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New Theorems for the Digraphs of Commutative
Rings

By Morgan Bounds

Abstract. The digraphs of commutative rings under modular arithmetic reveal intrigu-
ing cycle patterns, many of which have yet to be explained. To help illuminate these
patterns, we establish a set of new theorems. Rings with relatively prime moduli a and
b are used to predict cycles in the digraph of the ring with modulus ab. Rings that use
Pythagorean primes as their modulus are shown to always have a cycle in common.
Rings with perfect square moduli have cycles that relate to their square root.

1 Introduction

The directed graphs, or digraphs, of commutative rings under modular arithmetic create
intriguing patterns. Most contain cycles of varying lengths, while a select few contain
none at all. Can the cycles of composite moduli be predicted based on the digraphs
of their factors? Are cycle lengths determined by special properties of their modulus?
Do all Pythagorean primes have cycles in common? This paper presents an array of
new theorems that addresses these questions, proves past conjectures, and offers fresh
insight into digraph behavior.

The digraphs of commutative rings formed through modular arithmetic were first
examined by Hausken and Skinner [5], and Ang and Schulte [1]. They constructed
digraphs using the operation (x, y) → (x + y, x y)(mod n), where x and y are elements
from the the ring of all integers (mod n). Haffner and Newnum investigated these cycles
[4] and made several compelling conjectures. This research has been heavily influenced
by Haffner and Newnum, and this paper offers a proof for two of their major conjectures.
Additionally, this paper establishes two theorems that are a continuation of the research
conducted by Bounds [2].

This paper will begin by providing background information in Section 2 on the
underlying theory of rings, focusing in particular on how to construct the digraphs of
commutative rings under modular arithmetic. Later in Section 2, two of Haffner and
Newnum’s conjectures will be presented with examples. In Section 3, new theorems will
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2 New Theorems for the Digraphs of Commutative Rings

be established that prove Haffner and Newnum’s conjectures, and other new theorems
will be proven as well. Finally, in Section 4, future research directions will be suggested.

2 Background

2.1 Definitions

In this paper a ring, denoted by Zn, refers to the set of all integers modulo n. Because
modular arithmetic is commutative under addition and multiplication, Zn is said to be a
commutative ring. Now create a vertex, denoted (x,y), where x and y are elements ofZn .
The mapping of a vertex (x1, y1) onto a new vertex (x2, y2), denoted by (x1, y1)→(x2, y2),
is an operation which transforms (x1, y1) into a new vertex where x2 ≡ x1 + y1(mod n)
and y2 ≡ x1 y1(mod n). The digraph of Zn, denoted by Ψ(Zn), is a graph that shows all
the mappings of all the vertices of Zn . Figure 1 displays the completed digraph of Z5. A
cycle occurs when the operation indefinitely loops through a set of two or more vertices.

Figure 1: Ψ(Z5) [4]

Observe that Figure 1 contains one cycle, enclosed in the box. This cycle can be
expressed using the notation: (4,3) → (2,2) → (4,4) → (3,1) → (4,3). Note that this
mapping of (4,3) in Ψ(Z5) leads to a cycle of length 4. In general, a cycle of length c
is always of the form (x1, y1) → (x2, y2) → . . . → (xc , yc ) → (x1, y1). Not every digraph,
however, contains cycles. Note that in Figure 2 all the vertices of Ψ(Z3) eventually lead
to a terminating vertex.
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Morgan Bounds 3

Figure 2: Ψ(Z3) [4]

2.2 Past Conjectures

Recall that Ψ(Z5) has one cycle of length 4 and that Ψ(Z3) contains zero cycles. Observe
in Figure 3 what happens when we construct the digraph of Ψ(Z15). We get precisely
3 cycles, all of which are of length 4. It appears that the cycles of Ψ(Z5) are triplicated
when we multiply the modulus by three. But what if Ψ(Z3) had also contained a cycle?

Figure 3: Cycles in Ψ(Z15) [4]

Note that Ψ(Z4), displayed in Figure 4, contains one cycle of length 2. Now observe
in Figure 5 the cycles found in Ψ(Z20). There are precisely five cycles of length 2 and
at least four cycles of length 4. Based on these observations, Haffner and Newnum
identified a pattern. They articulated this pattern in their “Relatively Prime with Zero
Cycles Conjecture" and “Least Common Multiple Conjecture" [4]. These conjectures are
cases of the following assertion, which will later be proven.

