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Graphs, Random Walks, and the Tower of Hanoi

By Stephanie Egler

Abstract. The Tower of Hanoi puzzle with its disks and poles is familiar to students in
mathematics and computing. Typically used as a classroom example of the important
phenomenon of recursion, the puzzle has also been intensively studied its own right,
using graph theory, probability, and other tools. The subject of this paper is “Hanoi
graphs”, that is, graphs that portray all the possible arrangements of the puzzle, together
with all the possible moves from one arrangement to another. These graphs are not
only fascinating in their own right, but they shed considerable light on the nature of the
puzzle itself. We will illustrate these graphs for different versions of the puzzle, as well
as describe some important properties, such as planarity, of Hanoi graphs. Finally, we
will also discuss random walks on Hanoi graphs.

1 The Tower of Hanoi

The Tower of Hanoi is a famous puzzle originally introduced by a “Professor Claus” in
1883. It was revealed in the following year that “Claus” was a reordering of the letters in
number theorist Edouard Lucas’ surname.

The Tower of Hanoi supposedly arose from the legend of the Tower of Brahma. This
legend tells of three diamond needles and a tower of 64 golden disks, all on one needle,
which a group of Brahmin monks must transfer to another needle one disk at a time.
The disks are all of different diameters, and no disk may ever be placed atop a smaller
one. Once the monks complete their task, the world will end. Thankfully, even moving
one disk per second, and using the optimal strategy, it would well take over 40 times the
currently accepted age of the universe to complete the task.

The setup of the traditional Tower of Hanoi puzzle consists of 3 wooden poles and n
disks with differing diameters (Figure 1). These n disks are initially stacked on a single
pole in order of (decreasing) diameter with the largest disk on the bottom. The goal of
the puzzle is to move this tower of n disks to another pole one disk at a time while never
placing a smaller disk on top of a larger disk. These two rules are identical to the rules
the monks were to follow.
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2 Graphs, Random Walks, and the Tower of Hanoi

Figure 1: The Tower of Hanoi with three poles labelled 0, 1, and 2 corresponding to the
leftmost, center, and rightmost pole, respectively.

In the puzzle’s most basic form, the (minimum) number of moves needed to solve the
puzzle for n disks can be found through a recurrence relation. The recurrence relation is
as follows:

hn = 2hn−1 +1, h1 = 1. (1)

Further, we can use induction to prove the closed form expression

hn = 2n −1 for all integers n = 1,2, . . . .

These are standard exercises in most discrete math textbooks [4]. However, this is not
the end, but just the beginning of the exploration of the Tower of Hanoi. Our goal is to
extend what we know about Hanoi graphs corrsponding to the traditional form of three
poles to variations of the Tower of Hanoi. In particular, we will explore Hanoi graphs and
random walks of the Tower of Hanoi with a fourth pole, then add an additional adjacency
requirement to our variation, which restricts the legal moves of the puzzle.

2 Hanoi Graphs

2.1 Hanoi Graphs on Three Poles

A very fruitful tool in the study of the Tower of Hanoi is the Hanoi graph, which represents
all of the possible states of the puzzle as well as the moves that can be made from one
state to another. We will denote the Hanoi graph by Hk

n , where n is the number of disks
and k is the number of poles in the puzzle. We begin by examining the traditional H3

n
Hanoi graph on 3 poles. This graph’s vertices display all legal configurations of the

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



Stephanie Egler 3

n disks, totaling 3n configurations, and its edges display all legal moves. Here “legal”
means, as before, that one can only move one disk at a time and that no disk may be
placed atop a smaller one. Following the notation of [7] and [6], we will label the poles 0,
1, and 2, corresponding to the leftmost, center, and rightmost poles, respectively. The
disk with the largest diameter is labeled an−1, the remaining disks are labeled similarly,
and the smallest would then be labeled a0. This allows each vertex of the Hanoi graph to
be labeled with an n-bit ternary string an−1 . . . a1a0, where ai ∈ {0,1,2} and ai = j if disk
i lies on pole j (Figure 2).

Figure 2: The Hanoi graph H3
3. The highlighted vertex corresponds to the Tower of Hanoi

puzzle in the state shown. The 3-bit ternary string 002 indicates that the largest disk a2

and medium-sized disk a1 lie on pole 0 and the smallest disk a0 lies on pole 2.

