(4,b) if a ≤ 3b+3
2 .

Theorem 4.6. Let β in Bn be a positive braid where β= β′w and β̂ and β̂′ are knots. If ŵ
is a link with n components, then β̂′ ≤g β̂.

Using our new techniques, we present a proof in Section 5 showing that every positive
braid knot can be unknotted in a way such that every intermediate knot is a positive
braid knot. We also prove that every positive braid knot has only a finite number of these
positive unknotting sequences.

Theorem 5.1. Every positive braid knot has an unknotting sequence that consists of only
positive braid knots.

Theorem 5.2. For every positive integer m, there exist a finite number of positive braid
knots with unknotting number m.
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4 Gordian Adjacency for Positive Braid Knots

2 Preliminaries: Braids and Torus Knots

Throughout this paper, we refer to knots by their braid words. In this section, we present
the braid group and describe how to represent positive braid knots as braids.

A braid β is defined as a set of n strands which begin on a horizontal bar and end on
a lower horizontal bar. Each strand may only intersect any horizontal plane once, which
allows the strands to cross each other in the specific ways described later [1].

The closure of a braid, β̂, is formed by attaching the top and bottom bar such that the
beginning of each strand connects to the end of a strand, forming a link, one or more
knots [9]. Every knot can be represented as the closure of some braid [2].

To represent braids algebraically, we refer to their generators σi ’s which represent the
i +1st strand from the left crossing over the i th strand (read from top to bottom). If the
i +1st strand from the left instead crosses under the i th strand, we denote this by σ−1

i .

σ1 σ2 σ3

σ−1
1 σ−1

2 σ−1
3

Figure 3: The Generators of B4 and Their Inverses

We call σ−1
i the inverse of σi as it is isotopic to the identity element when concate-

nated with σi . Hence we have that σ1, . . . ,σn−1 are the generators of the braid group
Bn , which form a group under the operation of concatenation. Note that changing a
generator to its inverse corresponds to a crossing change in the knot which the braid
represents. We have two relations on the braid group Bn , also known as braid isotopies:

• for any 1 ≤ i ≤ n −2, σiσi+1σi =σi+1σiσi+1,

• for any 1 ≤ i ≤ n −3 and i +2 ≤ j ≤ n −1, σ jσi =σiσ j .

Both of these braid relations produce isotopic braid closures [3]. Given a knot K, the
braid index br d(K) of K is the smallest positive integer n such that there exists a braid β
in Bn where β̂= K.

We refer to a positive generator of Bn as a positive crossing. A positive braid is a braid
in which all crossings are positive (we have no inverse generators). A positive braid
knot is a knot which is isotopic to the closure of some positive braid. While unknotting

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020



Tolson H. Bell, David C. Luo, Luke Seaton, and Samuel P. Serra 5

numbers can be hard to compute in general, we have that for positive braid knots, the
unknotting number of β̂ which is an integer quantity, is given by

u(β̂) = `−n +1

2

where ` denotes the length of the braid word (the number of generators it contains) and
n the number of strands on which the braid is expressed. This was proven as a lower
bound in 1984 [4] and as an upper bound in 2004 [7].

In our study of torus knots, we usually represent torus knots by using braids that they
are the closure of. The torus knot T(p, q) can be represented by the braid wordσp−1 · · ·σ1

repeated q times, which we denote as (σp−1 · · ·σ1)q [1].

Figure 4: T(4,5) as a Braid in B4

By flipping this braid representation over a vertical axis (viewing it from behind), we
see that (σ1 · · ·σp−1)q is also a valid braid representation of T(p, q). Since torus knots are
a particular class of positive braid knots, the braid representation of torus knots tells us
that

u
(
T(p, q)

)= (p −1)(q −1)

2
.

3 Rules for Constructing Gordian Adjacencies

Once we have represented two knots as positive braids, we wish to manipulate these
braids in order to uncover Gordian adjacencies between the original knots. We have
reduced these manipulations to the application of five rules. Figure 5 shows a graphical
representation of these five rules, which we summarize in the following paragraph.

The Distant Generators Rule and Neighboring Generators Rule are relations on the
braid group and therefore do not change the braid closure. The Conjugation Rule also

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020



6 Gordian Adjacency for Positive Braid Knots

=

Distant Generators Rule: If |i − j | > 1,
then σiσ j =σ jσi .

=

Neighboring Generators Rule: For any
1 ≤ i ≤ n −2, σiσi+1σi =σi+1σiσi+1.

= =

Conjugation Rule: The closure of the
braid αβ is isotopic to the closure of βα via

a conjugation by α.

=

Markov Destabilization Rule: If the braid
word contains σn and i < n for every other

σi in the braid word, then σn can be
deleted.

→ =

Crossing Change Rule: If the braid word contains
σiσi , then these two letters can be deleted.

Figure 5: Examples and Descriptions of the Five Rules

does not change the braid closure. These three rules are bidirectional, while the latter
two rules are not. The Markov Destabilization Rule similarly does not change the closure
of the braid by Markov’s Theorem [8]. The Crossing Change Rule is the only rule that

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020



Tolson H. Bell, David C. Luo, Luke Seaton, and Samuel P. Serra 7

changes the closure of a braid up to knot isotopy. It arises from performing a crossing
change which switches a generator to its inverse and canceling out the resulting pair.

Throughout this paper, we use an equals sign to denote that the closure of our new
braid word is isotopic to the closure of the braid word preceding it and an arrow to
denote when we have made one or more crossing changes via the Crossing Change Rule.
We note that none of these five rules change the number of components in the closure
of our braid word.

Lemma 3.1 . If we start with a positive braid word β whose braid closure is a knot and,
by the successive application of the five rules, change β into the empty braid word, then
the sequence of knots corresponding to the closures of all braid words in the process (up to
isotopy) forms an unknotting sequence of β̂.

