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On the Enumeration of Shapes

By May Cai and Nicholas Liao

Abstract. We define a shape as a union of finitely many line segments. Given an ar-
rangement of lines on a plane, we count the number of shapes in the arrangement by
examining the symmetries of the arrangement and applying Burnside’s lemma. We fur-
ther establish a generating function for the number of distinct line segments on a line
with k distinguished points. We list all affine line arrangements of four and five line
segments, together with the corresponding number of shapes on them.

1 Introduction

Consider a particular arrangement of n lines on the plane. We define a shape on arrange-
ment as the union of non-zero length line segments, one from each line. Our task is to
consider how many distinct shapes can be generated from a given line arrangement.

There are infinitely many possible line segments on a given line. For this question
to be meaningful, we must define what it means for two shapes to be equivalent. Any
given line in an arrangement will have up to n −1 intersections with the other lines in
the arrangement. Say our given line has k intersection points. We will consider each
intersection point to be a distinguished point on a line that divides it into 2k +1 zones,
k of which are 0-length zones that correspond to the points themselves. If two line
segments span the same zones then we will consider them equivalent.

Then we can consider two shapes on a given line arrangement equivalent if they
contain equivalent line segments. For example, in Figure 1, shapes (a) and (b) would be
considered the same arrangement while shape (c) would be a different shape.

Shape (c) in Figure 1 differs from the other two in that the upper-left line segment
touches the intersection point between two lines of the arrangement (and so includes
that zone).

Furthermore we will also consider two shapes equivalent if one is a reflection or
rotation of another shape with equivalent line segments as the other (and so equivalent
in the previous definition after rotation or reflection). In Figure 2, we consider shapes
(a) and (b) to be equivalent because a simple 180 degree rotation (or a reflection across
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2 On the Enumeration of Shapes

(a) (b) (c)

Figure 1: 3 shapes on 3 lines

the horizontal axis) leaves the two arrangements equivalent to one another (with the
previous definition), while shape (c) has a distinct line segment arrangement.

(a) (b) (c)

Figure 2: 3 shapes on two lines

The natural question is, then, how many such shapes can there be on any given line
arrangement? In Section 2 we count the number of distinct ways to place line segments
on a line with k distinguishing points. We establish a bijection between that sequence
and the crystal ball numbers on a cubic lattice. Then in Section 3 we discuss the total
number of distinct shapes on a line arrangement, and in Section 4 we use Burnside’s
lemma to reduce that number to the total number of shapes distinct under symmetry.
Finally Section 5 contains an enumeration of the total number of line arrangements in
four and five lines, and an explanation of how they were generated.

Our motivation for this work stems from questions Pr. Athanassios Economou and
his research group at the Shape Computation Lab at Georgia Tech have been pursuing in
shape matching and visual recognition in computer-aided design (CAD) systems. The
two-part representation of shape in terms of line segments and underlying lines is the
very same model used in the Shape Machine [5], a shape grammar interpreter currently
developed at the Shape Computation Lab. The enumeration discussed in this work is

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



May Cai and Nicholas Liao 3

envisioned as a complement to the work in the lab and as a foundation for a formal and
well defined standard of reference of the simplest possible arrangements of shapes made
up of lines in the plane. Aspects of the work have been presented at the Shape Machine
Symposium [6] and the Shape Atlas Exhibition, an exhibition hosted by the School for
Architecture at Georgia Tech.

2 Line Segments on a Line With k Intersections

Now it would be helpful to understand how many possible distinct line segments can be
placed on a given line.

Theorem 2.1. There are 2k2+2k+1 distinct ways to place one line segment on a line with
k intersections.

Proof. Consider a line with k points of intersection. On a line, k cuts will result in k +1
zones between the cuts.

Now we can split all possible line segments into two categories, ones that span
multiple intersections and zones, and those that are contained within a single zone.