Each resulting n-bit ternary string corresponds to a legal configuration. Two vertices
are adjacent if and only if there is one legal move that takes one of the corresponding
states of the puzzle to the other. Note that since legal moves are reversible, Hanoi graphs
are undirected. Also, since it is possible to travel from any vertex to any other vertex along
adjacent edges, Hanoi graphs are connected, as well. Solving the Tower of Hanoi puzzle
in the fewest moves possible, then, corresponds to finding a shortest path between two
vertices in the Hanoi graph. Figure 2 shows the shortest path in H3

3 joining 000 and
222; this corresponds to all disks being initially stacked on the leftmost pole and then
transferred to the rightmost pole using the smallest number of moves possible. The
length of this path, namely seven edges, is consistent with our earlier result that the
optimal number of moves is h3 = 23 −1 = 7.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



4 Graphs, Random Walks, and the Tower of Hanoi

The substructure [ j ] is the set of vertices in Hk
n corresponding to legal configurations

where the largest disk is on pole j . Note that H3
3 is made up of the 3 substructures [0],

[1], and [2], corresponding to the largest disk being fixed on each of the three poles.
The positions of the remaining two disks correspond to the legal configurations of the
Hanoi graph with 3 poles and 2 disks, H3

2. These substructures are connected by bridges.
An edge is a bridge if its endpoints lie in different substructures. By a combinatorial
argument [9], the total number of bridges in Hk

n is given by(
k

2

)
(k −2)n−1. (2)

As a consequence, regardless of n, when there are k = 3 poles, the number of bridges
is 3. Thus we can view H3

n recursively: H3
n consists of 3 copies of H3

n−1 connected as
substructures by three bridges. In this way, the Hanoi graphs H3

n display self-similarity,
about which we say more below. A similar result holds for Hanoi graphs with k > 3 poles,
but the number of bridges then depends on both the number k of poles and the number
n of disks in the puzzle, and thus the the situation becomes more complex.

2.2 Hanoi Graphs on Four Poles

A variation on the Tower of Hanoi is the addition of a fourth pole. Figures 3 and 4
illustrate H4

n with n = 2 and n = 3, respectively. Note that H4
2 is comprised of four copies

of the H4
1 graph connected by bridges; by formula (2), the number of bridges is given by(

4

2

)
(4−2)2−1 = 6 ·2 = 12.

Similarly, H4
3 consists of four copies of H4

2; again, formula (2) gives the number of bridges:(
4

2

)
(4−2)3−1 = 6 ·22 = 24.

This illustrates that the H4
n graphs display the same remarkable self-similarity seen in

the H3
n graphs.

We have shown in H3
n there is a unique shortest path joining any two given perfect

states, thus corresponding to the optimal solution of the Tower of Hanoi puzzle on three
poles. It is noteworthy, however, that the H4

n graphs do not in general have unique
shortest paths. For example, the paths

00 → 01 → 31 → 33 and 00 → 02 → 32 → 33

are both shortest paths from the perfect state 00 to the perfect state 33 (Figure 3).

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019
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Figure 3: H4
2 (drawn in MATLAB).

Just as H3
n has a total of 3n vertices, so H4

n has 4n . Indeed, in general, Hk
n has kn

vertices: we see this by examining the configurations of the corresponding Tower of
Hanoi puzzle. If we take the disks from largest to smallest, there are k options, that is to
say k poles, where we can place each disk. Because there are n disks, there are a total of
kn vertices.

A vertex represents a perfect state if for some j , all ai = j . That is, all digits in the n-bit
ternary string of the vertex are equal, and in the corresponding Tower of Hanoi puzzle,
all disks are on the j th pole. We note that all vertices in H4

n have degree at least 3, because
the smallest disk can always be moved to each of the three other poles. Moreover, perfect
states in H4

n have exactly this minimum degree of 3, because these moves are the only
legal moves that can made. More generally, in the Hanoi graph Hk

n there are k perfect
states each with degree k −1, regardless of n.

We can also give an upper bound for the degree of vertices in H4
n . Taking n = 3 for

example, we see that the maximum degree for vertices in H4
3 is 6, and this is achieved

when each disk rests on a separate pole, leaving one empty pole. The smallest disk can
move to each of the three poles on which it is not currently resting. The medium-sized
disk can move either to the empty pole or atop the largest disk. Finally, the largest disk
can move only to the empty pole. Thus we can make 3+2+1 = 6 legal moves. We can
apply this argument regardless of n, in fact. Again consider the smallest top three disks.
The other disks would be trapped underneath these smallest three or be too large to
legally move to another pole. So by the same logic as above, there are six possible moves.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



6 Graphs, Random Walks, and the Tower of Hanoi

Figure 4: H4
3 (drawn in MATLAB).