Proof. Since none of the five rules change the number of components in our braid
closure, this sequence ends with the unknot, the closure of the empty braid word on one
strand. The only time we change our braid closure beyond isotopy is when we use the
Crossing Change Rule which creates exactly one crossing change. As this is a sequence
that starts from a knot and ends with the unknot, to show that this is an unknotting
sequence it is enough to prove that every crossing change decreases the unknotting
number by one. Recall that the unknotting number of a positive braid knot is given by
`−n+1

2 where n is the number of strands on which the braid knot is expressed and ` is
the length of the braid word [7]. An application of the Crossing Change Rule does not
change n but decreases ` by two. Therefore, it also decreases the unknotting number by
one.

Lemma 3.2 . Let β′ be a subword of a positive braid word β where i ≤ n for all σi in β′.
Using the five rules, β can be made into a braid word that replaces β′ with a subword
containing no more than one σn .

Proof. We proceed by induction on `′, the length of β′. Our base case is `′ = 0, when
clearly β′ is already in the required form for any n. Note that our inductive hypothesis
requires that the replacement for β′ does not have any generators with index higher than
n and is not longer than β′ was.

Now, given some β′ with `′ > 0, let β′′ be the subword that includes all of β′ except for
the first generator of β′. Because `′′ < `′, we can use the inductive hypothesis with the
same value of n to replace β′′ with a subword that contains at most one σn . Now, if the
first generator of β′ is not σn or if the replacement for β′′ has no σn , we are done, as β′ is
already in the required form.

Otherwise, we have exactly two σn . Let γ be the subword between the two σn , not
including either σn . As the length of γ is less than the original length of β′, we can use
the inductive hypothesis on γ with n −1. Now, the replacement for γ has either one or
zero σn−1, and no generator with index higher than n −1.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020



8 Gordian Adjacency for Positive Braid Knots

If the replacement for γ has no σn−1, we can then move the second σn right next
to the first using the Distant Generators Rule. Then, we can delete the two σn via the
Crossing Change Rule. This leaves β′ with no σn , so we are done.

If the replacement for γ has one σn−1, we can move the two σn to either side of that
σn−1 using the Distant Generators Rule. We then use the Neighboring Generators Rule to
makeσnσn−1σn intoσn−1σnσn−1. This leaves β′ with exactly oneσn , so we are done.

The preceding algorithm does not use the Markov Destabilization Rule or the Conju-
gation Rule, meaning it can be performed locally on any subword of a braid word and
still follow the five rules on the whole braid word.

Lemma 3.3 . Every finite positive braid word can be made into the empty braid word
using the five rules.

Proof. Let σn be the letter with the highest subscript in the braid word. By Lemma 3.2,
we can make our braid word into a braid word with no more than one σn . If this word
has a σn , delete it using the Markov Destabilization Rule. Then do this on the word again,
noting that our highest subscript is now lower than it was before. With each repetition, n
decreases by at least one, so eventually the braid word will be the empty word. Because
Lemma 3.2 terminates in a finite number of steps, we will always get to the empty word
in a finite number of steps.

Theorem 3.1 . Let β and β′ be positive braid words whose braid closures are knots. If β
can be made into β′ using the five rules, then β̂′ ≤g β̂.

Proof. By Lemma 3.3, we know that we can turn β′ into the empty braid word using
the five rules. Because the five rules do not change the number of components in the
closure, that empty braid word corresponds to the unknot. Therefore, if we can go from
β to β′ using these rules, we can then combine that sequence with the sequence from
β′ to the unknot to be able to go from β to the unknot using only the five rules. Using
Lemma 3.1, we have that this sequence is an unknotting sequence of β̂. Therefore, β̂′ is
an intermediate knot on an unknotting sequence of β̂, implying β̂′ ≤g β̂.

Theorem 3.1 tells us that if we get from one positive braid word to another using
these five rules, then we do not need to check how many crossing changes we have used,
as the braid closure of the ending braid word is guaranteed to be Gordian adjacent to the
braid closure of the starting braid word.

4 Sufficient Conditions for Gordian Adjacency

In this section, we present our main results on Gordian adjacency dealing with certain
classes of positive braid knots. We do this constructively using the five rules introduced
in the previous section. To shorten the sequence of knots generated by Lemma 3.2, we
formulate multi-step moves that are combinations of our rules.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020



Tolson H. Bell, David C. Luo, Luke Seaton, and Samuel P. Serra 9

Lemma 4.1 . If n is a positive integer and β is a positive braid on n +1 strands with no
σn in its braid word, then βσn · · ·σ1σ1 · · ·σn =σn · · ·σ1σ1 · · ·σnβ as braids (not allowing
conjugation or Markov destabilization).

Proof. Let 1 ≤ i ≤ n −1. We will show that σn · · ·σ1σ1 · · ·σn commutes with σi . Since the
braid word of β consists of a series of σi of this form, this implies the lemma.

σn · · ·σ1σ1 · · ·σnσi

=σn · · ·σ1σ1 · · ·σiσi+1σi · · ·σn by repeating the Distant Generators Rule

=σn · · ·σ1σ1 · · ·σi+1σiσi+1 · · ·σn by the Neighboring Generators Rule

=σn · · ·σi+1σiσi+1 · · ·σ1σ1 · · ·σiσi+1 · · ·σn by repeating the Distant Generators Rule

=σn · · ·σiσi+1σi · · ·σ1σ1 · · ·σn by the Neighboring Generators Rule

=σiσn · · ·σi+1σi · · ·σ1σ1 · · ·σn by repeating the Distant Generators Rule

=σiσn · · ·σ1σ1 · · ·σn .

Since the Distant Generators Rule and the Neighboring Generators Rule are braid iso-
topies, we have that σi commutes with σn · · ·σ1σ1 · · ·σn only through braid isotopies.

