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Configuration Spaces for the Working
Undergraduate

By Lucas Williams

Abstract. Configuration spaces form a rich class of topological objects which are not
usually presented to an undergraduate audience. Our aim is to present configuration
spaces in a manner accessible to the advanced undergraduate. We begin with a slight
introduction to the topic before giving necessary background on algebraic topology. We
then discuss configuration spaces of the euclidean plane and the braid groups they give
rise to. Lastly, we discuss configuration spaces of graphs and the various techniques
which have been developed to pursue their study.

1 Introduction to Configuration Spaces

Configuration spaces usually fall outside of the realm of undergraduate studies due to the
necessary use of advanced algebraic topological techniques. However, the motivation, in-
tuition, and basic theory concerning these spaces are quite accessible to undergraduates.
This document is intended to present undergraduates with a basic introduction to the
topic so that more advanced resources become accessible. We hope that by beginning
with this introduction, undergraduates may carry out research projects in the field of
configuration spaces. We begin with a motivating real world problem/example.

Imagine the euclidean plane, R2, as the floor of an automated factory warehouse.
There are n robots which must move around the warehouse to complete their pro-
grammed tasks. The statement of the problem is as follows: which paths can each
of the robots take such that no collisions between robots occur? We may answer this
question by computing the space of all possible arrangements of n distinct points in R2.
This space encodes essential information about the safe paths these robots may take.
The aforementioned space is precisely the configuration space of n points in R2. Thus,
computing this space allows us to use topological techniques to gain useful information
in regard to the above query.

Mathematics Subject Classification. 55R80, 20F36, 57-01
Keywords. configuration spaces of graphs, non-k-equal configurations, braid groups, graph braid

groups



2 Configuration Spaces for the Working Undergraduate

Definition 1.1. The configuration space of n points in a topological space X is

Confn(X) := Xn − {(x1, . . . , xn) ∈ Xn | xi = x j for some i 6= j }

When applied to the preceding example this definition may be interpreted as all
possible arrangements of n robots around the factory floor such that no two robots
occupy the same location. We can thus use this space to carry out motion planning. It is
worth noting that as n grows large, Confn(X) becomes increasingly difficult to compute,
regardless of our choice of X. This increased complexity is, in large part, due to the
fact that the dimension of our configuration space is dim(X)n . This computational
difficulty motivates the use of advanced topological techniques in order to speak about
the properties of such spaces. Before diving into more difficult content we will work
through a straightforward example.

Example 1.2. Conf2(R)
Consider the following two configurations of two points in the real line:
First place a point at zero and at one. Second, place a point at 2 and at -1.

−2 −1 0 1 2

−2 −1 0 1 2

Figure 1: Two configurations in Conf2(R)

These configurations are located in Conf2(R) := R2 − {(x1, x2) | x1 = x2} at (0,1) and
(2,−1) as presented in the following diagram.

−3 −2 −1 1 2 3

−2

−1

1

2

Figure 2: Conf2(R)
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L. Williams 3

Note that we have chosen the blue point in our configurations to correspond to
the x coordinate in our configuration space, and the red point to correspond to the y
coordinate.

A related object of interest is the unlabeled configuration space of n points in a
topological space X. Intuitively, we wish to forget the order of the labels on the points
in a configuration. To approach this idea formally, we first note that there is a free
action of the symmetric group of n elements, Sn , on Confn(X) given by σ(x1, . . . , xn) =
(xσ(1), . . . , xσ(n)). The unlabeled configuration space of n points in X is defined as the
quotient of the labeled configuration space by this action of the symmetric group; we
write Confn(X) := Confn(X)/Sn . To illustrate the difference between these two spaces,
we return to the example of Conf2(R). The following configurations are distinct in the
labeled configuration space, Conf2(R). However, in the unlabeled configuration space,
Conf2(R), these configurations are equivalent.

−2 −1 0 1 2 −2 −1 0 1 2

Figure 3: Two equivalent configurations in Conf2(R)

Hearkening back to our example of Conf2(R)— the unlabeled configuration space of
two points in R is realized as the area below the diagonal in Conf2(R).

We will delve further into similar constructions, exploring configuration spaces of a
gamut of topological spaces. However, before doing so, we must first discuss a few of
the previously mentioned advanced topological techniques. These techniques, namely,
homotopy, the fundamental group, and cubical homology, will be developed in section
two of this paper. Section three will deal with configurations of the euclidean plane.
In section four we will discuss the braid groups which arise from configurations of the
euclidean plane. In section five, we will dive into the fascinating new field of configura-
tion spaces of graphs. Lastly, in section six, we will explore a new construction called
the non-k-equal configuration space of a graph. If the reader is already familiar with
homotopy, the fundamental group, and cubical homology, then we strongly encourage
skipping ahead to section three where the more advanced topics begin.

2 Algebraic Topology Background

This section provides background on homotopy, the fundamental group, and cubical
homology. While the former two topics are required to fully understand the content of
this paper, the latter is necessary only for the section concerning graphs.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



4 Configuration Spaces for the Working Undergraduate

2.1 Homotopy and the Fundamental Group

The fundamental group of a topological space is an important invariant which encodes
essential information concerning the general shape of a space. This structure is con-
structed by forming a group of all loops based at a point in a space. We begin this section
by rigorously developing this group, starting with the concept of homotopy.

Definition 2.1. Let X be a (topological) space. A (continuous) path, f : I → X (where
I = [0,1]), in X is called a loop based at x0 ∈ X if f (0) = f (1) = x0.