Finally, we note that the only possible degrees of vertices in H4
n are 3, 6, and 5. To see

that 5 is the only possibility if the degree of the vertex is not 3 or 6, we divide the legal
Tower of Hanoi configurations into four mutually exclusive cases. Either there are three,
two, one, or zero empty poles. If there are three empty poles, then we have a perfect
state, which as we noted has degree 3. If there are two empty poles, then each of the
top disks on the other two poles can be moved to either of the empty poles, for a total
of four legal moves. In addition, the smaller of the two top disks can be placed atop the
larger of the disks, adding a fifth possible legal move. Thus, in this case, the degree of
the corresponding vertex is five. If there is one empty pole, then the disks are spread out
among three poles with three top disks that can be moved. By the same argument as
above, these three top disks can each be moved in a total of six different ways. Finally,
if there are zero empty poles, then once again n must be greater than 3 and there are
four top disks. The largest of these has no legal moves, whereas the other three top disks
create the same six moves as the case of one empty pole. Thus, the only possible degrees
are 3, 5, and 6.

Now that we have established the number of vertices and the possible degrees for
each vertex, we can calculate the number of edges in the graph. When n = 1, there are 4
vertices and each vertex is a perfect state with degree 3. Summing the degrees of each
vertex counts every edge twice (this is sometimes known as the ‘handshake theorem’).

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019
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Thus, H4
1 has 1

2 · (4 ·3) = 6 edges. A similar calculation applies when n = 2: Figure 3 shows
that 4 of the 16 vertices of H4

2 are perfect states with degree 3 and the remaining 12
vertices have degree 5. Therefore, H4

3 has 1
2 · [(4 ·3)+ (12 ·5)] = 36 edges. Finally, we see

that H4
3, shown in Figure 4, again has 4 perfect states of degree 3. To count the number

of vertices that have degree 5 or 6, we first count 36 ternary strings that have exactly two
numbers that are the same, e.g. 001, corresponding to two disks on the same pole and
one on a different pole; as we noted earlier, such a vertex has degree 5. In the same way,
we count 24 ternary strings that have three different digits, e.g. 012, which corresponds
to three disks on separate poles and one empty pole; this vertex would have degree 6. All
told, H4

3 has 1
2 · [(4 ·3)+ (36 ·5)+ (24 ·6)] = 168 edges.

We can also count the faces of planar graphs. Intuitively, the faces of a planar graph are
the polygons bounded by the edges of the graph. To this we add, however, the infinite face,
consisting of the exterior of the graph. (If we compactify the plane by stereographically
projecting it onto a sphere, then the infinite face of the graph is simply the face containing
the north pole.) With this understanding, the Euler-Descartes formula V−E+F = 2 allows
us to calculate F given V and E.

All these results are summarized in Table 1; because H4
3 is nonplanar, we do not use

the Euler-Descartes formula to find the number of its faces.

Table 1: V, E, and F for H4
n for n = 1,2,3.

n Vertices Edges Faces Planar

1 4 6 4 Yes

2 16 36 22 Yes

3 64 168 No

3 Planarity

The planarity of Hanoi graphs is a much-studied question. Of course, one way to estab-
lish that a graph is planar is to construct a planar embedding of the graph. Indeed, by
this method, we can see that H4

1 and H4
2 are planar; Figures 5a and 5b illustrate planar

embeddings of these graphs. Note also that H4
1 is isomorphic to the planar complete

graph K4.
Demonstrating nonplanarity, however, can be more difficult. The Hanoi graph H4

3
is notable for being nonplanar [5] while satisfying many of the standard necessary
conditions for planarity. For example, one such criterion [8] says that a planar graph
with V vertices and E edges with V ≥ 3 satisfies E ≤ 3V −6. As Table 2 shows, each of the
graphs H4

1, H4
2, and H4

3 satisfies this condition, and yet H4
1 and H4

2 are planar whereas H4
3

is not.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



8 Graphs, Random Walks, and the Tower of Hanoi

(a) H4
1 in planar form

(b) H4
2 in planar form

Figure 5: The planar Hanoi graphs H4
1 and H4

2

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019
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Table 2: Necessary condition for planarity E ≤ 3V −6.

n E ≤ 3V −6 Satisfies Condition Planar

1 6 ≤ 6 = 3(4)−6 Yes Yes

2 36 ≤ 42 = 3(16)−6 Yes Yes

3 168 ≤ 186 = 3(64)−6 Yes No

Another condition states that if a graph G is a connected planar simple graph, then G
contains at least one vertex of degree 5 or less. We see that this holds in H4

n not only for
n = 1,2,and 3, but for all n, because the minimum degree is always 4−1 = 3 < 5.