We can also think about the proof of Lemma 4.1 pictorially. The wordσn · · ·σ1σ1 · · ·σn

represents the furthest strand to the right on a braid on n+1 strands being wrapped once
around the other n strands. Any positive braid on the other n strands has no interaction
with the rightmost strand, and so can pass through the rightmost strand. Figure 4 shows
this process for n = 5.

=

Figure 6: Lemma 4.1

The following standard definition will be of great use in proofs of our major results.

Definition 4.2 . A full twist on n strands,∆2
n , is the braid (σn−1 · · ·σ1)n . ∆2

n is in the center
of the braid group Bn , that is, ∆2

n commutes with σi for any 1 ≤ i ≤ n −1 [9].

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020



10 Gordian Adjacency for Positive Braid Knots

Lemma 4.3 . If n is a positive integer, then ∆2
n =σn−1σn−2 · · ·σ1σ1 · · ·σn−2σn−1(∆2

n−1)
= (∆2

n−1)σn−1σn−2 · · ·σ1σ1 · · ·σn−2σn−1 as braids (not allowing conjugation or Markov
destabilization).

Proof. By definition,∆2
n = (σn−1 · · ·σ1)(σn−1 · · ·σ1)n−1. Because T(n,n−1) = T(n−1,n) [1]

and (σ1 · · ·σn−2)n is a valid braid word for T(n−1,n) as explained in Section 2, the closure
of (σn−1 · · ·σ1)n−1 is isotopic to that of (σ1 · · ·σn−2)n . As (σ1 · · ·σn−2)σn−1(σ1 · · ·σn−2)n−1

can be made into (σ1 · · ·σn−2)n by the Markov Destabilization Rule, these two braids have
isotopic closures, and thus the closure of (σ1 · · ·σn−2)σn−1(σ1 · · ·σn−2)n−1 is also isotopic
that of (σn−1 · · ·σ1)n−1. Etnyre and Van Horn-Morris proved that any positive braids
whose closure represent the same link are related by positive Markov moves, braid iso-
topy, and conjugation [5]. Then as (σn−1 · · ·σ1)n−1 and (σ1 · · ·σn−2)σn−1(σ1 · · ·σn−2)n−1

are positive braids on the same number of strands with isotopic braid closures, these
two braids must be related by the Conjugation Rule and isotopy. In fact, the repetitive
nature of the braid words means that the Conjugation Rule is not necessary, as can be
seen in Figure 7. Since this relation requires only braid isotopies, it can be done on any
section of the overall braid word. This implies

∆2
n = (σn−1 · · ·σ1)n

= (σn−1 · · ·σ1)(σn−1 · · ·σ1)n−1

= (σn−1 · · ·σ1)(σ1 · · ·σn−2)σn−1(σ1 · · ·σn−2)n−1

=σn−1σn−2 · · ·σ1σ1 · · ·σn−2σn−1(∆2
n−1).

Lemma 4.1 tells us that these two sections commute.

Lemma 4.3 can be thought of pictorially as pulling the strand that starts furthest to
the right as far up the braid as possible. Figure 7 shows this process for n = 4.

= =

Figure 7: Lemma 4.3

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 2, 2020



Tolson H. Bell, David C. Luo, Luke Seaton, and Samuel P. Serra 11

Bear in mind that Lemma 4.3 can be repeated multiple times to obtain

∆2
n = (σn−1 · · ·σ1σ1 · · ·σn−1)(∆2

n−1)

= (σn−1 · · ·σ1σ1 · · ·σn−1)(σn−2 · · ·σ1σ1 · · ·σn−2)(∆2
n−2)

= (σn−1 · · ·σ1σ1 · · ·σn−1)(σn−2 · · ·σ1σ1 · · ·σn−2) · · · (σ2σ1σ1σ2)(σ1σ1).

By Lemma 4.1, each of the groups in parentheses above can all commute with one
another. Furthermore, these lemmas can be done on any subsequence of our braid word
as they only use braid isotopy and follow the five rules on our overall braid word.

With these relations in mind, we now construct Gordian adjacencies between specific
classes of torus knots. In each step of the following proofs, we do exactly one of the
following:

• rewrite the braid word in a different form for better clarity,

• commute sections of our braid word using some combination of Lemma 4.1 and
the Distant Generators Rule,

• use one of Lemma 4.3, Markov Destabilization Rule, or Neighboring Generators
Rule on some section or sections of our braid word,

• make crossing changes via the Crossing Change Rule.

Lemma 4.4 . If n and k are positive integers with n ≥ 2, then
(σn−1 · · ·σ1)nk+1 = (σn−1 · · ·σ1σ1 · · ·σn−1)kσn−1 · · ·(σ2σ1σ1σ2)kσ2(σ1σ1)kσ1 using braid
isotopies and the Conjugation Rule.

Proof. We proceed by induction on n. When n = 2, (σ1)2k+1 = (σ1σ1)kσ1. Now assume
that this theorem holds true when n = a for some a ≥ 2. When n = a +1, we find

(σa · · ·σ1)(a+1)k+1

= (∆2
a+1)kσa · · ·σ1

= (∆2
aσa · · ·σ1σ1 · · ·σa)kσa · · ·σ1 by Lemma 4.3

= (∆2
a)k (σa · · ·σ1σ1 · · ·σa)kσa · · ·σ1 by Lemma 4.1

= (σa · · ·σ1σ1 · · ·σa)kσa · · ·σ1(∆2
a)k by the Conjugation Rule

= (σa · · ·σ1σ1 · · ·σa)kσa(∆2
a)kσa−1 · · ·σ1 as ∆2

a commutes with σi for all i ≤ a −1

= (σa · · ·σ1σ1 · · ·σa)kσa(σa−1 · · ·σ1)ak+1

= (σa · · ·σ1σ1 · · ·σa)kσa(σa−1 · · ·σ1σ1 · · ·σa−1)kσa−1 · · · (σ2σ1σ1σ2)kσ2(σ1σ1)kσ1.

