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Local Warming in Low Latitude Locations:
A Time Series Analysis

Abstract. Global warming is a well-known and well-studied phenomenon pertain-
ing to a gradual increase of average global temperatures over time. Many global
warming mathematical models make certain assumptions regarding the factors that
impact global temperature. These assumptions include effects from increased global
carbon dioxide levels in the atmosphere and the melting ice sheets, among others.
This paper draws conclusions about temperature changes without the assumptions
needed for the global warming mathematical models. Instead of using computer
models to project temperatures on a global scale, 33 low-latitude locations in the
southern United States were individually studied to see if each one has warmed
over time. Each location’s daily high temperature was obtained for each day since
January 1, 1970, and the data is analyzed using a statistical model that contains a
linear effect coefficient, an annual seasonal trend, and a 10:7-year solar cycle trend,
both well-known and commonly- accepted periodic trends. The data is also ana-
lyzed using Fourier frequencies to check for other lesser-known periodic trends. The
strongest trend is then added to the original model. Linear effect coefficients are
calculated for each location using both the updated model and the original model
to see how they compare to each other and global warming study results. Only
using the 31 locations where these models fit, the original model yielded an average
linear increase of 2:29 degrees Celsius per century, while the updated model showed
an average linear increase of 2:33 degrees Celsius per century. Showing less than a
2% difference indicates that the original model is sufficient and that temperatures
in low-latitude locations are increasing.

Acknowledgements: Dr. Diana Ivankovic, Professor of Biology, Anderson University, and
her student Eslie Aguilar did some of the data collection for this paper; we are thankful for
their contribution. Also, this research was partially funded by a student/faculty research
grant from South Carolina Independent Colleges and Universities.



1 Introduction

According to The Stanford Solar Center (2008), global warming is defined as
“a gradual increase in planet-wide temperatures,” and it enjoys broad accep-
tance within the scientific community [9]. Countless studies have been done to
determine the causes of this global phenomenon and its magnitude. As stated
by NASA (2017), evidence such as rising sea levels, shrinking ice sheets, and
warming oceans are all signs of rapid climate change around the globe [6].
Based on tests performed by NASA, global temperatures are 0.99°C warmer
than the mid-20th century mean. This is just one of many studies that con-
clude that global temperatures are on the rise.

In a test to determine whether or not global warming was in the midst of
a hiatus, a mathematical model of global temperatures developed by Rahm-
storf (2014) indicated that global temperatures have increased 0.175 ± 0.047°C
per decade, or a 1.28°C to 2.22°C increase over the past century if the same
trends continue [8]. Rahmstorf’s study also concluded there has not been a
statistically significant reduction in global warming, but there has been sig-
nificant warming primarily beginning around 1970. Morano (2016), offers a
contrasting position regarding global warming [5]. His research does conclude
that there has been a pause in global warming over the past 18 years and 9
months (since el Niño in 1998). He is a climate change skeptic and believes
that global warming fears must be stopped if this pause continues any longer.

In the context of these global warming studies, Robert J. Vanderbei of
Princeton University (2012) has developed a different approach to study long-
term temperature changes. While prior studies analyzed factors such as carbon
dioxide levels in the ozone to support warming conclusions, Vanderbei focused
solely on the temperature data itself in an attempt to determine if McGuire
Air Force Base in New Jersey, located near Princeton University, has experi-
enced any warming over a period of past 55 years (January 1, 1955 to August
13, 2010) [10]. Thus, rather than modeling this phenomenon on a global
scale, Vanderbei chose to test the theory of global warming locally. Vanderbei
obtained temperature data from the National Oceanic and Atmospheric Ad-
ministration (NOAA), which collects and stores weather data from thousands
of weather stations around the globe. Using this data, he created a statistical
regression model that takes into account two known periodic weather trends
in the data: the annual seasonal trend and the 10.7 year solar cycle.
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The model he created is:

Td = a0 + a1d+ a2cos

(
2πd

365.25

)
+ a3sin

(
2πd

365.25

)