In fact, every planar graph contains a vertex of degree five or less [2]. We see that for
H7

n , the minimum degree is always 7−1 = 6 > 5, a contradiction. So, adding poles so that
k ≥ 6 means that these Hanoi graphs are nonplanar.

Further, Kuratowski’s theorem states that a graph is planar if and only if it does not
contain a subdivision of the complete graphs K5 or K3,3. However, in reality, it is difficult
to check every single subdivision, so we will not rely on this theorem. Indeed, it would
be a linear time algorithm [8].

Another way to examine planarity is to ask how close a graph is to being planar. That
is, what is the number of times any two edges in the graph G cross each other? This is
the crossing number of a graph, denoted cr (G). Note that if cr (G) = 0, then no edges
cross and G is planar. It is known [8] that for any graph G with V vertices and E edges,
cr (G) ≥ E−3V +6. Table 3 shows the results of applying this estimate to Hanoi graphs.
Unfortunately, this does not reveal much about the planarity of these graphs, since we
find only that the number of crossed edges is greater than or equal to a negative number,
which is trivial.

Table 3: Crossing number estimates for Hanoi graphs

n cr (G) ≥ E−3V +6

1 cr (H4
1) ≥−3 = 3−3(4)+6

2 cr (H4
2) ≥−24 = 18−3(16)+6

3 cr (H4
3) ≥−102 = 84−3(64)+6

The results of applying these formulas to these three H4
n graphs are not sufficient

proof of planarity or nonplanarity. We only see that these graphs might be planar.
However, there are many graphs that satisfy these inequalities that are not planar. By

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



10 Graphs, Random Walks, and the Tower of Hanoi

embedding the graphs in the plane, we know that H4
1 and H4

2 are planar. Further, H4
3 is

nonplanar, so H4
n where is also nonplanar for n > 3 because it contains H4

3 as a subgraph.
As a side note, we can now examine circuits of the Hanoi graph Hn

4 . First, we note
that none of the H4

n graphs has an Euler circuit. An Euler circuit is a sequence of adjacent
vertices and edges that starts and ends with the same vertex, uses every vertex of the
graph at least once, and uses every edge exactly once. This means that every vertex of
the graph must have even degree. However, we know that all perfect states in H4

n graphs
have odd degree, namely 3. In fact, for n = 2, every vertex is of (odd) degree either 3 or 5.
Thus, none of these graphs has an Euler circuit. It is possible to find Hamiltonian paths
for Hanoi graphs, in which every vertex is used exactly once. Moreover, we can find a
circuit in H4

n such that every vertex (except for the first and last) is used exactly once.
This is called a Hamiltonian circuit. Figure 6 shows an example of a Hamiltonian circuit
on the planar graph H4

2. (The Hanoi graph H3
3 of Figure 2 also has a Hamiltonian circuit,

as Figure 7 illustrates).

Figure 6: A Hamiltonian circuit for the planar graph H4
2

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019
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Figure 7: A Hamiltonian circuit for H3
3

4 Pascal’s Triangle Connection

It turns out that the graph H3
n is closely connected with Pascal’s triangle. For example, the

graph consisting of the odd entries in the first eight rows of Pascal’s triangle is isomorphic
to H3

3 (Figure 8a and 8b). Indeed, the nature of this isomorphism can be used to address
significant questions about the Tower of Hanoi [7]. Further, by taking additional rows of
Pascal’s triangle, we see that the Hanoi graphs H3

n are each isomorphic to subgraphs of
Pascal’s triangle. We can even see fractal structure in the graphs H3

n by allowing n to grow
without bound; as n grows large, H3

n comes to resemble the famous Sierpinski triangle.
It is tempting to seek similar correspondences between other Hanoi graphs and

various analogues of Pascal’s triangle. For example, two structures related to Pascal’s
triangle are Pascal’s hexagon (Figure 9) and Pascal’s pyramid (Figure 10). We can add a
degree of complexity to our Hanoi graph by increasing the number of poles from three to
four. It is tempting to seek a correspondence between the Hanoi graph H4