Hence we have that the last step follows from our inductive hypothesis.
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12 Gordian Adjacency for Positive Braid Knots

Note that the conversion in the preceding lemma is bidirectional, as all braid isotopies
and the Conjugation Rule are reversible. Later, we will use the reverse direction of
Lemma 4.4. Since Lemmas 4.1, 4.3, and 4.4 are combinations of our five rules, they follow
Theorem 3.1, implying each of these processes results in Gordian adjacencies.

We now focus on constructing Gordian adjacencies between torus knots whose
indices differ by one. When going from T(a,b) to T(a −1,c) using the five rules, the first
question that arises is how many crossing changes are required to eliminate all σa−1

from our braid word. The theorem below shows that this process can be done in
⌊

b
a

⌋
steps.

Proposition 4.1 . For all positive integers a and b such that a is coprime to b, there exists

β in Ba−1 such that β̂≤g T(a,b) and dg (T(a,b), β̂) =
⌊

b
a

⌋
.

Proof. T(a,b) can be represented by the braid word (∆2
a)

⌊
b
a

⌋
(σa−1 · · ·σ1)(b (mod a)). Taking

the second section of this word, as T(a,b (mod a)) = T(b (mod a), a) and b (mod a) < a,
the braid word of T(a,b (mod a)) can be changed into the braid word of T(b (mod a), a)
using only braid isotopies and Markov destabilizations [5]. Note that we can still use
the Conjugation Rule because ∆2

a commutes with all letters in our braid word. So there
is a path using our rules from T(a,b (mod a)) to T(b (mod a), a). On this path, we can
pause before the Markov Destabilization Rule is used for the first time. At this point,
the subword has only one copy of σa−1. Moreover, we have only used our rules on our
overall braid word as we have only used braid isotopies.

By Lemma 4.3,

(∆2
a)

⌊
b
a

⌋
= (σa−1 · · ·σ1σ1 · · ·σa−1∆

2
a−1)

⌊
b
a

⌋

= (σa−1 · · ·σ1σ1 · · ·σa−1)

⌊
b
a

⌋
(∆2

a−1)

⌊
b
a

⌋
.

We can then commute (σa−1 · · ·σ1σ1 · · ·σa−1)

⌊
b
a

⌋
so that it is next to the final σa−1 made

by the process above. We know this is possible because for every other σi in that section
of the braid word, i < a −1, so σi commutes with (σa−1 · · ·σ1σ1 · · ·σa−1) by Lemma 4.1.

This results in the section of a braid word (σa−1 · · ·σ1σ1 · · ·σa−1)

⌊
b
a

⌋
σa−1 which is the

only section of the braid word that contains σa−1. We use the Crossing Change Rule to

delete all consecutive pairs of σa−1. Since there are
⌊

b
a

⌋
of these pairs, we need to use⌊

b
a

⌋
crossing changes. This leaves only one σa−1, which we can delete using the Markov

Destabilization Rule. We are left with β. Gordian adjacency follows as we have only used
the five rules.

For the following proofs of our theorems and lemmas, we abbreviate “crossing
changes" as “CCs" for brevity.
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Theorem 4.2 . If n and k are positive integers, then T(n,n2k+1) ≤g T(n+1,(n2−1)k+1).

Proof. We first remove all σn from our braid word using the process described in Propo-
sition 4.1.

T(n +1,(n2 −1)k +1)

= (σn · · ·σ1)(n+1)(n−1)k+1

= (∆2
n+1)(n−1)kσn · · ·σ1

= (σn · · ·σ1σ1 · · ·σn∆
2
n)(n−1)kσn · · ·σ1 by Lemma 4.3

= (∆2
n)(n−1)k (σn · · ·σ1σ1 · · ·σn)(n−1)kσn · · ·σ1

→ (∆2
n)(n−1)kσn(σn−1 · · ·σ1σ1 · · ·σn−1)(n−1)kσn−1 · · ·σ1(applying (n −1)k CCs)

= (∆2
n)(n−1)k ((σn−1 · · ·σ1σ1 · · ·σn−1)k )n−1σn−1 · · ·σ1.

Next, we removeσn−1 from all but one of the n−1 copies of (σn−1 · · ·σ1σ1 · · ·σn−1)k , then
remove σn−2 from all of the copies from which σn−1 was removed except one, and so on:

(∆2
n)(n−1)k ((σn−1 · · ·σ1σ1 · · ·σn−1)k )n−1σn−1 · · ·σ1

applying (n −2)k CCs we find

→ (∆2
n)(n−1)k (σn−1 · · ·σ1σ1 · · ·σn−1)kσn−1((σn−2 · · ·σ1σ1 · · ·σn−2)k )n−2σn−2 · · ·σ1

...

applying 3k CCs,

→ (∆2
n)(n−1)k (σn−1 · · ·σ1σ1 · · ·σn−1)kσn−1 · · · (σ3σ2σ1σ1σ2σ3)3kσ3σ2σ1

applying 2k CCs,

→ (∆2
n)(n−1)k (σn−1 · · ·σ1σ1 · · ·σn−1)kσn−1 · · · (σ3σ2σ1σ1σ2σ3)kσ3(σ2σ1σ1σ2)2kσ2σ1

finally, applying k CCs,

→ (∆2
n)(n−1)k (σn−1 · · ·σ1σ1 · · ·σn−1)kσn−1 · · · (σ3σ2σ1σ1σ2σ3)kσ3(σ2σ1σ1σ2)kσ2(σ1σ1)kσ1