The number of line segments that span multiple intersections and zones are
(2k+1

2

)
,

as for any two different intersections or zones, there is only one line segment starting in
one and ending in the other, for a total of

(2k +1)(2k)

2
= 4k2 +2k

2
= 2k2 +k

possible line segments.
Now the number of line segments that are contained within a single zone (as a line

segment that is contained in only an intersection is a single point, and thus not a valid
line segment) are equal to the number of non-zero length zones, which as previously
mentioned is k +1.

Combining the two classes of line segments, we reach 2k2 +2k +1 unique classes of
line segments, completing the proof.

What if we relax the restriction that there must be exactly one line segment per line?
How many ways can you put two segments on a line with k intersections? What about
three segments? We have to be careful not to choose endpoints such that the segments
intersect each other, as this would yield a single line segment. But at the same time, we
could potentially have all line segments contained in the same zone without any two
line segments intersecting.

Theorem 2.2. Let
Fi (x) := ∑

k≥0
ci ,k xk

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



4 On the Enumeration of Shapes

Figure 3: Example: There are 13 ways to place a line segment on a line with 2 intersec-
tions.

where ci ,k denotes the number of ways to place i line segments on a line with k distin-
guished points.

This generating function has the closed form

Fi (x) = (1+x)2i

(1−x)2i+1
.

Proof. Imagine we fix the i line segments on the line, and then place the k distinguished
points on the oriented line around them. Each line segment has two endpoints for a
total of 2i endpoints, and we want to know where they fall relative to the distinguished
points. At most one of the distinguished points can coincide with each endpoint, so
we can consider each of the 2i different (1+ x) terms as corresponding to a specific
endpoint and whether or not we choose to place a distinguished point there. The rest of
the oriented line is divided into 2i +1 distinct sections by these endpoints, and we can
place any number of distinguished points in any of the sections. This corresponds to
there being 2i +1 different (1−x)−1 terms, each of which tracks the (arbitrary) number of
distinguished points in their corresponding section. (Recall that (1−x)−1 = 1+x+x2+. . ..)
These choices uniquely determine the number of ways to place i line segments on an
oriented line with k distinguished points, and thus is described by the above generating
function.

This theorem also gives us a formula to calculate ci ,k directly by summing up at most
2i +1 products of binomial coefficients.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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Corollary 2.3.

ci ,k =
2i∑

j≥0

(
2i

j

)(
k +2i − j

2i

)
Proof. Let us take the generating function from Theorem 2.2. We have that

Fi (x) = (1+x)2i

(1−x)2i+1
.

Expanding out the polynomial in the numerator, we get

Fi (x) =
2i∑

j≥0

(
2i

j

)
x j

(1−x)2i+1
.

Now we use the identity that 1
(1−x)k =∑

n≥0
(n+k−1

k−1

)
xn , and we get that

Fi (x) =
2i∑

j≥0

(
2i

j

)(
x j

∑
k≥0

(
k +2i

2i

)
xk

)

=
2i∑

j≥0

(
2i

j

)(∑
k≥0

(
k +2i − j

2i

)
xk

)

= ∑
k≥0

(
2i∑

j≥0

(
2i

j

)(
k +2i − j

2i

))
xk

and we simply extract the coefficient corresponding to xk to get

ci , j =
2i∑

j≥0

(
2i

j

)(
k +2i − j

2i

)
as desired.

We came upon this generating function by noticing that the sequence of ways to
place one line segment on a line with k distinguished points appeared to be the same as
k-th crystal ball number on a cubic lattice in R2 [3]. The k-th crystal ball number on a
cubic lattice in Rn is defined as the number of elements of Zn within k taxicab (or L1)
distance of the origin. We saw that the number of ways to place i line segments on a
line with k distingushed points seemed to match the k-th crystal ball number on a cubic
lattice in R2i [2].

Proposition 2.4. There is a bijection between the number of ways to place i line segments
on an oriented line with k distinguished points and the k-th crystal ball number on a
cubic lattice in R2i .