2, for example,
and, say, Pascal’s hexagon. Unfortunately, Pascal’s hexagon, with the odd coefficients
circled (Figure 9), has a few conspicuous features that prevent such a correspondence. If
we work from the center of the graph outwards and let 00 be the center point, then the
1’s in layer 0 of the three subgraphs can correspond to 01, 02, and 03. From there, each
vertex can lead to two new vertices, just as Pascal’s hexagon has two new 1’s in layer 1.
After layer 1, however, there is a problem in not generating enough 1’s to correspond with
the number of new vertices reached in the Hanoi graph. Further, and more importantly,
the three subgraphs never connect up again, as is the case in the Hanoi graphs. So, there
will be multiple odd numbers in Pascal’s hexagon corresponding to the same vertex
in the Hanoi graph, dashing our hopes of finding an isomorphism between the two
structures.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



12 Graphs, Random Walks, and the Tower of Hanoi

Next we examine Pascal’s pyramid, first alongside H4
2 and then H4

3. We compare these
two layer-by-layer to more easily explore the connections of the 3D graph. Layers 0 and
1 line up in the same way we have seen in Pascal’s triangle. Similarly, in layer 2, we circle
the odd coefficients and let these correspond to the vertices 10, 20, and 30. Now, there
is no single edge that connects the vertices in layer 1 to the vertices in layer 2. The six
vertices that would be in this layer have a better fit in the next layer. In this layer 3, we
also change the which numbers we circle from any odd number to any 3 present. This
gives the six spots needed to correspond with the new vertices in the Hanoi graph. In
the final layer, layer 4, we return to circling only the odd coefficients, and these three
circled numbers correspond to the remaining perfect states in H4

2. These results can
be found in Figure 10. Note that every vertex in H4

2 has a corresponding number in the
first four layers of Pascal’s pyramid (beginning at the 0th layer). However, the edges that
connect the vertices in the new order to correspond with Pascal’s pyramid are not all
straightforward as in the connection between H3

n and Pascal’s pyramid, simply due to
the vertices in layers 2 and 3 being switched.

Pascal’s pyramid, like Pascal’s triangle, grows without bound. Again, it is tempting to
think that we could extend the H4

2 correspondence, even if it is not perfect, to include
H4

n . However, H4
3 does not follow this correspondence. To see this, we note the number

of new vertices in each layer of H4
3 as compared to the odd numbers in Pascal’s pyramid

(Table 4). Note that in layers 0 and 1, the numbers match. However, in layer 2, the
number of new vertices in H4

3 is double that of the odd numbers in Pascal’s Pyramid.
Even worse, in layer 4, H4

3 has 28 new vertices, while there are only 3 odd numbers in
Pascal’s Pyramid. So, there is no extension of the correspondence to include H4

3.

Table 4: Comparing H4
3 to Pascal’s pyramid.

Layer New Vertices Odd numbers
in H4

3 in Pascal’s Pyramid

0 1 1
1 3 3
2 6 3
3 12 9
4 28 3
5 14 9

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019
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(a) Pascal’s triangle with odd binomial
coefficients encircled.

(b) The Hanoi graph H3
3 with three

disks on three poles.

Figure 8: The connection between the Pascal’s triangle and Hanoi graphs on three poles.

Figure 9: Pascal’s Hexagon

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



14 Graphs, Random Walks, and the Tower of Hanoi

Figure 10: Pascal’s Pyramid compared with H4
2

5 Random Walks

We now explore solving the Tower of Hanoi on four poles with random moves; in other
words, we will study random walks on H4

n . We will assume that if a given vertex v is
of degree n, then the probability of moving from v to any adjacent vertex is 1

n . The
only exception will be that in some cases we will treat the perfect states of the graph as
absorbing states, which means that the probability of leaving them is 0.

There are many questions that can be addressed regarding random walks on Hanoi
graphs, for example:

1. Given a starting vertex and a specified number of moves m, we can ask for the
probability that we will be at any given vertex after the mth move. Associated with
this is the question of how quickly we approach the vertex.

2. If we designate the perfect states as the absorbing states, then starting from a
nonperfect state, we can ask for the probability that we end in each of the perfect
states.