+a4cos

(
a62πd

10.7 · 365.25

)
+ a5sin

(
a62πd

10.7 · 365.25

) (1)

where Td represents the daily high temperatures and d represents time in
days. The key part in this model is the a1 term. This term represents the
linear effect coefficient in the model, and it is the portion of temperature
change that does not naturally reverse over time as part of a single or multi-
year periodic cycle. The other variables are used to account for the naturally
occurring periodic trends in the data. The a2 and a3 term are used to identify
the annual seasonal trend while a4 and a5 account for the solar cycle. The
a6 parameter is an unknown parameter associated with the solar cycle. The
a1 term is the linear effect coefficient that cannot be taken into account by
these trends. In this particular situation, Vanderbei discovers that the optimal
parameter value for a1 is 9.95 · 10−5 °F per day, or approximately 3.63 °F per
century. Based on these results, Vanderbei concludes that local warming is
occurring at McGuire Air Force Base in New Jersey. It is important to note
that these results are obtained using only raw data and well-known periodic
trends rather than assumptions about carbon dioxide and other factors made
by most mathematical global warming models.

This paper starts by applying Vanderbei’s model to low latitude locations
in the southern United States. There were 33 such locations analyzed to
extract a possible linear trend from each location’s dataset. With such a
high number of similarly located cities being analyzed, if they all show similar
warming trends, then this study acts as a different, less assumption-filled,
method to support global warming. Additionally, this study seeks to verify
that the seasonal and solar trends are the only statistically significant trends
that need to be included in the model and that there are not additional periodic
trends that must be considered before a valid local warming conclusion can be
made. If there are other more relevant periodic trends within the data, then
Vanderbei’s conclusion may not be accurate.

This paper is organized as follows. Section 2 describes the data collection
and a time series method for filling in missing data points. Section 3 contains
the calculations of the linear trend variable using Vanderbei’s model. Section
4 describes the use of Fourier frequencies and periodograms to check the data
for additional periodic trends that are not considered in Vanderbei’s model
and modifies the results of Section 3 for these additional trends. Section 5
summarizes the results and gives some directions for further study.
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2 Data Collection and Organization

The first step of the research was data collection. This data was obtained by
submitting requests on the National Oceanic and Atmospheric Administration
(NOAA) website for each individual location [7]. For inclusion in the data set,
the location had to be in a low latitude location, between 24.555 °N (Key West)
to 36.747 °N (Fresno) while most locations were near 30 °N. Additionally, each
location must have an individual weather station that has been in operation
since 1970. The low latitude requirement is imposed to add geographical con-
sistency among the locations as well as to limit strong seasonality (i.e. the fact
that low latitude locations in the United States do exhibit seasonal trends, but
they are not as drastic as those in higher latitude locations). The requirements
that the weather station had to be active and have nearly complete high tem-
perature data since 1970 are imposed for data quality reasons. The year 1970
was chosen because it is a small enough window where it is feasible to have
a complete data set from a sufficiently large number of locations, and it is a
long enough period of time to offer reliable results. Also, Rahmstorf’s study
cited in the introduction concluded that significant warming began in 1970.
Cities with at least one weather station that meets these qualifications include
Atlanta, Charleston (SC), Dallas, Miami, San Antonio, and San Diego.

Before analyzing a dataset using a statistical model, the data points were
counted to verify that there were no missing days in the temperature data.
Because each dataset has the same beginning and ending date, each dataset
should have 17,208 distinct data points. For data sets with fewer data points
than the full number, the missing days were determined. Some locations were
only missing one or two days within a set of over 17,000 days, and the maxi-
mum number of missing days for any selected location was ten. Despite finding
over 30 locations that fit the criteria mentioned above, nearly twenty percent of
the datasets contain missing points. Gelman and Hill (2006) claim that these
missing points can create bias in the results, so finding an appropriate method
to fill these missing points was critical [3]. There are numerous imputation
techniques to handle missing values within data, but Gelman and Hill explain
that the easiest way to fill in each missing point is through mean imputation.
The only drawbacks to using this approach is that it can underestimate stan-
dard error and cause a distorted relationship between variables. Neither one
of these problems are relevant to this study.

Taking the mean imputation method one step further, Cryer and Chan
(2011) suggest using Autoregressive Moving Average Models (ARMA) to com-
plete the data [2]. This way each missing point varies based on a weighted
average of observations located around that missing value. Essentially, ARMA
is a family of time series models that regresses the time series on itself.
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The ARMA model is:

Yt = φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt, (2)

where Yt is the observed time series with an assumed mean of zero, φi are
population parameters, εi is a white noise random variable with mean 0 and
variance σ2 that is independent of the time series Yt, and p is a positive integer.