Definition 2.2. Given a space X and two paths f , g : I → X, we define the concatenation
of f and g as

f ∗ g :=
{

f (2s) if 0 ≤ s ≤ 1
2

g (2s −1) if 1
2 ≤ s ≤ 1

We may check, by leveraging the pasting lemma, that the concatenation of two paths
(loops) is again a path (loop). Note that we may define concatenation on two paths only
if they have an endpoint in common. Thus, in the case where we concatenate two loops
based at the same point, concatenation is a perfectly valid operation.

Consider, however, that we want the set of all loops based at a point to form a group
under concatenation. Since concatenation as defined above is not associative, and thus
does not give rise to a group, we define what we claim to be an equivalence relation on
loops. This relation, refered to as homotopy, will allow us to regard to loops as equivalent
if one can be continuously deformed into the other. Thus, if we wish to show that two
loops f , g based at x0 ∈ X are homotopic, we are on the lookout for a family of loops { ft }
based at x0 ∈ X such that we have a map for each t ∈ [0,1] with f0 = f and f1 = g . This is
formalized by the notion of homotopy.

Definition 2.3. Let f , g : X → Y be maps. We say that f is homotopic to g if there exists
some continuous map F: X× I → Y such that F(x,0) = f (x) and F(x,1) = g (x) for all x ∈ X.
In such a case we call F a homotopy from f to g , and write f ' g .

We might worry that no such family of maps { ft } is present in the definition of a
homotopy; but fret not! Given paths f , g in a space X, let F be a homotopy from f to
g . By setting ft (x) = F(x, t), we construct the promised family of maps. We give the
following illustration as an example of the continuous deformation of two paths (with
shared endpoints) into each other.

Note that in order to call two loops based at a certain point homotopic, we impose the
additional restriction that each member of our family of paths must also be a loop based
at the same point. We present the following lemmas and leave the proofs as exercises.

Lemma 2.4. Homotopy is an equivalence relation.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



L. Williams 5

x0 x1

f ′

f

X

Figure 4: A homotopy

Lemma 2.5. Let f , g be loops based at x0 ∈ X, and [ f ], [g ] represent the set of homotopy
classes of f and g respectively. Then [ f ]∗ [g ] = [ f ∗ g ] is well-defined.

Furthermore, we define the inverse of a homotopy class [ f ] to be [ f −1] where f −1 =
f (1 − s) for 0 ≤ s ≤ 1. From a geometric viewpoint, the inverse of a loop is simply
traversing the loop in the opposite direction.

Theorem 2.6. The set of all homotopy classes of loops in X based at a point x0 forms a
group under concatenation.

The proof of this theorem is long but straightforward, and as such is left as an exercise
to the reader.

Definition 2.7. The group of Theorem 2.6 is called the fundamental group of X based
at x0, and is written π1(X, x0). It is also known as the first homotopy group.

2.2 Cubical Homology

The fundamental group and higher homotopy groups are useful topological invariants.
However, they come with a significant drawback. While it is relatively easy to prove
things about homotopy groups, they are notoriously hard to compute. For example,
showing that the fundamental group of S1 is the integers usually takes multiple pages,
and this is one of the more basic constructions! Thus, we would like a useful topological
invariant which is a little more computationally friendly. The homology groups precisely
fill this niche. Homology, from an intuitive perspective, is a complicated way of counting
the number of ‘holes’ of varying dimension in a topological space. There are many
different homology theories to choose from, simplicial homology and singular homology
being quite common. It is worth noting however, that regardless of which theory we
choose, the resulting homology groups will be the same, provided the spaces we work
with are sufficiently ‘nice’. Within the context of this paper we will use cubical homology
when working with configuration spaces of graphs, which are indeed sufficiently ‘nice’.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



6 Configuration Spaces for the Working Undergraduate

Furthermore, configuration spaces of graphs are defined as a particular subset of a
product of graphs viewed as topological spaces. Graphs can be thought of as a collection
of 1-cubes and 0-cubes together with ‘gluing’ information. As the product of cubes
is again a cube, (the same cannot be said for simplices), the rarely utilized cubical
homology will be most conducive to our investigation. This might not make complete
sense yet. However, as we delve further into homology, and later configuration spaces
of graphs, keeping this decision in the back of our minds will help to shed light on the
benefits of cubical homology. The following exposition of cubical homology is directly
inspired by the excellent work of Kaczynski, Mischaikow, and Mrozek in Sections 2.1 and
2.2 of [11]. However, we have condensed much of their exposition to only include what
is absolutely essential to this paper.

Definition 2.8. An elementary interval is a closed interval I ⊂R of the form [l , l +1] or
[l , l ] for some l ∈ Z. For ease of notation we write [l ] = [l , l ]. Elementary intervals of
length one are called non-degenerate intervals and elementary intervals of length zero
are called degenerate intervals.

Definition 2.9. An elementary cube Q is a finite product of elementary intervals:

Q := I1 ×·· ·× Id .

The dimension of Q is the number of non-degenerate intervals in the product I1×·· ·×Id .

Definition 2.10. A face of an elementary cube Q is an elementary cube P such that P ⊆ Q.
If dim(P) = dim(Q)−1 then P is called a primary face of Q.

Example 2.11. An Elementary Cube
Let Q = [0,1]× [2]× [−2,−1] ⊂R3. Thus, Q is a product of three elementary intervals

two of which are non-degenerate. Therefore, Q is an elementary cube with dim(Q) =
2. Furthermore, Q has four primary faces, namely, [0,1]× [2]× [−2], [0,1]× [2]× [−1],
[0]× [2]× [−2,−1], and [1]× [2]× [−2,−1].