As an example of the first question, we consider H4
1, in which all states are perfect,

and consider a random walk beginning at pole 0 and ending at pole 1. Since every vertex
in H4

1 has degree 3, the probability of moving to pole 1 from some other pole is 1
3 . Thus,

the probability of arriving at pole 1 in 1 move is 1
3 . Then, the probability of arriving at pole

1 in 2 moves is the probability of not arriving in 1 move multiplied by the probability of
then arriving at pole 1 in the next move, or 2

3 · 1
3 = 2

9 . Similarly, the probability of arriving
at pole 1 in 3 moves is 2

3 · 2
3 · 1

3 = 4
27 . Thus, the probability of arriving at pole 1 in m moves

given is 2m−1

3m . (See Figure 11 for an alternate illustration.)

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019
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To arrive at the expected number of moves, we first note that the geometric series

∞∑
m=1

2m−1

3m
= 1

3
+ 2

9
+ 4

27
+·· · = 1.

Now we calculate the expected number of moves:

E(m) =
∞∑

m=1
m · 2m−1

3m
= 3.

Thus, it will take on average three moves on H4
1 to arrive at the final state of pole 1,

starting at pole 0. By symmetry, moreover, the beginning and final poles do not matter;
this discussion shows that the expected number of moves to migrate from any given
pole to any other given pole is 3, and that the probability of arriving at a given pole in m

moves remains 2m−1

3m .

Figure 11: Illustration that the probability of beginning at the perfect state 0 in H4
1 and

ending at the perfect state 1 is 1
3 + 2

9 + 4
27 +·· · .

Next we add a disk and consider random walks on H4
2. Here, random walks are

more complicated because clearly not every move leads to a perfect state. We recall
that the vertices of H4

2 have degree 3 (in the case of a perfect state) or 5 (otherwise); the
corresponding probabilities of traversing an edge leading away from the vertex are thus
1
3 and 1

5 .
We turn to the method of Markov Chains to address question 1 for H4

2. Throughout
the following, we will order the vertices in H4

2 as

{00,01,02,03,10,11,12,13,20,21,22,23,30,31,32,33}.

The entries of the 16×16 transition matrix P, whose i j th entry is the probability that we
will move from the i th vertex in the above list to the j th vertex, appear in Figure 12.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019
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Figure 12: Transition matrix P for the random walk H4
2.
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The method of Markov chains nicely answers our first question in terms of the
powers Pm of the transition matrix P. The entry Pm

i j is the probability that the random

walk starting at the vertex i th will be at vertex j th after m moves. Calculation shows that
taking m = 25 gives “steady state” values of the entries of Pm to at least four decimal
places. Based on these values, the probability of ending in any perfect state is 0.0417
and the probability of ending in any nonperfect state is 0.0694 regardless of the starting
position.

Similarly, when the transition matrix for H4
1 is raised to powers m ≥ 9, the probabilities

also reach steady state up to at least four decimal places. Each probability is 0.25. Now, if
we let the number of disks be 3, the transition matrix for H4

3 raised to m ≥ 69 also reaches
steady state. All vertices with degree 3, which are the perfect states, have a probability
of 0.0089. All vertices with degree 5 have probability 0.0149. Finally, all vertices with
degree 6 have probability of 0.0179. Thus, as the degree of the ending vertex increases,
so does the probability of arriving at that vertex, which agrees with intuition, since there
are more paths to get to the vertex.

Interestingly, there is a pattern of the last vertices to reach steady state. In the
transition matrix for H4

2, there are 12 probabilities that are the last to change. They are
the random walks from each perfect state to the vertex where the largest disk is on the
same pole, but the smallest moves to a different pole:

00 → 01, 00 → 02, 00 → 03

and similarly for the starting vertices of 11, 22, and 33.
When examining the transition matrix for H4

3, however, there are 24 probabilities
that are the last to change. These are all perfect states and each of those 24 vertices has
degree 6. Further, the middle digit a1 for these vertices in the ternary representation
is the same as that for the starting vertex, but a2 corresponding to the position of the
largest disk, and a0 corresponding to the position of the smallest disk, are different than
a1 and a2 6= a0. One such example is 111 → 012.

Finally, we look to answer the second question. Alekseyev and Berger’s paper [1]
explored five variants of the Tower of Hanoi puzzle with n disks solved with random
moves on 3 poles. One such variant is r → a: the starting state is random (chosen
uniformly from all 3n states) and the end state is with all n disks on the same (any) pole.
They were able to prove the following closed formula for this variation:

Er→a = 5n −2 ·3n +1

4
.