Theorem 2. Let a and b be relatively prime positive integers. Suppose for a given cycle
length c, Ψ(Za) has Nc cycles of length c and Ψ(Zb) has Mc cycles of length c. Then
Ψ(Zab) has at least bNc +aMc cycles of length c.

3 New Theorems

3.1 Cycles from Coprime Factors of the Modulus

We begin with a simpler case of the main theorem.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



4 New Theorems for the Digraphs of Commutative Rings

Figure 4: Ψ(Z4) [4] Figure 5: Cycles in Ψ(Z20) [4]

Theorem 1. Let a and b be relatively prime positive integers and suppose Ψ(Za) has Nc

cycles of a given length c. Then Ψ(Zab) will have at least bNc cycles of length c.

We begin by establishing some useful identities and a lemma, which we then use to
prove the theorem. Each cycle in Ψ(Za) of length c is of the form (x1, y1) → (x2, y2) →
. . . → (xc , yc ) → (xc+1, yc+1), where

xc+1 ≡ x1(mod a) (1)

yc+1 ≡ y1(mod a) (2)

Furthermore, the x and y components of an arbitrary vertex in the cycle are defined
recursively as follows:

xn = xn−1 + yn−1 (3)

yn = xn−1 · yn−1 (4)

Now, consider the mapping of the vertex (ka +x1,bφ(a) y1) in Ψ(Zab), where x1 and
y1 can be selected from any vertex in any cycle of Ψ(Za), φ is Euler’s totient function,
and k is an integer such that 0 ≤ k ≤ b −1. Let χ1 = ka + x1 and γ1 = bφ(a) y1. If we can
show that (χ1,γ1) leads to a cycle of length c, then we can guarantee at least b cycles
of length c in Ψ(Zab) for every cycle in Ψ(Za) of length c by varying k from 0 to b −1.
This would prove Theorem 1. Before demonstrating such a mapping of (χ1,γ1), we must
first establish three helpful identities. First, bφ(a) ≡ 1(mod a) by Euler’s Theorem. Then,
multiplying both sides and the modulus by b, we get bφ(a)+1 ≡ b(mod ab). Finally, let us
multiply both sides by bφ(a)−1 to obtain

b2φ(a) ≡ bφ(a)(mod ab) (5)
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Morgan Bounds 5

This result will prove useful later. Now, let us examine Equation (1) more closely.
Through subtraction, we easily obtain xc+1−x1 ≡ 0(mod a). Next, we multiply both sides
and the modulus by b to yield b(xc+1 −x1) ≡ 0(mod ab). Finally, multiply both sides by
bφ(a)−1 to get

bφ(a)(xc+1 −x1) ≡ 0(mod ab) (6)

This result will also prove useful. Now we must consider Equation (2). Multiplying
both sides and the modulus by b gives us by1 ≡ byc+1(mod ab). From here, we simply
multiply both sides by bφ(a)−1 to obtain

bφ(a) y1 ≡ bφ(a) yc+1(mod ab) (7)

Now that we have established (5), (6), and (7), we need to establish a lemma that will
iterate (χ1,γ1) as far as we wish.

Lemma 1. With (χ1,γ1) = (ka +x1,bφ(a) y1), we have
(χ j ,γ j ) = (ka +x1 +bφ(a)(x j −x1),bφ(a) y j )), for every j ≥ 1

Proof. Using mathematical induction, note that the conclusion holds for
j = 1. Now, assume (χ j ,γ j ) = (ka +x1 +bφ(a)(x j −x1),bφ(a) y j )).Then by (3),

χ j+1 ≡ χ j +γ j ≡ ka +x1 +bφ(a)(x j −x1)+bφ(a) y j ≡ ka +x1 +bφ(a)(x j+1 −x1)

and by (4) and (5),

γ j+1 ≡ χ jγ j ≡ (ka +x1 +bφ(a)(x j −x1))(bφ(a) y j ) ≡ bφ(a) y j+1(mod ab)

Now a proof of Theorem 1 will be given.

