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Isoperimetric Problems on the Line with
Density |x|p

By Juiyu Huang, Xinkai Qian, Yiheng Pan, Mulei Xu, Lu Yang, and Junfei Zhou

Abstract. On the line with density |x|p , we prove that the best single bubble is an inter-
val with endpoint at the origin and that the best double bubble is two adjacent intervals
that meet at the origin.

1 Introduction

In the past dozen years there has been a surge of interest in manifolds with density, partly
because of their role in Perelman’s 2006 proof of the Poincaré Conjecture. We consider
isoperimetric problems on the line with density |x|p and prove the following single and
double bubble theorems:

Single Bubble Theorem: On the line with density |x|p , (p > 0), the least-perimeter region
with given mass is an interval with one endpoint at the origin.

Double Bubble Theorem: On the line with density |x|p , (p > 0), the least-perimeter way
to enclose and separate two given masses is two adjacent intervals that meet at the
origin.
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2 Isoperimetric Problems on the Line with Density |x|p

Density. Density is used to weight both perimeter and length. With density |x|p , each
boundary point b contributes |b|p to the perimeter, and the mass of an interval (a,b) is∫ b

a
|x|p d x.

For example, the region of Figure 1 has perimeter ap +bp + cp and mass∫ a

b
xp d x +

∫ c

0
xp d x = ap+1 −bp+1 + cp+1

p +1
.

Figure 1: A region with (weighted) perimeter ap +bp + cp and mass
∫ a

b xp d x +∫ c
0 xp d x.

The Black and Red regions of Figure 2.1 have perimeter ap+bp+cp+d p+ep and Black
mass

∫ b
a |x|p d x and Red mass

∫ c
b |x|p d x +∫ e

d |x|p d x. Note that the common boundary
point counts once.

Figure 2: A Black and a Red region with total perimeter ap +bp +cp +d p +ep , and Black
mass

∫ b
a |x|p d x and Red mass

∫ c
b |x|p d x +∫ e

d |x|p d x.

History. The single bubble with our density |x|p was proved to be a sphere through the
origin in Rn for n = 2 by Dahlberg et al. [3] and for n > 2 by Boyer et al. [2]. For this
density the double bubble is new, although it is known in Euclidean and other spaces
(see [4]), including the line with strictly convex density [1, 6]. It was earlier studied at the
2017 Texas State Honors Summer Math Camp, but that work was not completed. The
double bubble for density |x|p remains open for higher dimensions.

Proofs. Our proofs employ elementary comparisons, without even any recourse to
stability theory. For the single bubble, it follows from Rosales et al. [[5], Thm. 4.14(iii)]
that the minimizer is an interval containing the origin, but our proof does cite that fact.

A finite-perimeter region on the line with unit density must consist of finitely many
intervals because it has just finitely many boundary points. With density |x|p , there is
the possibility of countably many intervals converging to the origin.
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2 The Best Single Region

Our main Theorem 2.3 identifies the least-perimeter single region of given mass on the
line with density |x|p , (p > 0). We start with a geometric proof that works only for p = 1.

Proposition 2.1. On the line with density |x|, the least-perimeter single interval of given
mass is an interval with one endpoint at the origin.

Proof. We consider two cases according to whether the interval (a,b) contains the origin.
If (a,b) does not contain the origin, we may assume that 0 ≤ a < b, as in Figure 3.

Figure 3: In the first case, the origin lies outside the interval, which has perimeter a +b.

The perimeter equals a +b. An interval (0,b′) of the same mass beginning at the
origin, as in Figure 4, has perimeter b′ ≤ b ≤ a +b, with equality only if we had that
interval to start with.

Figure 4: An interval of the same mass starting at the origin has perimeter b′ ≤ b ≤ a +b.

On the other hand, as in Figure 5, consider an interval (−a,b) containing the origin
and compare it to the interval (0,b′) of the same mass, obtained by replacing (−a,0) with
an interval (b,b′) of the same mass. Since the latter has larger average density but the
same mass, b′–b < a, so that b′ < a +b. Therefore (0,b′) has less perimeter than (−a,b).

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019



4 Isoperimetric Problems on the Line with Density |x|p

Figure 5: In the second case, the interval (−a,b) contains the origin.

Remark 2.2. We provide another argument for the second case of the preceding proof
(Figure 4). The mass of (−a,0) and (0,b) may be computed as the length times the
average density, yielding total mass

m = a(a/2)+b(b/2) = a2 +b2

2
,

so that

a2 +b2 =
(p

2m
)2

.