Our goal is to extend their findings to The Tower of Hanoi on four poles. We will
additionally stipulate that the random starting point be nonperfect and that the perfect
states are absorbing states. The results are found in Table 5. We see that any starting
vertex has the highest probability of arriving at the perfect state where the large disk is
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currently resting. Conversely, any starting vertex has the lowest probability of arriving at
the perfect state where the small disk is currently resting. There is then equal probability
of arriving at the perfect states where no disk is currently resting.

Table 5: Random walks on H4
2 with absorbing states 00, 11, 22, and 33 details the proba-

bility of ending in each perfect state from all possible starting vertices.

2-bit string P(ending in 00) P(ending in 11) P(ending in 22) P(ending in 33)

00 1 0 0 0
01 0.4667 0.1333 0.2000 0.2000
02 0.4667 0.2000 0.1333 0.2000
03 0.4667 0.2000 0.2000 0.1333
10 0.1333 0.4667 0.2000 0.2000
11 0 1 0 0
12 0.2000 0.4667 0.1333 0.2000
13 0.2000 0.4667 0.2000 0.1333
20 0.1333 0.2000 0.4667 0.2000
21 0.2000 0.1333 0.4667 0.2000
22 0 0 1 0
23 0.2000 0.2000 0.4667 0.1333
30 0.1333 0.2000 0.2000 0.4667
31 0.2000 0.1333 0.2000 0.4667
32 0.2000 0.2000 0.1333 0.4667
33 0 0 0 1

6 Variation on the Tower of Hanoi: Adjacency Requirement and the
Fourth Pole

An additional variation on the Tower of Hanoi with Four Poles is the adjacency require-
ment, which is sometimes referred to as Straight-line Hanoi or Linear Hanoi. The
adjacency requirement is an additional rule requiring a disk to be placed only on an
adjacent pole. Figures 13 and 14 show the Hanoi graphs for the adjacency requirement
using n = 2 and n = 3 disks.

Note that in the case where n = 1, the Hanoi graph is a line and there is a unique
shortest path joining any two vertices. Regardless of n, the first two moves (without
retracing one’s steps) are moving the smallest disk first to pole 1 and then to pole 2.
Before this point, no other disk can be moved. Perhaps it is easiest to observe in Figure
15 that when n > 1, there is a unique shortest path in some cases and a non-unique paths
in others. Further, length of the shortest path varies with the starting and ending states

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



Stephanie Egler 19

Figure 13: H4
2 with adjacency requirement (drawn in MATLAB).

Figure 14: H4
3 with adjacency requirement (drawn in MATLAB). Note the crossings near

the vertices 112 and 113 in the lower center of the graph, reflecting the nonplanarity of
this graph.
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in the path. Whereas in Figure 3, which depicts H4
2, the number of moves is the same

regardless of the starting and ending perfect states and shortest paths are not unique.
Note that the path 00 → 11 and 11 → 00 will have the same paths and therefore the same
number of moves, but with the reverse order of vertices. The same is true for all the
paths. These results are summarized in Table 6.

Table 6: Shortest Paths Between Perfect States When n = 2.

Path With Adjacency Requirement Without Adjacency Requirement
Number of Moves Unique? Number of Moves Unique?

00 → 11 4 Yes 3 No
00 → 22 6 Yes 3 No
00 → 33 10 No 3 No
11 → 22 4 No 3 No
11 → 33 6 No 3 No
22 → 33 4 Yes 3 No

We can also examine the vertices, edges, and faces of these graphs. Note that the
number of vertices will not change when adding the adjacency requirement, but the
number of possible moves, or edges, will change. For n = 1, the Hanoi graph is a line,
so we count the 3 edges that connect the 4 vertices. Then for n = 2 and n = 3, we sum
the degrees of every vertex and divide by 2, as we have done before (Table 7). When
comparing our new Table 7 that has the adjacency requirement to Table 1 for the H4

n
graphs without the adjacency requirement, we see that the number of edges is exactly
half.

Next we count the faces. For n = 1, whose corresponding graph is just a line, there is
only one face, and that is the infinite face. We verify this by using the Euler-Descartes
formula V −E+F = 4−3+1 = 2. Similarly, we can count 4 faces in Figure 13 of the graph
H4

2 and confirm this result with the formula V −E+F = 16−18+4 = 2.