The next step is determining what order p within this family of models
provides the best fit for the temperature time series. Crawley (2013) recom-
mends using the ARMA function in R and manipulating the autoregressive
element of function while leaving all else constant [1]. Once 25 different ARMA
models were created and stored in R, the Akaike Information Criterion (AIC)
was calculated for each model. Whichever model yields the lowest AIC is the
best fit for the data. Next, the coefficients for the given model had to be
calculated and then incorporated into the dataset to forecast what the missing
data point would be based on the preceding data points in the time series.
This process was repeated for every missing observation in each dataset. With
missing data points filled by estimates, the data sets are ready to be analyzed.

For example, El Paso was one of the cities missing data points. Ap-
proximately ten dates, within the dataset of 17,208 points, were missing. As
mentioned above, model10 to model250 were created using R where model250
uses an autoregressive term of 25, a difference term of 0, and a moving average
term of 0. Once these models were created, each AIC was calculated. The
results are as follows:

Model df AIC
model10 3 110704.1
model20 4 110681.6
· · · · · · · · ·

model160 18 108742.8
model170 19 108733.9
model180 20 108728.3
model190 21 108728.6

Based on these results, Model180 produces the smallest AIC, meaning that an
ARMA model with AR = 18 and MA = 0 is the best model to use with this
dataset. Once each φi coefficient in model180 was calculated, the model can
accurately be used to fill in the missing data-points in El Paso.
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3 Temperature Trend Estimation with Known

Periodic Trends

In this section, Vanderbei’s model is regressed against each location’s data
with the goal being to obtain a measure of goodness-of-fit and the linear effect
coefficient a1 for each location. Kutner et al. (2008) say that because the data
exhibits known periodic trends, transformations must be applied to the data
[4]. Transforming the data based on known trends flattens out the data to
reveal only minute cycles and the all-important linear effect coefficient. Once
these transformations are applied to each location, an estimate is obtained from
the a1 term in Vanderbei’s model. Using the lm command in R, each location’s
temperature data was regressed against the variable included in Vanderbei’s
model. The results of this test showed how well the model fit the raw data from
each location, yielding an adjusted R-Squared value that shows how closely
the data falls around the line from Vanderbei’s equation. A higher adjusted
R-squred value suggests that the model more accurately fits the collected data.
If the model shows good fit, then the parameter estimates are more reliable.
Thus, the estimate for the a1 term, is a good indication of how much the
temperature is increasing, on average, per day. The lm command in R also
produces a p value for each estimate. A small p value indicates that the value
is significant, while a large p value suggests that the term is insignificant, and
is most likely zero. These estimated coefficients along with the calculated p
value and adjusted R-squared for each location are shown in Appendix A:
Vanderbei Model Results.

Out of the 33 locations analyzed, only Los Angeles and San Diego showed
evidence of poor fit using Vanderbei’s model. Despite the lack-of-fit in these
two locations, the average daily temperature increase in these 33 locations is
0.000105°F per day or 3.83°F per century. This is equivalent to 2.128°C per
century, which is within the global study’s range of 1.28°C to 2.22°C that is
mentioned in the introduction. Taking out the two ill-fitting locations, the
100 year average increase is 4.12°F (2.29°C). Given that this value is only
only 0.07 °C away from the interval given in aforementioned results. Every
location except for Los Angeles and San Diego had a reliable p value of less
than α = 0.05. Most of them are computer 0, meaning that the linear effect
coefficientH0: a1 = 0 can be rejected andHa: a1 6= 0 is accepted. Additionally,
each location’s adjusted R-squared was calculated, and every location except
the two poorly fitted data points noted earlier had an adjusted R-squared
greater than 0.6 with most being above 0.7. The average adjusted R-squared
is 0.6673 with the poorly fitted points and 0.6889 without the two poorly
fitted points. Thus, Vanderbei’s model fits the data well for most of the
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selected cities. Moreover, since these results fall within Rahmstorf’s interval
for average increase in global temperatures, these results are supported by
global warming research results, without relying heavily on assumptions.