Proof. InΨ(Zab), the vertex (χ1,γ1) = (ka+x1,bφ(a) y1) will eventually map onto (χc+1,γc+1).
From Lemma 1,

(χc+1,γc+1) = (ka +x1 +bφ(a)(xc+1 −x1),bφ(a) yc+1)

≡ (ka +x1,bφ(a) y1)(mod ab)

by (6) and (7).
This proves that (χ1,γ1) leads to a cycle of at most length c in Ψ(Zab). Now, by

contradiction we will show that no vertex in the cycle before (χc+1,γc+1) is equivalent to
the starting vertex. Assume that in the mapping of (χ1,γ1), there exists a vertex (χd ,γd ),
where 1 < d < c +1 and
(χd ,γd ) ≡ (χ1,γ1)(mod ab). By Lemma 1 and substitution,

(χd ,γd ) = (ka +x1 +bφ(a)(xd −x1),bφ(a) yd ) ≡ (ka +x1,bφ(a) y1)(mod ab)

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



6 New Theorems for the Digraphs of Commutative Rings

This implies the following congruence relations:

ka +x1 +bφ(a)(xd −x1) ≡ ka +x1(mod ab) (8)

bφ(a) yd ≡ bφ(a) y1(mod ab) (9)

Subtracting ka + x1 from both sides of (8) yields bφ(a)(xd − x1) ≡ 0(mod ab). Dividing
both sides by bφ(a) implies xd ≡ x1(mod a). And in (9) dividing both sides by bφ(a)

yields yd ≡ y1(mod a). Now, examining (1) and (2), it becomes clear d = c +1. But this
contradicts the definition of d .

Therefore, (χ1,γ1) cannot cycle back before producing a full cycle of length c. Now,
as k takes on b distinct values, each produces a unique (χ1,γ1) (an argument similar to
the one used in (8) and (9) confirms their uniqueness). This guarantees at least b cycles
of length c in Ψ(Zab) for each cycle of length c that was in Ψ(Za).

Theorem 1 will now be demonstrated in the case that a = 4, b = 5, and c = 2. Based
on Ψ(Z4), which can be observed in Figure 4, we expect Ψ(Z20) to have at least 5
cycles of length 2. From the proof of Theorem 1, we know that we can begin a cy-
cle in Ψ(Z20) by identifying a vertex of the form (ka + x1,bφ(a) y1), where 0 ≤ k ≤ 4,
and (x1, y1) is an arbitrary vertex from an arbitrary cycle of Ψ(Z4). In Figure 4, we
see that we can choose (x1, y1) = (3,2). Now, using φ(4) = 2, (ka + x1,bφ(a) y1) ≡ (4k +
3,10)(mod 20). By substituting in each possible value of k, we can generate the 5 vertices
(3,10), (7,10), (11,10), (15,10), and (19,10). And, by referring to Figure 5, we see that each
of these vertices leads to a unique cycle of length 2 in Ψ(Z20).

Thus, Theorem 1 is not only capable of predicting a minimum number of cycles and
their lengths, but also the vertices of which those cycles are comprised. We have proven
that Ψ(Zab) has at least b cycles of length c for each cycle of length c in Ψ(Za). However,
we have yet to show that Ψ(Zab) will have a unique cycles of length c for each cycle of
length c in Ψ(Zb). This will now be shown in Theorem 2.

3.2 Both Factors Contribute to Cycle Behavior

Theorem 2. Let a and b be relatively prime positive integers. Suppose for a given cycle
length c, Ψ(Za) has Nc cycles of length c and Ψ(Zb) has Mc cycles of length c. Then
Ψ(Zab) has at least bNc +aMc cycles of length c.

Proof. From each cycle of length c in Ψ(Za), we know that we can identify and use a
vertex (χ1,γ1) to create a cycle in Ψ(Zab). And, from Lemma 1, we know that each of the
vertices of that cycle will be of the form (χua ,γua ) = (ka+x1a +bφ(a)(xua −x1a ),bφ(a) yua ),
where x1a , xua , and yua were adopted from vertices of a cycle of length c in Ψ(Za) and
1 ≤ u ≤ c. Similarly, using a cycle in Ψ(Zb) as our starting point, the vertex (χ1,γ1) will
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Morgan Bounds 7

create a cycle in Ψ(Zab) whose vertices are of the form (χvb ,γvb ) = (kb+x1b +aφ(b)(xvb −
x1b ), aφ(b) yvb ), where x1b , xvb , and yvb were adopted from vertices of a cycle of length c
in Ψ(Zb) and 1 ≤ v ≤ c.

To prove Theorem 2, we must show that (χua ,γua ) will never be equivalent to (χvb ,γvb ),
no matter what values of u, v, x, and y are selected. By contradiction, assume that
for some u and v , (χua ,γua ) ≡ (χvb ,γvb )(mod ab). Congruence of their γ-components
shows that bφ(a) yua ≡ aφ(b) yvb (mod ab), and therefore bφ(a) yua ≡ 0(mod a). But since
(x,0) is always a terminal vertex and therefore does not create a cycle, we know that
yua 6≡ 0(mod a). Since a and b are relatively prime, bφ(a) yua 6≡ 0(mod a), which is a
contradiction.