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



6 On the Enumeration of Shapes

Proof. We claim that this bijection follows from the fact that the two sequences have the
same generating function

Fi (x) = (1+x)2i

(1−x)2i+1
.

We have already shown that this is the generating function for the number of ways to
place i line segments on a line with k distinguished points, so it remains to show that
this generating function describes the crystal ball numbers.

Now we note that the k-th crystal ball sequence on R2i describes the number of
2i -tuples of integers such that the total magnitude of all the integers in the tuple sum to
less than or equal to k. (In this notation, the sequence starts at k = 0, valued at 1 for all
i .) We claim that the generating function

G(x) = (1+x)y

(1−x)y

is the generating function for the number of y-tuples of integers whose total magnitudes
sum to exactly k, for the k-th term in the sequence. If this is true then it is clear that the
claimed generating function is correct for the sequence, since the extra (1−x)−1 serves
as a slack term.

We can separate the generating function G into y terms of the form (1+ x)/(1− x).
Each of these terms corresponds to a different element of the y-tuple. Recall that

(1−x)−1 = 1+x +x2 + . . . .

Thus, (1+ x)(1− x)−1 = 1+2x +2x2 +2x3 + . . .. This expresses that there is one way to
choose 0, and two ways to choose any |a| 6= 0 value for a particular integer in a y-tuple, |a|
and −|a|. The coefficient of xb in G(x) will be the number of ways that y integers can have
total magnitude equal to b. Thus, G is a generating function for the number of elements
of Zy exactly k away from the origin in Ry (using L1 distance), and so G(x)(1−x)−1 is the
generating function for the number of elements of Zy at most k away from the origin in

Ry . So (1+x)2i

(1−x)2i+1 is the generating function for the number of elements of Z2i at most k

away from the origin inR2i , which is exactly the definition of the k-th crystal ball number
on a cubic lattice in R2i .

3 Total number of shapes on a given line arrangement

Now that we can count the number of distinct line segments per line, the way we count
the total number of shapes (without considering isomorphism under symmetry) is
simple. For a line arrangement with n lines having k1,k2, . . . ,kn intersections, recall
that we calculated the number of ways to place a single line segment on a line with
ka intersections to be 2k2

a +2ka +1 in Theorem 2.1. The total number of shapes using
exactly one line segment per line is then

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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n∏
a=1

(
2k2

a +2ka +1
)

Figure 4: A five-pointed star

For example, consider Figure 3. Each of the five lines in this arrangement has 4
distinguished points, which means each line can have 2∗ (4)2+2∗4+1 = 41 distinct line
segments when we only allow one segment per line. So the number of shapes that can be
generated on this line arrangement, disregarding symmetry, is 415 = 115,856,201. How-
ever, this arrangement is highly symmetric, so we will see that many of these potential
shapes are in fact not distinct.

Let us now turn our attention to a more generalized shape, where we can have more
than one line segment per line. For a given construction line arrangement with n lines,
with i1, i2, . . . , in line segments on lines 1,2, . . .n, we can calculate the number of shapes
(again disregarding isomorphism under symmetry) by finding the number of ways to
place ia line segments on a line with ka intersections using the generating function
described in Theorem 2.2, and then taking the product of all of these ways for each a
from 1 to n.

4 Shapes Under Symmetry

Two shapes are equivalent if there is a bijection from intersection points to intersection
points in such a way that underlying lines map to lines.

This then forms a symmetry group of these operations from any given shape to itself.
For the 5-pointed star example of Figure 3, the operations are the symmetry group of the
regular pentagon. This consists of rotations by multiples of 72◦ (5 including the identity),
and reflections across an axis that contain both a point of the pentagon and the midpoint
of the opposite edge (5 points).

Burnside’s lemma says that for a set X and a symmetry group G acting on X, the total
number of orbits is described by

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



8 On the Enumeration of Shapes

|X/G| = 1

|G|
∑

g∈G
|Xg |,

where Xg is the set of elements of X that are fixed by the group element g .
If we define our set X to be the set of shapes in our given configuration, and the group

to be the symmetry group that acts on the line arrangement, then direct application of
Burnside’s lemma gives us the number of distinct shapes.