Definition 2.12. A set X is a cubical complex if it can be written as a finite union of
elementary cubes.

Example 2.13. A Cubical Complex
Let X = {[0,1]× [0], [0,1]× [1], [0]× [0,1], [1]× [0,1]}. Thus, X is the union of four

elementary cubes each of dimension one. In fact, X is realizable as the outline of a square
in R2.

Definition 2.14. The set of elementary cubes of dimension k, or k-cells, in a cubical
complex X is denoted Kk (X).

To further extrapolate this idea from a geometric perspective, given a cubical complex
X we may call K0(X) the vertices of X and K1(X) the edges of X.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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Definition 2.15. Let X be a cubical complex. The k-chains of X, written Ck (X) is the free
abelian group generated by the k-cubes of X.

Ck (X) := {c =∑
αi Qi | Qi ∈Kk (X), αi ∈Z}

Now that we have enough machinery to competently discuss cubical complexes we
can build up the notion of a boundary operator.

Proposition 2.16. Let Q be an elementary cube in Rd such that dim(Q) > 1.Then there
exist unique elementary cubes I,P such that

I =
{

[l , l ] l ∈Z
[l , l +1] l ∈Z and Q = I×P

The proof is straightforward and left as an exercise to the reader.

Definition 2.17 (The Boundary Operator). Let Q be an elementary cube in Rd . By
Proposition 2.16, there exists a unique elementary interval I and a unique elementary
cube P such that Q = I×P. We inductively define the boundary operator on Q as:

∂Q = ∂I×P+ (−1)dim(I)I×∂P

where

∂I =
{

0 if I = [l , l ]

[l +1, l +1]− [l , l ] if I = [l , l +1]

Furthermore, for c ∈ Ck (X) such that c =∑
αi Qi , we define ∂c =∑

αi∂Qi .

A more efficient method of computing the boundary of an elementary cube is given
in [11, Proposition 2.26]

Proposition 2.18. ∂◦∂= 0

The proof of this proposition appears in [11, Proposition 2.37]. It relies on the fact
that ∂ is a linear operator and proceeds by induction on the embedding number of
elementary cubical chains.

The set of free abelian groups generated by the k-cubes of a cubical complex X,
together with each boundary operator ∂k : Ck → Ck−1, gives rise to a cubical chain
complex C∗ := {Ck (X),∂k }k∈N which we represent as:

. . . Ck+1 Ck Ck−1 . . . C0 0
∂k+2 ∂k+1 ∂k ∂k−1 ∂1 ∂0

We now move towards defining the homology groups.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



8 Configuration Spaces for the Working Undergraduate

Definition 2.19. Let X be a cubical complex. The subgroup of k-boundaries is Bk :=
Im∂k+1 ≤ Ck (X). The subgroup of k-cycles is Zk (X) := ker∂k ECk (X).

Note that for any cubical complex X, Bk (X)E Zk (X) since ∂k ◦∂k+1 = 0.

Definition 2.20. The k th cubical homology group of a cubical complex X is Hk :=
Zk (X)/Bk (X).

Example 2.21. Cubical Homology
Let X be the complex in the following picture:

A

e1

e2

e3

e4

e5

e6

e7

e8

Figure 5: A cubical complex

This complex gives rise to the cubical chain complex:

C3 C2 C1 C0 0

0 Z Z8 Z7 0

∂3 ∂2 ∂1 ∂0

∂3 ∂2 ∂1 ∂0

In order to compute H∗(X) := {Hk (X)}k∈N, we begin by noting that ker∂3 = 0, implying
that H3(X) = 0. Furthermore, C2 is generated by the single element A which ∂2 sends
to e1 + e2 − e3 − e4. Therefore, ker∂2 = 0, again implying that H2(X) = 0. With a little
thought we recognize that ker∂1 =Z〈e1+e2−e3−e4〉⊕Z〈e5+e8−e7−e6〉, the direct sum of the free
abelian group generated by ∂2(A) and the free abelian group generated by e5+e8−e7−e6.
Therefore, ker∂1

∼=Z2. Since C2 is generated by a single element, the image of ∂2 is the
free abelian group generated by ∂2(A), namely Z〈e1+e2−e3−e4〉. Thus,

H1(X) = ker∂1/Im∂2

= (Z〈e1+e2−e3−e4〉⊕Z〈e5+e8−e7−e6〉)/Z〈e1+e2−e3−e4〉
=Z〈e5+e8−e7−e6〉
∼=Z

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



L. Williams 9

By a similar line of reasoning, ker∂0
∼=Z7 and Im∂1

∼=Z6, implying that H0(X) ∼=Z. There-
fore,

Hk (X) ∼=


0 if k ≥ 2

Z if k = 1

Z if k = 0

To conclude this section, we offer a method of ‘checking our work’ and a relationship
between homology and homotopy. As stated in the motivation for this section, homology
is a really fancy way of counting holes. We may carry out a sanity check by geometrically
realizing a cubical complex X for which we wish to compute the homology. If we observe
that X has n holes each of dimension k, then we should expect Hk (X) =Zn . Since there
is no such thing as a zero-dimensional hole, we might ask how this observation ‘pokes
holes’ in the preceding analogy. It turns out that H0(X) counts the number of connected
components of X in similar manner to how Hk (X) counts the number of k-dimensional
holes for k ≥ 1. Obviously this technique fails when confronted with more complex
spaces, but with introductory examples it is quite effective.