Table 7: V, E, and F for Hanoi graphs with Four Poles and the Adjacency Requirement for
n = 1,2,3.

n Vertices Edges Faces Planar

1 4 3 1 Yes
2 16 18 4 Yes
3 64 84 No

We return to the question of planarity with the adjacency requirement in force. We
can easily embed both the n = 1 and n = 2 graphs in the plane (see Figure 15 for n = 2).
However, as Figure 16 shows, n = 3 is once again an interesting case.
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Figure 15: H4
2 with adjacency requirement

We subject these graphs to two of our planarity tests, considering first the condition
that assures planarity if E ≤ 3V −6. Referring to Table 7, we find that all three cases pass
the test (Table 8). This makes sense because the right side of the inequality is the same
as in H4

n , while the left hand side of the inequality is halved and is supposed to be less
than or equal to the right hand side. So the inequality still holds for all cases we tested.

Table 8: Necessary condition for planarity: E ≤ 3V −6 for graphs with the adjacency
requirement.

n E ≤ 3V −6 Satisfies Condition Planar

1 3 ≤ 6 = 3(4)−6 Yes Yes

2 18 ≤ 42 = 3(16)−6 Yes Yes

3 84 ≤ 186 = 3(64)−6 Yes No

Second, we examine the crossing numbers of the graphs by examining the graphs
themselves. We see that our embedding of the graph with n = 2 (and n = 1) has a crossing
number of 0 (Figure 15), which affirms our statement that these graphs are planar. Now,
we look at Figure 16 and count the number of times two edges cross each other to see how
close it is to being planar. Here, the crossing number is 1. With no better embeddings in
the plane in sight, we can say that this graph is nonplanar.
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Figure 16: H4
3 with adjacency requirement (drawn in MATLAB). Note dotted red line,

reflecting the nonplanarity of this graph.

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019



Stephanie Egler 23

Acknowledgements

I would like to express my deep gratitude toward Dr. David Calvis, my thesis advisor,
for his patient guidance, support, and valuable critiques of this research work. I would
also like to extend my thanks to Zachary Egler for rendering graphics for the majority
of the figures in this article. Finally, I would like to thank my family, friends, and the
Department of Mathematics at Baldwin Wallace University for their continued support.

References

[1] M. A. Alekseyev and T. Berger, Solving the Tower of Hanoi with random moves, in
The mathematics of various entertaining subjects, 65–79, Princeton Univ. Press,
Princeton, NJ. MR3468272

[2] G. Chartrand and L. Lesniak, Graphs and digraphs, second edition, The Wadsworth
& Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books &
Software, Monterey, CA, 1986. MR0834583

[3] P. G. Doyle and J. L. Snell, Random walks and electric networks, Carus Mathematical
Monographs, 22, Mathematical Association of America, Washington, DC, 1984.
MR0920811

[4] Epp, S. S. (1995). Discrete mathematics with applications (4th ed.). Pacific Grove,
CA: Brooks/Cole.

[5] A. M. Hinz, Pascal’s triangle and the Tower of Hanoi, Amer. Math. Monthly 99
(1992), no. 6, 538–544. MR1166003

[6] Park, So Eun. The group of symmetries of the Tower of Hanoi graph. Amer. Math.
Monthly 117 (2010), no. 4, 353–360. MR2647818

[7] D. G. Poole, The towers and triangles of Professor Claus (or, Pascal knows Hanoi),
Math. Mag. 67 (1994), no. 5, 323–344. MR1307797

[8] R. J. Wilson and J. J. Watkins, Graphs, John Wiley & Sons, Inc., New York, 1990.
MR1038804

[9] Zhang, A. (2008). Properties of the Hanoi Graph for 4 Pegs. Retrieved from https:

//www2.bc.edu/julia-grigsby/Zhang_Final.pdf.

Stephanie Egler
Baldwin Wallace University
segler14@mail.bw.edu

Rose-Hulman Undergrad. Math. J. Volume 20, Issue 1, 2019

https://www2.bc.edu/julia-grigsby/Zhang_Final.pdf
https://www2.bc.edu/julia-grigsby/Zhang_Final.pdf

	Graphs, Random Walks, and the Tower of Hanoi
	Recommended Citation

	The Tower of Hanoi
	Hanoi Graphs
	Hanoi Graphs on Three Poles
	Hanoi Graphs on Four Poles

	Planarity
	Pascal's Triangle Connection
	Random Walks
	Variation on the Tower of Hanoi: Adjacency Requirement and the Fourth Pole