Let us calculate the total number of distinct one-segment-per-line shapes for the
5-pointed star as an example. We noted earlier that it has the symmetry group of the
pentagon. Notice that the fixed shapes of the five reflections require one line segment (of
the line perpendicular to the axis of reflection) to remain fixed when reflected across the
middle point of the line, meaning there are only five valid line segments that remain fixed,
namely the ones that are symmetric across that axis of reflection. The other four lines are
uniquely determined by a choice of two of the lines, since reflection will superimpose
two of the lines on the other two, resulting in 412 choices. Thus for each reflection, there
are 5∗412 shapes that are fixed by that reflection. For the rotations, it is enough to notice
that each line must be a rotational copy of each other line, which means a choice of a
line segment for one line determines the choice for all line segments, so there are 41
shapes fixed by each non-identity rotation. And the identity map contains 415 elements
that are obviously fixed.

So in conclusion, there are 1
10 (5∗5∗412 +4∗41+415) = 11,589,839 distinct shapes

under the line arrangement isomorphic to the 5-pointed star.
In general, computing this number will require finding the symmetry group that

acts on the line arrangement, and then calculating the fixed shapes under each of the
elements of the symmetry group and applying Burnside’s lemma.

Note that calculating the fixed shapes for reflections will often require calculating
the number of ways to place line segments on a line such that it is fixed under reflection.

Theorem 4.1. The number of ways to place i line segments on a line with k intersection
points, such that the resulting placement is fixed under reflection across that line, is the
bk/2c-th degree coefficient of the generating function

Hi (x) = (1+x)i

(1−x)i+1

Proof. For a choice of line segments on a line to remain fixed under reflection, exactly
half of the endpoints of the line segments will be on one side of the line, and must match
up with the other half on reflection. So, if we will place i line segments (i.e. 2i line
segment endpoints) on a line with k intersections, placing i line segment endpoints on
one half of the line will fix the placement of the other segment endpoints on the other
half of the line.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



May Cai and Nicholas Liao 9

Note that no line segment endpoint can fall on the point of reflection of the line,
since that would require two line segments ending on the same point.

So, it remains to find the number of ways to place i points, corresponding to half of
the line segment endpoints, on half of the line. Since the line has k distinguished points,
half of them (rounded down) fall on one half of the line. So we must find a way to place i
points on a line with bk/2c distinguished points.

Thus, by the same logic as in Theorem 2.2, this formula has the generating function

Hi (x) = (1+x)i

(1−x)i+1
.

5 Conclusion

While we have shown how to enumerate shapes given a single line segment per line and
how to enumerate multiple line segments per line, we have not shown how to enumerate
shapes given multiple line segments per line. Another potential area of interest is in
curves: either relaxing the definitions into pseudoline arrangements, or fully allowing
arbitrary self-intersection.

Appendix: Enumerating Shapes with Four and Five Lines

The following section contains a complete catalog of all four-line and five-line affine line
arrangements, as well as a list of the number of shapes for each arrangement both with
and without symmetry. This table can also be found at
http://people.math.gatech.edu/ jyu67/shapes/webpage/table.html.
These line arrangements were generated from the rank 3, cardinality 5 and 6 catalog
of hyperplane arrangement chirotopes in [1]. This is in general a difficult problem to
do, since by Mnëv’s universality theorem [4] the realization space of an arbitrary ori-
ented matroid is stably equivalent to solving a system of polynomial equations and
inequalities. These were done by hand, which was feasible given how small the matroids
were. These arrangements are rank 3 in projective space, so one line was chosen “at
infinity” in order to generate the affine arrangement. Also attached to each arrange-
ment is the corresponding Rev-Lex Index of the line arrangement, which is a notation
borrowed from [1]. The Rev-Lex Index of an arrangement is the largest chirotope in its
corresponding isomorphism class, with chirotopes represented as strings of signs whose
related bases are ordered in reverse lexicographical order, and the largest chirotope is
the lexicographically maximal one, with 0 >+>−.