Furthermore, the boundary operator is a linear transformation, so we have access to
the rank-nullity theorem. More explicitly, if we know that Ck (X) ∼=Zn then the rank of
ker∂k and the rank of Im∂k must sum to n. As a last interesting note on the homology
groups, Hatcher offers the theorem that for any path connected space X, the fundamental
group π1(X) is isomorphic to the abelianization of H1(X) [10].

Since this section has covered only the minimal amount of information necessary to
understand certain swathes of this paper, we point the interested reader to [10] for more
information on homology, and [11] for an excellent treatment of cubical homology.

3 Configurations of the Euclidean Plane

We begin our exposition of Confn(R2) with an example intended to develop intuition
and underline the combinatorial flavor of these topological spaces.

Example 3.1. Conf2(R2) ∼=R3 ×S1

The intuition for this problem lies in considering where we may place each of our two
points. Given our first point, lets call it point a, we can place it anywhere in the plane.
After we have placed the first point we can place point b anywhere except for the location
of point a. These choices, in a sense, are equivalent to placing point a in R2 and point b
in R2 − {a}. We thus need a way to relate the location of point b to the location of point
a which ensures that the two points do not coincide. This relationship is given in the
following function which we claim is a homeomorphism. Let x, y ∈R2 such that x 6= y ,
and f : Conf2(R2) → R3 ×S1 given by f (x, y) = (x1, x2, ln |x − y |, x−y

|x−y | ). The idea behind
choosing this function as a homeomorphism is grounded in the idea that we place point
b in the punctured plane which is homeomorphic to R×S1. The first two coordinates

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



10 Configuration Spaces for the Working Undergraduate

in the image of f represent point a. The third coordinate represents the logarithm of
the (non-zero) distance from point a to point b. The fourth coordinate represents the
angle of the vector from point a to point b. The details of proving that this function is a
homeomorphism are left as an exercise to the reader.

Abrams and Ghrist recommend extending the above example to find a “simple
presentation of Conf3(R2)” as an exercise [1].

The fundamental groups of Confn(R2) and Confn(R2) are mathematically rich objects
in and of themselves; additionally, these groups are key to understanding one of the most
exciting properties of configuration spaces. Let us first consider what a loop would look
like in Conf3(R2). For ease of presentation and readability we have split the base-point
of our loop, a configuration in R2, into two copies.

R2

R2

Figure 6: A loop in Conf3(R2)

This loop is three simultaneous paths from each point to itself with equivalence of
loops given by simultaneous homotopy. It turns out that the fundamental groups of
these spaces are well studied objects in their own right: the braid group on n strands is
Bn =π1(Confn(R2)), and the pure braid group on n strands is Pn =π1(Confn(R2)). Note
that there is no need to specify a basepoint in the presentation of the fundamental group
since these spaces are connected. The exciting property to which we earlier referred is
that all higher homotopy groups of these spaces are trivial. The configuration spaces
Confn(R2) and Confn(R2) are what we call Eilenberg-MacLane spaces of type K(Bn ,1)
and K(Pn ,1) respectively. This is illustrated in the following tower of fibrations, first
studied in [7] and later presented in [13].

Let pi : Confn(Rd ) → Confn−1(Rd ) be the projection map that sends (x1, . . . , xn) to
(x1, . . . , x̂i , . . . , xn). Sinha proves that the projection map pi gives Confn(Rd ) the structure
of a fiber bundle over Confn−1(Rd ) with fiber given by Rd with n −1 points removed
[13]. Note that Rd with n −1 points removed deformation retracts to

∨
n−1 Sd−1. The

fibrations in the tower give rise to a long exact sequence of homotopy groups for any n

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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and d . In order to show that Confn(R2) is an Eilenberg-MacLane space we let d = 2 and
work inductively starting at the base of the tower where we know that Conf2(R2) ' S1.
Since the higher homotopy groups of S1 are trivial, so are the higher homotopy groups
of

∨
2 S1. Therefore, the long exact sequence tells us that the higher homotopy groups

of Conf3(Rd ) are also trivial. At each level of the tower we repeat this line of reasoning,
claiming that since the higher homotopy groups of both Confn−1(R2) and

∨
n−1 S1 are

trivial, then the higher homotopy groups of Confn(R2) must also be trivial.

∨
n−1 Sd−1 Confn(Rd )

∨
n−2 Sd−1 Confn−1(Rd )

...

∨
2 Sd−1 Conf3(Rd )

Conf2(Rd ) ' Sd−1

pn

pn−1

p4

p3

Figure 7: Tower of fibrations

4 The Braid Groups

We now know that the fundamental groups of unlabeled and labeled configuration
spaces of R2 are the braid groups and pure braid groups respectively— but what kind of
structures are these groups? We begin our exposition of the braid groups by illustrating
the example of the braid group on three strands geometrically.

Example 4.1. The Braid Group on Three Strands
The braid group on three strands, B3, is generated by the following two elements with

group operation given by concatenation.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



12 Configuration Spaces for the Working Undergraduate

σ1 σ2

Figure 8: The two generators of B3

Concatenating σ1 with σ−1
1 is homotopic to the identity braid.

strand 1 strand 2

σ1

σ−1
1

Figure 9: A trivial braid in B3

Since strand 1 is laid over the top of strand 2 and they are not interlocking in any
manner, we can, in a sense, continuously pull strand 1 over the top of strand 2 giving us
a homotopy with the identity braid.

As an example of a non-trivial concatenation, we could concatenate σ1 with itself
giving us a braid that is not homotopic to the identity.

strand 1 strand 2

σ1

σ1

Figure 10: A non-trivial braid in B3

As can be observed in the above figure, there is no way to continuously pull these
strands into the identity braid without breaking one of them. Tangentially, B3 is also
the knot group of the trefoil knot. This means that if we let K represent the trefoil knot
embedded in R3, then B3

∼=π1(R3\K).