Lemma 4.4 tells us that our braid word, excluding the initial (∆2
n)(n−1)k , can be con-

verted to (σn−1 · · ·σ1)nk+1 using braid isotopy and the Conjugation Rule. Bear in mind
that we can still use the Conjugation Rule on this subword here because ∆2

n commutes
with everything. This implies

(∆2
n)(n−1)k (σn−1 · · ·σ1σ1 · · ·σn−1)kσn−1 · · · (σ3σ2σ1σ1σ2σ3)kσ3(σ2σ1σ1σ2)kσ2(σ1σ1)kσ1

= (∆2
n)(n−1)k (σn−1 · · ·σ1)nk+1 using Lemma 4.4

= (σn−1 · · ·σ1)n2k+1

= T(n,n2k +1).
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14 Gordian Adjacency for Positive Braid Knots

Note that u(T(n+1,(n2−1)k+1)−u(T(n,n2k+1) = (n)((n2−1)k)
2 − (n−1)(n2k)

2 = n2k−nk
2 =

(n)(n−1)
2 k. The number of crossing changes we have made is (n−1)k+(n−2)k+·· ·+2k+

k = (n)(n−1)
2 k, which is exactly the difference in their unknotting numbers. Therefore, the

torus knot T(n,n2k +1) ≤g T(n +1,(n2 −1)k +1).

Theorem 4.3 . If n and k are positive integers, then T(n,n2k +n +1) ≤g T(n +1,(n2 −
1)k +n).

Proof. We first note that by isotopy, the subword (σn · · ·σ1)n can be changed intoσn(σn−1 · · ·σ1)n+1

using identical logic as in the proof of Lemma 4.3.

T(n +1,(n2 −1)k +n)

= (σn · · ·σ1)(n+1)(n−1)k+n

= ((σn · · ·σ1)(n+1))(n−1)k (σn · · ·σ1)n

= (∆2
n+1)(n−1)kσn(σn−1 · · ·σ1)n+1

= (∆2
n+1)(n−1)kσnσn−1 · · ·σ1(σn−1 · · ·σ1)n

= (∆2
n+1)(n−1)kσn · · ·σ1∆

2
n

= (σn · · ·σ1σ1 · · ·σn∆
2
n)(n−1)kσn · · ·σ1∆

2
n

= (∆2
n)(n−1)k (σn · · ·σ1σ1 · · ·σn)(n−1)kσn · · ·σ1∆

2
n

= (∆2
n)(n−1)k+1(σn · · ·σ1σ1 · · ·σn)(n−1)kσn · · ·σ1.

From here, we proceed in the same way as in the proof of Theorem 4.2. Since we have
one extra ∆2

n , we end with T(n,n2k +n +1) as the second number is increased by n from
the previous case.

When proving adjacencies between torus knots of the form T(n, a) and T(n +1,b),
Theorems 4.2 and 4.3 cover two cases: when b is congruent to either 1 or n modulo n2−1
respectively. In general, the number of cases is equal to the amount of numbers between
1 and n2 −1 inclusive that are coprime with n +1, which equals (n −1)(φ(n +1)), where
φ is the Euler Totient function. For n = 2, this value is 2, so all cases are considered. In
fact, the combinations of Theorems 4.2 and 4.3 give an alternate proof of one direction
of Feller’s Theorem 3 (Theorem 1.2), as it comes as a corollary that T(2, a) ≤g (3,b) if

a ≤ 4b+1
3 . Next, we consider the case when n = 3, implying that b must be congruent to

either 1, 3, 5, or 7 modulo 8 = 32−1. These cases are dealt with in the four lemmas below,
the first two of which follow from Theorems 4.1 and 4.2 respectively.

Lemma 4.5 . If k is a positive integer, then T(3,9k +1) ≤g T(4,8k +1).

Lemma 4.6 . If k is a positive integer, then T(3,9k +4) ≤g T(4,8k +3).

Lemma 4.7 . If k is a positive integer, then T(3,9k +5) ≤g T(4,8k +5).
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Proof. First, we eliminate all σ3 from our braid word by a similar process to Proposition
4.1. We have that

T(4,8k +5)

= (∆2
4)2k+1σ3σ2σ1

= (∆2
3σ3σ2σ1σ1σ2σ3)2k+1σ3σ2σ1

= (∆2
3)2k+1(σ3σ2σ1σ1σ2σ3)2k+1σ3σ2σ1

→ (∆2
3)2k+1σ3(σ2σ1σ1σ2)2k+1σ2σ1 (applying 2k +1 CCs)

= (∆2
3)2k+1(σ2σ1σ1σ2)2k+1σ2σ1

Then, we turn our braid on three strands into the required torus knot using similar ideas
to Theorem 4.2, with some changes to account for the extra copy of σ2σ1σ1σ2.

= (∆2
3)2k+1(σ2σ1σ1σ2)kσ2σ1σ1σ2(σ2σ1σ1σ2)kσ2σ1

→ (∆2
3)2k+1(σ2σ1σ1σ2)kσ2σ1σ1(σ1σ1)kσ1 (applying k +1 CCs)

= (∆2
3)2k+1(σ2σ1σ1σ2)k (σ1σ1)kσ1σ2σ1σ1 commuting σ1’s around the end.

= (∆2
3)2k+1(σ2σ1σ1σ2σ1σ1)kσ1σ2σ1σ1

= (∆2
3)2k+1(σ2σ1σ2σ1σ2σ1)kσ2σ1σ2σ1

= (σ2σ1)3(2k+1)+3(k)+2

= (σ2σ1)9k+5

= T(3,9k +5).

Note that u(T(4,8k +5))−u(T(3,9k +5)) = (12k +6)− (9k +4) = 3k +2, which is exactly
the number of crossing changes we have used. Therefore, the torus knot T(3,9k +1) ≤g

T(4,8k +1).

Lemma 4.8 . If k is a positive integer, then T(3,9k +8) ≤g T(4,8k +7).

Proof. As in the previous lemma, we start by removing all σ3 from our braid word.