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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10 On the Enumeration of Shapes

Figure 5: 4 line segments
Images Symmetries Before Symmetry After Symmetry Rev-Lex Index

4 1 1 0000000000

2 390625 195625 ++++++++++

2 54925 27716 0+++++++++

2 105625 52925 ++++0+++++

2 10985 5512 0++++++0++

4 105625 26573 ++++0+−+−−

4 3125 810 0+++000+++

8 28561 3666 ++++0++++0

16 625 52 0000++++++

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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Figure 6: 5 line segments
Images Symmetries Before Symmetry After Symmetry Rev-Lex Index

2 115856201 57932303 ++++++++++++++++++++

1 115856201 115856201 +++++++++++++++++++−

2 115856201 57932303 ++++++++++++++++−+++

2 115856201 57932303 ++++++++++++++++++−−

2 115856201 57932303 ++++++++++++++++−−++

10 115856201 11589839 +++++++++++++−++−−++

2 26265625 13134350 0++++++++++++++−+−−−

1 26265625 26265625 0++++++++++++++−++−−

1 26265625 26265625 0++++++++++++++++−−−

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



12 On the Enumeration of Shapes

Images Symmetries Before Symmetry After Symmetry Rev-Lex Index

1 26265625 26265625 0+++++++++++++++++−−

2 26265625 13134350 0+++++++++++++++−−−+

1 26265625 26265625 0+++++++++++++++++++

2 5078126 2543125 0++++++0+++++++++−−−

2 5078125 2540000 0++++++0++++++++++−−

2 5078125 2540000 0++++++0+++++++++++−

2 1171001 585923 0000++++++++++++++++

20 3125 195 0000000000++++++++++

1 43075625 43075625 +++++++++++0−−−−−−−+

2 43075625 21540375 +++++++++++0+−++−−++
Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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Images Symmetries Before Symmetry After Symmetry Rev-Lex Index

1 43075625 43075625 +++++++++++0+−++−+++

2 16015625 8009375 +++++++++++0+−0+−−++

2 43075625 21540375 ++++++++++0+−+−−+−−−

1 43075625 43075625 ++++++++++0++++++++−

1 43075625 43075625 ++++++++++0+++++++++

2 16015625 8009375 ++++++++++0+++++++0−

2 16015625 8009375 ++++++++++0++++0++−−

2 274625 137566 0000++++++++++++0+++

4 25625 6479 0000++++++000000++++

1 8328125 8328125 0++++++++++++0++−−++

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020



14 On the Enumeration of Shapes

Images Symmetries Before Symmetry After Symmetry Rev-Lex Index

1 8328125 8328125 0++++++++++++0++−+++

2 2640625 1320800 0++++++++++++0++−−0+

1 2640625 2640625 0++++++++++++0++−0++

2 3693157 1847132 0+++++++++000++−++−−

2 3693157 1847132 0+++++++++000+++++++

4 1373125 344074 0+++++++++000++++++0

1 1373125 1373125 0++++++0+++++++0++−−

4 371293 93626 0++++++0+++++++0+0−−

2 1373125 687050 0++++++0++++++0−+−−−

4 528125 132523 0++++++0++000++−++−−

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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Images Symmetries Before Symmetry After Symmetry Rev-Lex Index

2 528125 264175 0++++++0++000++++++−

2 9765625 4885625 0++++++++++++++++++0

4 9765625 2443450 0+++++++++++++++−−−0

1 8328125 8328125 0+++++++++++++0−−−−−

1 8328125 8328125 0+++++++++++++0−+−−−

1 8328125 8328125 0++++++++++++0−−−−−−

1 8328125 8328125 0++++++++++++0++−−−+

Rose-Hulman Undergrad. Math. J. Volume 21, Issue 1, 2020
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