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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In addition to their connection with topological spaces, the (pure) braid groups have
been studied through a purely algebraic lens. The classical presentation of Bn , due to
Artin and presented by Birman and Brendle, is as follows:

Bn
∼= 〈σ1, . . . ,σn−1 |σiσk =σkσi if |i −k| ≥ 2, and σiσi+1σi =σi+1σiσi+1〉

In order to illustrate the above relations, we present the following visualizations of braids
in B4.

σ1

σ3

σ3

σ1

Figure 11: The relation σ1σ3 =σ3σ1 in B4

σ2

σ3

σ2

σ3

σ2

σ3

Figure 12: The relation σ2σ3σ2 =σ3σ2σ3 in B4

We leave it as an exercise to the reader to imagine how to push and pull the strands
in these braids across each other in order to verify the relations.

This begs the question: how might we similarly define the pure braid group in terms
of generators and relations? While we will present this definition momentarily, it is quite
a messy business. With this messiness in mind, we first offer a highly intuitive way to
think about the relationship between the braid group and its pure cousin.

Given a braid on n strands, we may consider it as some information about how the
strands twist together, and some information about the location of the end points. Since
a braid has unlabeled end points, their order at the beginning of a braid is often different
from their order at the end. We can thus, by forgetting the information concerning the
twisting of the strands, think of a braid on n strands as permutation of n elements. More

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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specifically, the generator σi ∈ Bn swaps the i th and (i +1)th endpoints. Note that the
symmetric group on n elements, Sn , is generated by n −1 transpositions of elements.
Therefore, there exists a surjective homomorphismφ : Bn → Sn that takes each generator
σi ∈ Bn to the transposition si ∈ Sn which are in fact the generators of Sn . To further
cement this idea note that one presentation of Sn is given by

Sn
∼= 〈s1, . . . sn−1 | si si+1si = si+1si si+1, si s j = s j si for |i − j | ≥ 2, and s2

i = 1〉.
The number of generators and the first two relations are exactly the same as in the

above presentation of Bn , with the additional relation of s2
i = 1. As illustrated in the

example of concatenating the first generator of B3 with itself, the reason that the braid
generators are not involutory has to do with the way the strands twist together. Thus, by
forgetting the information on the strands we are left with the symmetric group.

We may use this idea to define the pure braid group on n strands, but first we
must convince ourselves that Pn ⊆ Bn . Since both Bn and Pn are composed of loops in
configuration spaces, a (pure) braid must start where it ends. However, since Bn has
unlabeled end points it is essentially free to permute said points. In the case of Pn the
endpoints are labeled and thus Pn may not permute its endpoints. Thus we may think
of Bn as the set of all braids on n strands, and Pn as the subgroup of Bn in which none
of the endpoints are permuted. This manner of thinking gives rise to a definition of
Pn in line with the above description of φ : Bn → Sn . Namely, that Pn is the kernel of
φ. This definition is, for our purposes, much cleaner than the seemingly impenetrable
presentation of Pn given by generators and relations. Additionally, defining Pn as the
kernel of φ highlights the important relationship between Bn and Pn .

We now wish to define the pure braid group in terms of generators and relations. As
proved in [3], the pure braid group on n strands may be presented with generators Ar,s

with 1 ≤ r < s ≤ n, and relations

A−1
r,s Ai , j Ar,s =


Ai , j if 1 ≤ r < s < i < j ≤ n or 1 ≤ i < r < s < j ≤ n

Ar, j Ai , j A−1
r, j if 1 ≤ r < s = i < j ≤ n

(Ai , j As, j )Ai , j (Ai , j As, j )−1 if 1 ≤ r = i < s < j ≤ n

(Ar, j As, j A−1
r, j A−1

s, j )Ai , j (Ar, j As, j A−1
r, j A−1

s, j )−1 if 1 ≤ r < i < s < j ≤ n

These relations are due to the existence of a split short exact sequence relating the
free group generated by n −1 elements, the pure braid group on n strands, and the pure
braid group on n −1 strands. For more detail and further reading on this topic, consult
[4].

5 Configuration Spaces of Graphs

We now turn to a topic that has been of much interest to modern researchers, namely,
configuration spaces of graphs. A graph Γ= (V,E) is a set of vertices and edges which
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we may consider as a topological space, in particular a singular manifold or a manifold
with corners. Thus, we simply import the general definition of a configuration space and
happily find that it also applies to graphs viewed as topological spaces. A large difference
between configuration spaces of graphs and configuration spaces of manifolds is the
scale on which collision resolution takes place. In a manifold, two points moving towards
each other may simply swerve in order to avoid collision. Thus, collision resolution on
a manifold is a local problem. In a graph, on the other hand, if two points are moving
towards each other one must reverse and back off of its edge to allow the other to pass.
Thus, collision resolution on a graph is a global problem. This difference sets the field of
configuration spaces of graphs largely apart from the study of configuration spaces of
manifolds. This section will be devoted to explaining the tools and techniques developed
by the former.

Note that the configuration space of the graph formed of two vertices and a single
edge is exactly the same as Confn([0,1]) from the very first example of a configuration
space. We present two more intricate examples below.