On this quarter circle, as in Figure 6, the perimeter a +b, represented by two sides of the
pictured triangle, always exceeds the third side

p
2m, with equality only if a or b is 0, i.e.,

when the interval has an endpoint at the origin.

We now give our main single bubble theorem. Our first, geometric proof works just
for density |x|. Our second, algebraic proof works for density |x|p .

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019
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Figure 6: Given a2 +b2 = (p
2m

)2
, a +b is minimized when a or b is 0.

Theorem 2.3 (Single Bubble Theorem). On the line with density |x|p (p > 0), the least-
perimeter region with given mass is an interval with one endpoint at the origin.

Proof for density |x|. Consider a region with a given mass and finite perimeter, perhaps
consisting of many intervals as shown in Figure 7. Replace the mass to the right of the
origin with a single interval (0,b). The new perimeter b no greater than the original,
indeed is less than or equal to the cost of the original right-most endpoint. Similarly
replace the mass to the left of the origin by a single interval (−a,0). We have thus
produced a single interval (−a,b) of no greater perimeter, with equality only if the
original region was that interval. Finally, by Proposition 2.1, a single interval (−a′,0) or
(0,b′) is best.

Proof for density |x|p . Consider any region of finite perimeter. It consists of countably
many intervals, the origin the only possible limit point. If an interval contains the origin,
split it into two intervals. Denote the intervals to the right of the origin by (ai ,bi ) and the
intervals to the left of the origin by (−c j ,−d j ). Note that the mass of (a,b) is the integral

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019



6 Isoperimetric Problems on the Line with Density |x|p

Figure 7: Replacing the portions of a given region to the left and right of the origin with
single intervals reduces perimeter. Then by Proposition 2.1 a single interval with an
endpoint at the origin is best.

from a to b of xp , namely
(
bp+1 −ap+1

)
/(p +1). Hence the total mass m satisfies

(p +1)m =∑(
bp+1

i −ap+1
i

)
+∑(

cp+1
j −d p+1

j

)
,

and the total cost is
∑

ap
i +bp

i +∑
cp

j +d p
j .

Compare with the single interval (0,b) with the same mass m = bp+1/(p +1) and
perimeter bp . Since they have the same mass,∑(

bp+1
i −ap+1

i

)
+∑(

cp+1
j −d p+1

j

)
= bp+1.

Therefore, ∑(
bp+1

i −ap+1
i

)
+∑(

cp+1
j −d p+1

j

)
≥ bp+1.

Now by Lemma 2.4, the total perimeter satisfies∑(
bp

i +ap
i

)+∑(
cp

j +d p
j

)
≥ bp ,

the perimeter of (0,b), with equality only if we started with a single interval with endpoint
at the origin.

Lemma 2.4. For p > 0, suppose
∑

ap+1
i ≥ bp+1. Then∑

ap
i ≥ bp ,

with equality only if there is just one nonzero ai .

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019
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Proof. Let
Ai = ap

i ,

u = (p +1)/p > 1.

Now the lemma reduces to the standard fact that(∑
Ai

)u ≥∑
Au

i .

Indeed, after normalizing to
∑

Au
i = 1, the result is trivial.

3 The Best Double Region

Our main Theorem 3.4 will provide the least-perimeter way to enclose and separate two
given masses (“Black” and “Red”) on the line with density |x|p (p > 0). Our first proof
works just for density |x|. It starts with a proposition about the half-line that will reduce
candidates on the whole line to those consisting of two, three, or four adjacent intervals,
in turn handled by Propositions 3.2 and 3.3.

Proposition 3.1. On the positive axis {x > 0} with density |x|, given two regions, there
are two adjacent intervals with one endpoint at 0 with the same masses and no more
perimeter.

Proof. Consider two regions such as the Black and Red intervals of Figure 8. We may
assume that the last interval is Red. In comparison, take two adjacent Black and Red
intervals at the origin with the same masses as the original regions, as in Figure 8. The
first boundary point contributes no more perimeter than the last Black boundary point
of the original, and the second boundary point contributes no more perimeter than the
last Red boundary point of the original. Therefore, those adjacent intervals of the same
masses have no more perimeter as claimed.

Proposition 3.2. On the line with density |x|, when enclosing and separating “Black” and
“Red” masses, two intervals Red and Black meeting at the origin require less perimeter
than any other adjacent Red-Black-Red or Red-Black with the origin inside Black.

Proof. First, we reduce the Red-Black-Red case to the Red-Black case. As shown in Figure
9, the perimeter for the Black region is b + c. By symmetry, we may assume that c < b.