T(4,8k +7)

= ((σ3σ2σ1)4)2k+1σ3σ2σ1σ3σ2σ1σ3σ2σ1

= (∆2
4)2k+1σ1σ2σ3σ2σ1σ2σ1σ2σ1

= (∆2
3σ3σ2σ1σ1σ2σ3)2k+1σ1σ2σ3∆

2
3

= (∆2
3)2k+2σ1σ2(σ3σ2σ1σ1σ2σ3)2k+1σ3

→ (∆2
3)2k+2σ1σ2σ3(σ2σ1σ1σ2)2k+1 (applying 2k +1 CCs)

= (∆2
3)2k+2σ1σ2(σ2σ1σ1σ2)2k+1
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16 Gordian Adjacency for Positive Braid Knots

Then, we once more convert our three-strand braid to the required form, using a few
more steps to deal with the technicalities from the added generators.

= (∆2
3)2k+2σ1σ2(σ2σ1σ1σ2)kσ2σ1σ1σ2(σ2σ1σ1σ2)k

→ (∆2
3)2k+2σ1(σ1σ1)kσ1σ1σ2(σ2σ1σ1σ2)k (applying k +1 CCs)

= (∆2
3)2k+2(σ1σ1)kσ1σ1σ1σ2(σ2σ1σ1σ2)k

= (∆2
3)2k+2σ1σ1σ1σ2(σ2σ1σ1σ2)k (σ1σ1)k commuting σ1’s around the end.

= (∆2
3)2k+2σ1σ1σ1σ2(σ2σ1σ1σ2σ1σ1)k

= (∆2
3)2k+2σ1σ1σ1σ2(σ2σ1σ2σ1σ2σ1)k

= ((σ2σ1)3)2k+2σ1σ2σ1σ1((σ2σ1)3)k commuting σ1’s around the end.

= ((σ2σ1)3)2k+2σ2σ1σ2σ1((σ2σ1)3)k

= (σ2σ1)3(2k+2)+2+3(k)

= (σ2σ1)9k+8

= T(3,9k +8).

Note that u(T(4,8k +7))−u(T(3,9k +8)) = (12k +9)− (9k +7) = 3k +2, which is exactly
the number of crossing changes we have used. Therefore, the torus knot T(3,9k +8) ≤g

T(4,8k +7).

Theorem 4.4 . Let a and b be positive integers such that a is coprime to 3 and b is coprime
to 4. If a ≤ 9b+5

8 , then T(3, a) ≤g T(4,b).

Proof. This proof utilizes the four lemmas above, which cover the four possible cases for
a torus knot of index four. We now go through each lemma and replace the number of
twists in our 4-strand torus knot with b. For Lemma 4.5, b = 8k +1, so

T (3,9k +1) = T

(
3,9

(
b −1

8

)
+1

)
= T

(
3,

9b

8
− 1

8

)
= T

(
3,

⌊
9b +5

8

⌋)
≤g T(4,b).

For Lemma 4.6, b = 8k +3, so

T(3,9k +4) = T

(
3,9

(
b −3

8

)
+4

)
= T

(
3,

9b

8
+ 5

8

)
= T

(
3,

⌊
9b +5

8

⌋)
≤g T(4,b).

For Lemma 4.7, b = 8k +5, so

T(3,9k +5) = T

(
3,9

(
b −5

8

)
+5

)
= T

(
3,

9b

8
− 5

8

)
= T

(
3,

⌊
9b +5

8

⌋
−1

)
≤g T(4,b).

This seems to break the trend, but note that
⌊

9b+5
8

⌋
= 9b+3

8 in this case, which is divisible

by 3 and is therefore not a torus knot. This implies we need to show the index one lower
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to prove the desired result. For Lemma 4.8, b = 8k +7, so

T(3,9k +8) = T

(
3,9

(
b −7

8

)
+8

)
= T

(
3,

9b

8
+ 1

8

)
= T

(
3,

⌊
9b +5

8

⌋)
≤g T(4,b).

These results show that the torus knot T
(
3,

⌊
9b+5

8

⌋)
≤g T(4,b). By Feller’s Theorem 2

(Theorem 1.1), this means that the torus knot T(3, a) ≤g T(4,b) if a ≤ 9b+5
8 .

We can also use a similar process to find Gordian adjacencies between torus knots
whose indices differ by more than one. Below, we explore Gordian adjacencies between
torus knots of index two and index four. Note that for T(2,b) to be a torus knot, b must be
congruent to either 1 or 3 modulo 4. These provide the two cases we split our argument
into. In each case, we first remove all σ3 using a similar process to Proposition 4.1, then
after some technical manipulations remove all σ2 in two consecutive stages.

Lemma 4.9 . If k is a positive integer, then T(2,6k +3) ≤g T(4,4k +1).

Proof. By definition, we have

T(4,4k +1)

= (σ3σ2σ1)4k+1

= (∆2
4)kσ3σ2σ1

= (∆2
3σ3σ2σ1σ1σ2σ3)kσ3σ2σ1

= (∆2
3)k (σ3σ2σ1σ1σ2σ3)kσ3σ2σ1

→ (∆2
3)kσ3(σ2σ1σ1σ2)kσ2σ1 (applying k CCs)

= (∆2
3)k (σ2σ1σ1σ2)kσ2σ1

= (σ2σ1σ2σ1σ2σ1)k (σ2σ1σ1σ2)kσ2σ1

= (σ2σ1σ1σ2σ1σ1)k (σ2σ1σ1σ2)kσ2σ1

= (σ2σ1σ1σ2σ1σ1σ2σ1σ1σ2)kσ2σ1

→σ2(σ1σ1σ2σ1σ1σ2σ1σ1)kσ2σ2σ1 (applying k −1 CCs)

= (σ1σ1σ2σ1σ1σ2σ1σ1)kσ1σ2σ1σ1

= (σ1σ1)k (σ2σ1σ1σ2)k (σ1σ1)kσ1σ2σ1σ1

= (σ1σ1)2k+1(σ2σ1σ1σ2)kσ2σ1

→ (σ1σ1)2k+1σ2(σ1σ1)kσ1 (k CCs)

= (σ1)2(2k+1)+2(k)+1

= (σ1)6k+3

= T(2,6k +3).
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18 Gordian Adjacency for Positive Braid Knots

Note that u(T(4,4k+1))−u(T(2,6k+3)) = 6k−(3k+1) = 3k−1, which is exactly how many
crossing changes we have used. Therefore, the torus knot T(2,6k +3) ≤g T(4,4k +1).