Example 5.1. Conf2( )

Figure 13: Conf2( )
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Example 5.2. Conf2( )

Figure 14: Conf2( )

We highly recommend constructing these spaces by hand as an exercise. Given two
points consider the different cases (broken down by edge choice) of location of the points
on a graph. (Hint: in Conf2( ) there are six cases where the two points are on the same
edge, and 12 cases where they are on different edges six of which are distinct. The trick is
to figure out how all the cases are ‘glued’ together.) Lastly, note that due to the hole in the
center of the space, Conf2( ) is topologically equivalent to a circle. We also recommend
examining [1] to see visualizations of Conf2( ).

A major issue that arises when investigating these spaces is the sheer complexity of
their structure. As in the case of Conf2( ), despite only having two configuration points
we must embed the space in R3. It is easy to imagine how the necessary dimension of the
ambient space could rapidly increase with n. Additionally, it is rather difficult to suss out
the gluing information as the underlying space of the graph grows increasingly complex
and counting arguments become increasingly arduous to implement. To ameliorate
these issues we develop the Abrams model which will greatly simplify the configuration
space of a graph.

5.1 Abrams Model

A graph has a natural structure agreeing with that of a cubical complex, with vertices
as 0-cells and edges as 1-cells. Since the product of a cube is again a cube, the n-fold
product of a graph inherits this cubical complex structure. However, as can be observed
in Example 5.1 the configuration space does not inherit this nice cubical structure as it is
sliced by the pairwise diagonal. Many of the would-be cells that intersect the diagonal
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are actually inessential. In both Conf2( ) and Conf2( ), the flanges which intersect
the diagonal represent the configurations for which both points are on the same arm
of and respectively. At these points in the configuration space there is nothing
interesting happening from a topological viewpoint. Thus, we would like to get rid of
these cells in order to ease the complexity of the space under scrutiny. We simply insist
that given any configuration of n points on a graph, any two configuration points and
any path connecting those two points must have length of at least one edge. We will refer
to this space as the discretized configuration space of n points in a graph Γ and write
Dn(Γ). This restriction will, in effect, remove any cell in the configuration space that
intersects any of the pairwise diagonals!

Example 5.3. D2( )
To compute the discretized configuration space of two points in we consider all

possible cases where the two points are restricted to remain at least one full edge apart.
Since any two vertices of a graph are at least an edge apart we expect to see 12 0-cells in
D2( ). Additionally, only one of our two points may move freely along an edge at a time
while the other is restricted to remain stationary at a vertex. Thus, a simple counting
argument reveals that we expect D2( ) to contain 12 1-cells, 12 0-cells, and no cells of
any dimension higher than one.

Figure 15: D2( )

By a similar counting argument we may conclude that D2( ) appears as follows.
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Figure 16: D2( )

Note that D2( ) and D2( ) are homotopy equivalent to Conf2( ) and Conf2( )
respectively. This equivalence should give us a sense that we have a good model.

Homotopy equivalence is in fact the property we seek in our modeling of config-
uration spaces of graphs: we want a subspace which is homotopy equivalent to the
configuration space containing no cells that intersect the diagonal. However we are not
always guaranteed that this is the case. For example, Conf2( ) has a single connected
component whereas D2( ) has two connected components. Thus any topological
conclusions we make regarding D2( ) do not necessarily carry over to Conf2( ). Fur-
thermore, Dn(Γ) is empty whenever n > |V(Γ)| as restrictions on separating configuration
points become impossible to satisfy. This leads us to ask what conditions are sufficient
for the discretized configuration space to be homotopy equivalent to the configuration
space.

Abrams [2] proved, using Whitehead’s Theorem, a necessary condition for Dn(Γ) to
be a deformation retract of Confn(Γ); and further correctly conjectured the sufficient
condition which was later proven.

Theorem 5.4. For any n > 1 and any graph Γ with at least n vertices, the inclusion
Dn(Γ) ,→ Confn(Γ) is a homotopy equivalence if and only if

(1) Each path between distinct vertices of valence not equal to two passes through at least
n −1 edges;

(2) Each path from a vertex to itself that cannot be shrunk to a point in Γ passes through
at least n +1 edges.

At first glance this may seem to be a blow to the generality of the objects under our
purview. Recall, however, that we are interested in the topological underlying space of a
graph rather than the graph-theoretic properties of these objects. Thus we can execute
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an operation on unruly graphs which we will call graph subdivision. Given a graph and
any edge of the graph, we can place a new vertex anywhere along the interior of the edge
(resulting in a new vertex of valence two) and the resulting graph will be the same up to
homeomorphism. The fact that a graph and its subdivision are homeomorphic should
give us a sense that vertices of valence two are topologically uninteresting.

Example 5.5. Graph Subdivision

∼=
Figure 17: A graph subdivision

Thus, given any graph, Γ, we can explicitly write down a suitable subdivision, Γ′,
such that Confn(Γ) deformation retracts to Dn(Γ′). One drawback of this model is that
in adding more 0-cells and 1-cells to our graph we drastically increase the number
of cells in the discretized model, oftentimes resulting in high-dimensional cells with
little interesting topological data. If perchance we are interested in the homology of
these spaces, we have access to techniques such as elementary collapses and internal
reductions, which reduce the computational complexity of the space while preserving
the homology. For more detailed information on homology preserving simplifications
see [11].

5.2 Świątkowski Model

Given a graph Γ, we offer an alternative simplified model of Confn(Γ), due to Jacek
Świątowski, which has several advantages and some disadvantages in relation to the
Abrams model [14]. The Świątowski model, denoted Kn(Γ), is based on the idea of
recording the order of configuration points in the interior of an edge of the graph and
updating this information as the points move through vertices of valence greater than
two.

Definition 5.6. Let Γ be a graph. The set of vertices of Γ with valence at least 3 is called
the branched vertices and is written B = BΓ. We use E = EΓ to denote the set of edges of
Γ.