3.3 Moduli with a Guaranteed Cycle of Length 4

The first two theorems predict the minimum number of cycles of a given length inΨ(Zab)
based on Ψ(Za) and Ψ(Zb). But what if Ψ(Za) and Ψ(Zb) are not given? The following
theorems help predict a digraph’s cycle behavior given only the modulus.

Theorem 3. Ψ(Zn) has at least one cycle of length 4 if there exists an integer x such that
x2 ≡−1(mod n).

Proof. In Ψ(Zn), map the vertex (−1, x +1) as follows:

(−1, x +1) → (x,−x −1) → (−1,1−x) → (−x, x −1) → (−1, x +1)

Thus, (−1, x +1) leads to a cycle of length 4.

Note that Theorem 3 applies to all Pythagorean primes, which are primes of the form
4k +1, where k is an integer. This becomes evident when we examine Wilson’s Theorem,
which states that (p − 1)! ≡ −1(mod p) for any prime number p. By expanding and

refactoring the factorial on the left, we obtain (( p−1
2 )!)2(−1)

p−1
2 ≡−1(mod p) [3]. Because

p is of the form 4k +1, p−1
2 is even and (−1)

p−1
2 is 1. Now we have (( p−1

2 )!)2 ≡−1(mod p).
Thus, for the digraphs of Pythagorean primes, Theorem 3 will always hold because
(( p−1

2 )!) will always satisfy x.
For example, k = 1 yields 5, which is the first Pythagorean prime. Furthermore,

solving for x yields 2, which anticipates the cycle (4,3) → (2,2) → (4,4) → (3,1) → (4,3),
which can be observed in Figure 1.

3.4 Cycles in Perfect Square Moduli

Theorem 4. Ψ(Zp2 ), where p is a prime number, has at least p −1 cycles of length p.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



8 New Theorems for the Digraphs of Commutative Rings

Proof. In Ψ(Zp2 ), map the vertex (1,kp), where 1 ≤ k ≤ p −1:

(1,kp) → (1+kp,kp) → (1+2kp,kp) → (1+3kp,kp) → ... → (1+ (p −1)kp,kp)

→ (1,kp)

Since p is prime, (1,kp) leads to a cycle of length p. And because k can take on p −1
distinct values, each producing a different (1,kp), we can guarantee at least p −1 cycles
of length p in Ψ(Zp2 ).

Digraph Cycle Length Cycles of Given length

Ψ(Z4) 2 1
Ψ(Z9) 3 2
Ψ(Z25) 5 4
Ψ(Z49) 7 6

...
...

...

Figure 6: Cycles of length p −1 in Ψ(Zp2 )

Take, for example, Ψ(Z4). Based on Theorem 4, we can predict that Ψ(Z4) will have
at least one cycle of length 2 of the form (1,2) → (3,2) → (1,2). Observing Figure 4, this
prediction is verified. Figure 6 further demonstrates the pattern identified in Theorem 4.

4 Future Directions

When presented with Ψ(Z4) and Ψ(Z5), one can use Theorem 2 to predict that Ψ(Z20)
will have at least five cycles of length 2 and at least four cycles of length 4. While Ψ(Z20)
has precisely five cycles of length 2, it has more than just the four cycles of length 4 that
were predicted. Ψ(Z20) contains six cycles of length 4, to be exact. Where are the two
additional cycles coming from? Can a theorem be constructed that predicts such cycles?
Under what conditions does Theorem 2 predict a precise number of cycles?

Theorem 2 examines Ψ(Zab) where a and b are relatively prime. Could a result
similar to Theorem 2 be demonstrated in Ψ(Zabc ) for relatively prime a,b, and c? Could
this be further generalized to predict the cycles of Ψ(Zn) given the digraphs of the prime
factors of n?

Theorems 3 and 4 predict cycles in the digraphs of moduli that meet special require-
ments. What other methods exist for predicting how many cycles and what cycle lengths
a digraph will have given only the modulus?

All of the theorems in this paper have included the caveat “at least". To prove that a
digraph will have at least a certain number of cycles is relatively easy. Relative, that is, to
proving that a digraph will have at most a certain number of cycles. Can a theorem be
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established that predicts at most how many cycles the digraph of an arbitrary modulus
will have? Given an arbitrary modulus, can one calculate the upper bound on how long
its cycles can get? This direction is explored in part by Lipkovski [6].
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