Lemma 4.10 . If k is a positive integer, then T(2,6k +5) ≤g T(4,4k +3).

Proof. By definition, we have

T(4,4k +3)

= (σ3σ2σ1)4k+3

= (∆2
4)kσ3σ2σ1σ3σ2σ1σ3σ2σ1

= (∆2
4)kσ3σ2σ1σ2σ3σ2σ1σ2σ1

= (∆2
3σ3σ2σ1σ1σ2σ3)kσ1σ2σ3σ2σ1σ2σ1σ2σ1

= (∆2
3)k+1(σ3σ2σ1σ1σ2σ3)kσ1σ2σ3

= (∆2
3)k+1σ1σ2(σ3σ2σ1σ1σ2σ3)kσ3

→ (∆2
3)k+1σ1σ2σ3(σ2σ1σ1σ2)k (applying k CCs)

= (∆2
3)k+1σ1σ2(σ2σ1σ1σ2)k

= (σ2σ1σ2σ1σ2σ1)k+1σ1σ2(σ2σ1σ1σ2)k

= (σ2σ1σ1σ2σ1σ1)k+1σ1σ2(σ2σ1σ1σ2)k

= (σ2σ1σ1σ2σ1σ1)kσ2σ1σ1σ2σ1σ1σ1σ2(σ2σ1σ1σ2)k

= (σ2σ1σ1σ2σ1σ1)kσ1σ1σ1σ2σ1σ1σ2σ2(σ2σ1σ1σ2)k

→ (σ2σ1σ1σ2σ1σ1)kσ1σ1σ1σ2σ1σ1(σ2σ1σ1σ2)k (applying one CC)

= (σ2σ1σ1σ2σ1σ1σ2σ1σ1σ2)kσ2(σ1)5

→σ2(σ1σ1σ2σ1σ1σ2σ1σ1)k (σ1)5 (applying k CCs)

=σ2(σ2σ1σ1σ2)k (σ1σ1σ1σ1)k (σ1)5

→ (σ1σ1)kσ2(σ1σ1σ1σ1)k (σ1)5 (applying k CCs)

= (σ1σ1)k (σ1σ1σ1σ1)k (σ1)5

= (σ1)2(k)+4(k)+5

= (σ1)6k+5

= T(2,6k +5).

Note that u(T(4,4k +3))−u(T(2,6k +5)) = 6k +3− (3k +2) = 3k +1, which is exactly
how many crossing changes we have used. Therefore, the torus knot T(2,6k +5) ≤g

T(4,4k +3).

Theorem 4.5 . Let a and b be odd positive integers. If a ≤ 3b+3
2 , then T(2, a) ≤g T(4,b).
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Proof. This proof follows the same structure as the proof of Theorem 4.4. For Lemma
4.9, b = 4k +1, so

T(3,6k +3) = T

(
3,6

(
b −1

4

)
+3

)
= T

(
3,

3b +3

2

)
≤g T(4,b).

For Lemma 4.10, b = 4k +3, so

T(3,6k +5) = T

(
3,6

(
b −3

4

)
+5

)
= T

(
3,

3b +1

2

)
≤g T(4,b).

Note that in the second case, 3b+3
2 is even, so as before we only need to show the number

one lower. By Feller’s Theorem 2 (Theorem 1.1), we have that the torus knot T(2, a) ≤g

T(4,b) if a ≤ 3b+3
2 .

While we conjecture that the converse of Theorem 4.4 is true, we know that the
converse of Theorem 4.5 is not: we have found that T(2,13) ≤g T(4,7).

So far, all of the Gordian adjacencies presented have been between torus knots. We
next consider which positive braid w we can concatenate another positive braid β′ in Bn

with. In doing so, we want the concatenation to result in a longer positive braid β in Bn

whose closure is Gordian adjacent to the closure of β′. Note that w must always have
even length for both β̂ and β̂′ to be knots, as the unknotting formula `−n+1

2 must result in
an integer. If w satisfies the following properties, Gordian adjacency can be guaranteed.

Theorem 4.6 . Let β in Bn be a positive braid where β= β′w and β̂ and β̂′ are knots. If ŵ
is a link with n components, then β̂′ ≤g β̂.

Proof. By Lemma 3.2, we can use the five rules to make β′w into a new braid word β′w ′

where w ′ has no more than one σn−1. As none of the five rules change the number of
components in the braid closure of the subword we perform the rules on, ŵ ′ must have
n components. If w ′ had only one σn−1, we could delete the σn−1 using the Markov
Destabilization Rule and express w ′ on n −1 strands; since ŵ ′ has n components, this
cannot be done. Therefore, w ′ has no σn−1. Using Lemma 3.2 on β′w ′ again leads to a
w ′′ with no σn−2. By repeating this process n times, we can turn β′w into β′ using the
five rules. Since there is a sequence using the five rules that goes from β to β′, β̂′ ≤g β̂.