Every edge has two possible orientations, s and −s. We refer to the underlying space
of an edge as |s|, and the vertices adjacent to |s| as vs .

Definition 5.7. Define an abstract graded poset PnΓ= (P(0)
n Γ, . . . ,P(k)

n Γ, . . . ) where P(k)
n Γ

is the set of k-faces of PnΓ, defined to be pairs ( f ,S) such that,

(1) f : EΓ∪BΓ→N∪ {0} is a function;
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(2) S = {s1, . . . , sk } is a set of k oriented edges of Γ;

(3) vsi ∈ BΓ for i = 1, . . .k and vsi 6= vs j for i 6= j ;

(4) f (b) ∈ {0,1} for all b ∈ B, and f (vsi = 0 for i = 1, . . . ,k;

(5)
∑

a∈B∪E f (a) = n −k.

We define the partial order on Pn(Γ) as follows.

Definition 5.8. Let ( f1,S) and ( f2,S∪ {s}) be two faces of PnΓ such that s ∉ S. We say that
( f1,S) ≺ ( f2,S ∪ {s}) if one of the following two conditions holds:

(1) f1(a) =
{

f2(a)+1 if a = |s|
f2(a) else

(2) f1(a) =
{

f2(a)+1 if a = vs

f2(a) else

We next extend ≺ to be the smallest possible relation satisfying the requirements of a
partial order on PnΓ and continue to denote this extension as ≺. Świątowski shows that
PnΓ is the face poset of a uniquely determined cubical complex denoted Kn(Γ) which
will be referred to in this paper as the Świątowski model [14]. We present the following
two examples of graphs whose configuration spaces we are already familiar with.

Example 5.9. K2( )

Figure 18: K2( )

Example 5.10. K2( )
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Figure 19: K2( )

It is rather difficult, from simply looking at the definitions above to develop a concrete
understanding of how to use Kn(Γ) to think about Confn(Γ). When viewed as a cubical
complex, Kn(Γ) has 0-cells corresponding to an assignment of each configuration point
to a branched vertex or edge in the graph. A 1-cell corresponds to a point moving on or
off of a single branched vertex. A 2-cell corresponds to two points moving on or off of
two distinct branched vertices, so on and so forth.

The Świątowski model has two distinct advantages over the Abrams model. Namely
we need not find a suitable subdivision in order for our simplification to faithfully
model the configuration space. The model’s faithfulness reduces the computational
power required to construct it. Secondly, the dimension of Kn(Γ) is bounded above by
min(n,b(Γ)) where b(Γ) is the number of branched vertices in Γ. This bound is a nice
fact that could lead to interesting discoveries— Świątowski proves this claim in [14].
Furthermore, the Świątowski model, like the Abrams model, plays nicely with graph
embeddings (more on graph embeddings to follow). The problem that arises in the
Świątowski model involves the computation of homology groups. The Abrams model
comes attached with a notion of being ‘snapped to a grid’. Thus, there are no choices
to make about the position in which we embed the Abrams model in euclidean space.
The Świątowski model does not come with this notion and thus to choose the ‘right’
embedding in order to avoid needless complications in our computations we must
already know a lot about the space we are interested in.

5.3 Configuration Spaces of Graphs: Continued

Now that we have a grasp on what these spaces are and have a small toolkit we can use to
pursue their investigation, we will explore some of the interesting mathematical objects

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



22 Configuration Spaces for the Working Undergraduate

that arise in the study of these spaces.
Given the richness of the homotopy theory of configuration spaces in R2, we might

ask what the homotopy groups of configuration spaces of graphs are. The fundamental
groups of Confn(Γ) and Confn(Γ) are called the pure graph braid group, PnΓ, and graph
braid group, BnΓ, respectively. Much research has been done on these objects, often by
both geometric group theorists and algebraic topologists. In particular, researchers are
curious as to which graph braid groups are right angled artin groups, meaning groups
where there is a presentation for which the relations are commutators of generators.
Ghrist [9] proved that Confn(Γ) and Confn(Γ) are K(π1,1). Furthermore, the graph braid
groups and pure graph braid groups are torsion-free, meaning that any multiple of a
non-trivial loop is itself non-trivial. These especially nice properties do much work to
bridge the gap between algebraic topology and geometric group theory.

Given a group G, it can often be useful to study the classifying space of G, which is,
by definition, a K(G,1). It may come as a slight shock, but for any group it is possible to
construct such a space. The drawback to constructing a classifying space is that they
are usually quite complicated. The messiness of constructed classifying spaces is one
reason why ‘naturally occurring’ Eilenberg-Maclane spaces are of such strong interest to
group theorists. This is also why discovering which graph braid groups are right angled
artin groups is such an important question. If a group has a ‘nice’ classifying space,
like configuration spaces, this space can add a good deal of perspective to the study of
the group itself. For further reading on geometric group theory and its connection to
algebraic topology, see [5, 12, 8].

We now investigate the homology of configuration spaces of graphs.

Example 5.11. H∗ Conf2( )
Recall, from the example above, the incredibly intricate structure of Conf2( ). We

would rather not spend the requisite amount of time computing the homology of this
space. Fortunately for us, since D2( ) ' Conf2( ), we need only compute the homology
of the former to make conclusions regarding the homology of the latter. We present
D2( ) again, but with an added labelling scheme.
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e0e1

e2

e3 e4 e5 e6
e7

e8

e9

e10

e11

e12

e13

e14

e15

e16e17

e18

e19 e20 e21

e22

e23

Figure 20: D2( )

This space gives rise to a cubical chain complex appearing as follows.