As in Figure 10, move the mass of the interval (c,d) to the left to form an interval
(−g ,−a). Since we have assumed that c < b, therefore a > c and the whole interval
(−g ,−a) is farther from the origin than (c,d), and hence its length is less: g −a < d − c.
Therefore, the new Red-Black perimeter, b +c + g is less than the original Red-Black-Red
perimeter a +b + c +d .

Finally, we compare Red-Black with the origin inside Black with the origin at their
meeting point, as in Figure 11. By Proposition 2.1, f ≤ b + c. Also e < g . Therefore, the
two intervals that meet at the origin are better as claimed.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019



8 Isoperimetric Problems on the Line with Density |x|p

Figure 8: Two intervals are better than many.

Figure 9: Adjacent Red-Black-Red with the origin inside Black.

Proposition 3.3. On the line with density |x|, when enclosing and separating “Black”
and “Red” masses, two intervals meeting at the origin have less perimeter than adjacent
Red-Black-origin-Red-Black.

Proof. By symmetry, we may assume that c < b. As in Figure 12, we show that exchanging
the outside masses reduces perimeter and yields the desired two intervals meeting at
the origin.

Since c < b, the whole interval (−a′,−b) is farther from the origin than (c,d), and
hence the length is less: a′−b < d–c. Since c < b, the interval (0,d ′) has less perimeter
than (−a,0): d ′ < a.

As a result, a′+d ′ < a+b−c+d . Therefore, the new perimeter for both regions a′+d ′

is less than the original perimeter a +b + c +d .

We now give our main double bubble theorem. Our first, geometric proof works just
for density |x|. Our second, algebraic proof works for density |x|p .

Theorem 3.4 (Double Bubble Theorem). On the line with density |x|p (p > 0), the least-
perimeter way to enclose and separate two given masses is two adjacent intervals that
meet at the origin.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019
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Figure 10: Move the mass of (c,d) to the left of (−a,−b).

Figure 11: Meeting at the origin is best.

Proof for density |x|. Consider two regions of finite perimeter and given masses. To each
half of the line meeting both regions, apply Proposition 3.1 to reduce to the case of two
adjacent intervals with one endpoint at the origin. To each half of the line meeting just
one region, a single interval with one endpoint at the origin is best. We may assume the
resulting candidate consists of adjacent intervals of the “Black” and “Red” regions of one
of the following three types:

a Red-Black with the origin inside Black,

b Red-Black-Red with the origin inside Black,

c Red-Black-Origin-Red-Black.

By Proposition 3.2 and 3.3, two adjacent intervals that meet at the origin is best.

Proof for density |x|p . Consider two regions (“Black” and “Red”) of finite perimeter. Each
consists of countably many intervals, the origin the only possible limit point. If an
interval contains the origin, split it into two intervals. Denote the Black intervals by
(ai ,bi ) and (−c j ,−d j ), the Red intervals by (ek , fk ) and (−gm ,−hm). Note that the mass
of (a,b) is the integral from a to b ofxp , namely

(
bp+1 −ap+1

)
/(p +1). Hence the total

Black mass mB satisfies

(p +1)mB =∑(
bp+1

i −ap+1
i

)
+∑(

cp+1
j −d p+1

j

)
,

and the Red mass mR satisfies

(p +1)mR =∑(
f p+1

k −ep+1
k

)
+∑(

hp+1
m − g p+1

m

)
.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 2, 2019



10 Isoperimetric Problems on the Line with Density |x|p

Figure 12: Exchanging the outside masses reduces perimeter.

The total perimeter is at least
∑

bp
i +∑

cp
j +

∑
f p

k +∑
g p

m , with equality only for two
intervals that meet at the origin. Note that by using just the endpoint of each interval
farthest from the origin, we avoid double counting endpoints common to adjacent Black
and Red intervals.

Compare with two intervals (−r,0) and (0, s) with the same masses: r p+1/(p+1) = mB

and sp+1/(p +1) = mS . Their boundary cost is r p + sp . Since they have the same mass,∑(
bp+1

i −ap+1
i

)
+∑(

cp+1
j −d p+1

j

)
= r p+1,

∑(
f p+1

k −ep+1
k

)
+∑(

g p+1
m −hp+1

m

)
= sp+1.

Therefore, ∑
bp+1

i +∑
cp+1

j ≥ r p+1,∑
f p+1

k +∑
g p+1

m ≥ sp+1.

Now by Lemma 2.4, ∑
bp

i +∑
cp

j ≥ r p ,∑
f p

k +∑
g p

m ≥ sp .

Hence the total cost is at least∑
bp

i +∑
cp

j +
∑

f p
k +∑

g p
m ≥ r p + sp ,

with equality if and only if we started with two intervals (−r,0) and (0, s) meeting at the
origin.
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