Theorem 4.6 tells us that we can add a braid word whose closure is an n-component
link (for instance, ∆2

n) to any positive braid β in Bn to get a new knot K such that that
β̂≤g K. In the other direction, deleting any subword whose closure is an n-component
link preserves Gordian adjacency to the original braid word. This theorem also provides
an alternate proof for a weakened version of Feller’s Theorem 2 (Theroem 1.1), as it
shows T(a,c) ≤g T(a,d) if c = d −ka for some positive integer k.
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5 Positive Paths

The concept of Gordian adjacency is closely tied to the concept of unknotting sequences,
as a knot K1 ≤g K2 if and only if K1 is contained in an unknotting sequence of K2 [6].
In finding Gordian adjacencies between positive braid knots, we are really describing
unknotting sequences that contain positive braid knots. The five rules give us further
tools to explore these unknotting sequences.

Definition 5.1 . A positive path from a positive braid knot β̂2 to a positive braid knot β̂1 is
a subsequence of an unknotting sequence of β̂2, β̂2 → α̂1 → . . . → α̂n → β̂1, such that each
α̂i is a positive braid knot.

Note that every Gordian adjacency we show in this paper is shown through a positive
path.

Theorem 5.1 . Every positive braid knot has an unknotting sequence that is a positive
path.

Proof. The combination of Lemmas 3.1 and 3.3 tells us that every positive braid word
that represents a knot can be unknotted using the five rules, and that this procedure
forms an unknotting sequence. As the application of any one of our rules to any positive
braid results in a positive braid, this unknotting sequence contains only positive braid
knots.

The next question we consider is how many unknotting sequences of positive braid
knots are positive paths. Since every knot with an unknotting number greater than
one has infinetly many unknotting sequences [1], we naturally ask ourselves whether
there are an infinite number of unknotting sequences of a positive braid knot β̂ that are
positive paths. Our next theorem implies that any positive braid knot has only finitely
many positive paths.

Lemma 5.2 . If β is a positive braid in Bn whose closure is a knot, then each generator σi

for 1 ≤ i ≤ n −1 must appear at least once in β.

Proof. Assume β is a positive braid in Bn that has no σi for some 1 ≤ i ≤ n −1. Note that
β= β1β2 for positive braids β1 and β2, where j < i for all σ j in β1 and j > i for all σ j in
β2. We know this can be done via the Distant Generators Rule because any generator
that ends up in β2 has subscript at least two greater than the subscript of any generator
that ends up in β1. As shown by the figure below, we see that β̂ must be a link, as it has at
least two components β̂1 and β̂2. By the contrapositive, if β̂ is a knot, then there are no
σi that β does not contain.
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Figure 8: A Braid with No σi

Lemma 5.3 . Let β̂ be a positive braid knot such that β is in Bn . If there exists 1 ≤ i ≤ n−1
such that σi appears exactly once in β, then β̂ can be expressed as the closure of a positive
braid β′ in Bn−1.

Proof. We first note that β = β1σiβ2 for positive braids β1 and β2, where j < i for all
generators σ j in β1 and j > i for all σ j in β2. Similarly to the previous lemma, each
generator can be moved to the correct side of the braid word using the Distant Generators
Rule and the Conjugation Rule, as the generator gets moved around the end of the braid
word while avoiding σi . This works because any generator that ends up in β2 has
subscript at least two greater than the subscript of any generator that ends up in β1.

After expressing β in this form, in Figure 9 below, we see that we can isotopy the
closure of β1σiβ2 into the closure of β1β3, where β3 is the same braid word as β2, but
with each subscript decreased by one. Since β1 and β3 are in Bn−1, this completes the
proof.

Lemma 5.4 . If β̂ is a positive braid knot with unknotting number m, then β̂ can be
expressed as the closure of a positive braid on 2m +1 strands or fewer.

Proof. Let n be the fewest number of strands on which β̂ can be expressed as a positive
braid. By [7], we have

u(β̂) = m = `−n +1

2
,

implying `= 2m +n −1. Since we have n −1 generators σ1, · · · ,σn−1, Lemmas 5.2 and
5.3 give us that each of these generators must appear at least twice. Therefore, the
length of our braid word must be at least twice the number of generators, so `≥ 2(n −1).
Substituting, we get 2m +n −1 ≥ 2(n −1), implying n ≤ 2m +1. This tell us that 2m +1 is
greater than or equal to the fewest number of strands on which β̂ can be expressed as a
positive braid.

Theorem 5.2 . For each positive integer m, there are a finite number of positive braid
knots with unknotting number m.
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Figure 9: A Braid with Only One σi

Proof. Let β̂ be a positive braid knot with unknotting number m. By Lemma 5.4, we know
that br d(β̂) ≤ 2m +1. This means that β̂ can be expressed on 2m +1 strands, as any knot
with a lower index can simply add each generator between its index and 2m inclusive
to the end of its braid word to get a braid on 2m +1 strands with an isotopic closure.
If a positive braid with unknotting number m is expressed on 2m +1 strands, by the
unknotting number formula for positive braids, `= 2m +n −1 = 2m + (2m +1)−1 = 4m.
So we have 4m letters in our braid word, each of which must be one of 2m generators.
So there are no more than (2m)4m positive braid knots of unknotting number m.

Naturally, most of these (2m)4m possible braid words have unknotting number less
than m, are links, or form isotopic closures, so the actual number of positive braid knots
of unknotting number m is drastically lower. The goal here was simply to set some finite
bound on the number of positive braid knots of a given unknotting number. This is not
possible for knots in general, it is known that that there are an infinite number of knots
of any unknotting number greater than zero. [1].

Conjecture 5.5 . If β̂1 and β̂2 are positive braid knots such that β̂1 ≤g β̂2, then there exists
a positive path from β̂2 to β̂1.

This conjecture is true for all positive braid knots we show in this paper to be Gordian
adjacent. It is also a statement that shows the value of Theorem 5.2. If we have two
positive braid knots known to be Gordian adjacent, we only need to look at a finite
number of knots to determine whether a positive path from one to the other exists. If
the conjecture is true, then there is only a finite number of possible positive paths to
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check before we can determine that some positive braid knot is not Gordian adjacent to
another.
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