C2 C1 C0 0

0 Z24 Z20 0

∂2 ∂1 ∂0

∂2 ∂1 ∂0

Remember that to compute H1(D2( )) we first need to compute ker∂1 and Im∂2.
Upon first glance it may seem very difficult to compute ker∂1: there are so many 1-cycles
in D2( )! However, there is also a large number of relations between these cycles which
allow us to express some cycles in terms of others. For example,

(e15 +e14 −e5 −e4 −e12 −e13 +e17 +e16)

+ (e9 +e8 +e7 +e6 −e14 −e15 −e23 −e22)

= (e9 +e8 +e7 +e6 −e5 −e4 −e12 −e13 +e17 +e16 −e23 −e22)

We in fact only need five such 1-cycles in order to express any 1-cycle in D2( ) as a linear
combination. Therefore, ker∂1

∼=Z5. Since Im∂2 = 0, we conclude that H1(Conf2( )) ∼=
Z5. A similar argument reveals that Im∂1

∼=Z19, and since ker∂0
∼=Z20, we conclude that

H0(Conf2( )) ∼=Z. Thus,

Hk (Conf2( )) ∼=


0 if k ≥ 2

Z5 if k = 1

Z if k = 0

It was mentioned earlier that our simplified models played nicely with graph em-
beddings. What exactly is meant by this? What we mean is that given two graphs Γ and
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Γ′ such that there exists a continuous, injective map i : Γ→ Γ′, then i induces a map
i∗ :Dn(Γ) →Dn(Γ′). Furthermore, i∗ induces a map i∗∗ : H∗(Dn(Γ)) → H∗(Dn(Γ′)). The
difficulty with approaching problems in this manner is that we do not yet know if any-
thing definite can be said about either map induced by a graph embedding— whether it
can be said to be non-trivial, or injective, and so on. However, it is rather satisfying when
these maps are non-trivial.

Example 5.12. ,→
The graph embeds into in four different ways up to homeomorphism, and in

fact we find that D2( ) embeds into D2( ) in four different ways as well. One such way
is outlined in blue below.

Figure 21: An embedding of D2( ) into D2( )

What are the three other ways that D2( ) embeds into D2( )? What paths of con-
figuration points in do these embeddings represent? What map does this induce
on homology groups? We encourage the reader to work through these problems as an
exercise.

6 Non-k-Equal Configuration Spaces of Graphs

A class of configuration spaces that have only recently come under study is that of
non-k-equal configuration spaces of graphs.

Definition 6.1. The non-k-equal configuration space of a graph Γ, written Confn,k (Γ)
with 2 ≤ k ≤ n, is:

{(x1, . . . , xn) ∈ Γn}− {xi1 = ·· · = xik for some k-set of indices 1 ≤ i1 ≤ ·· · ≤ ik ≤ n}
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The classical definition of a configuration space of a graph requires us to removes the
pair-wise diagonals from the n-fold product of the graph, whereas this new definition
removes the k-wise diagonals. Hence, the classical configuration space of a graph would
be written Confn,2(Γ). As previously noted, these objects only recently came under
scrutiny and as such, not a great deal is known of them.

6.1 A Simplified Model

In her doctoral dissertation [6], Chettih constructed a simplified model for non-k-equal
configuration spaces of graphs by extending the Abrams model. As an extension of the
Abrams model, we continue to require configuration points to remain at least one edge
apart. Thus, it makes sense that we would need to again find a suitable subdivision of
our graph Γ. To do so we place vertices of valence two along edges such that any edge
between vertices of valence greater than or equal to three has n segments. Additionally,
any edge between a vertex of valence greater than or equal to 3 and a vertex of valence
one must also have n segments. We call this subdivided graph Γ′. Note that (Γ′)n has the
structure of a cubical complex with cells τ= (τ1 · · ·τn) with τi ∈ V(Γ′) or E(Γ′).

Definition 6.2. The discretized non-k-equal configuration space of a suitably subdi-
vided graph Γ, written Dn,k (Γ), is:

{τ ∈ (Γ′)n | τi1 ∩·· ·∩τik =; for any k-set of indices 1 ≤ i1 ≤ ·· · ≤ ik ≤ n}

This simplification of Confn,k (Γ) is a good model insofar as the homology groups of
Dn,k (Γ) are isomorphic to the homology groups of Confn,k (Γ). Unlike the Abrams model,
it is not known whether Dn,k (Γ) is homotopy equivalent to Confn,k (Γ).

One difference between non-k-equal configuration spaces of graphs and their classi-
cal counterparts is that we do not expect the new objects to be Eilenberg-Maclane spaces.
The reasoning behind this expectation is as follows: we know that Confn,n(I) ' Confn,n(R).
Additionally, Confn,n(R) ' Sn−2. Therefore, for n > 3 the higher homotopy groups
of Confn,n(I) will certainly be non-trivial. Concerning the homology of non-k-equal
configuration spaces of graphs, recent calculations show some very strange behavior.
Computations show that Hi (Conf3,3( )) is trivial for i > 2, which is not particularly
surprising; nor is it surprising that H0(Conf3,3( )) ∼= Z. Oddly, calculations suggest
that H1(Conf3,3( )) = 0 and H2(Conf3,3( )) ∼= Z5. Given the amount of non-trivial 1-
homology in configuration spaces of graphs we would expect to see something similar
here but it seems to have vanished somewhere. Computing the homology groups of
non-k-equal configuration spaces and proving subsequent results is the next logical step
given the above simplified model, and we eagerly await any progress toward this goal.
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