4 Fourier Frequencies and Periodograms

This section further analyzes the historical time series data to determine if
other periodic trends within each data set need to be included in the data
transformation. The goal is to find trends within the data and then incorpo-
rate them into the model to filter out these significant trends and clarify the
linear piece. To do this, Fourier frequencies were calculated to find the most
significant periodic trends within each dataset. An example of the output from
Fresno’s dataset is shown in Figure 1 below.

Figure 1: Fresno Fourier Frequencies.

As expected, the highest output value takes place around the n = 47, n =
48 spot in the matrix. This is an indication that there is a strong trend that
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takes place about 47 times within the dataset. Because there is just over 47
years worth of high temperature data, the n = 47 trend represents the obvious
annual seasonal trend.

Any trend revealed after the n = 48 mark is ignored because it indicates
potential trends happening within a year. This study is primarily concerned
with multiyear trends, meaning that the next significant trend occurs at n = 6.
This translates into a periodic trend of roughly 8 years within this particular
dataset. Another important note is that the solar cycle, which is represented
by n = 5, does not stand out among Fourier Frequencies for most of the
data sets in this study. However, removing the solar cycle from the Princeton
model worsens the model’s fit of the data, meaning that even though it does
not appear distinctly in the Fourier Frequencies, it is beneficial to include it in
the model. Vanderbei notes this observation in his conclusions as well, citing
the solar cycle is real but has a small impact on the results.

As previously stated, the linear effect coefficient in Fresno using the
Princeton model revealed an increase of 1.25 ·10−4 °F per day with a p value of
near 0 and an adjusted R-squared of 0.7983. Once the newly discovered eight
year trend was literally added onto the end of Vanderbei’s model, the model
for the Fresno data set becomes:

Td = a0 + a1d+ a2cos

(
2πd

365.25

)
+ a3sin

(
2πd

365.25

)

+a4cos

(
a62πd

10.7 · 365.25

)
+ a5sin

(
a62πd

10.7 · 365.25

)

+a7cos

(
2πd

8 · 365.25

)
+ a8sin

(
2πd

8 · 365.25

)
(3)

Repeating the regression calculations for this new model, the linear effect
coefficient a1 increases slightly to 1.30·10−4 °F per day, retaining the same near
zero p value and slightly increasing the adjusted R-squared to 0.7984. The lack
of difference between the two models suggests that Vanderbei’s model accu-
rately incorporates all significant periodic trends, as the addition of new trends
into the model decreases the model’s degrees of freedom. To more confidently
conclude that Vanderbei’s model accurately reflects what is occurring in the
data, the same process was repeated in all of the other locations. The results
are shown in Appendix B: Adjusted Model Results.

Each location’s model was individually modified using whichever trend
the Fourier frequencies indicated to be most significant. Some common trends
within the data were 4 and 15 year trends. Unfortunately, adding the next
best trend also did not improve the results in Los Angeles or San Diego, as
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the adjusted R-squared remained quite low. After removing these two bad
locations, 31 cities are left. As seen in Appendix B, none of the results in
these cities changed much after the addition of the new trends. The average
change in a1 was 2.02 · 10−6 °F per day (individual location’s p values given in
Appendix B), and the maximum change was 2.24 · 10−5 °F per day in Tampa,
with a p value of 3.50 · 10−12. The average linear effect coefficient changed
from an increase of 4.12 °F per century in the original model to an increase of
4.19 °F (2.33 °C) per century, which is not a statistically significant change as
it is less than 2% different than the results from the original model. Again,
these results validate the original model and the conclusion that says that the
average temperature in low latitude locations is on the rise.

5 Conclusion

This paper concludes that these low latitude locations are heating up over
time. This result agrees with the results of previous global studies studies.
However, this study’s results were not found by making the assumptions of
the other studies. In fact, the results were found solely using known periodic
trends and the actual high temperature data, making the results more robust.
Also, a Fourier frequency analysis shows that Vanderbei’s model includes all
significant trends. Lastly, it can be seen that the results found in low latitude
locations are consistent with the results from New Jersey.

In future studies, modeling locations of different international latitudes
could help discover if the Princeton model is also applicable to such locations,
provided reliable data is available for locations outside the United States. If
not, the Fourier frequencies could be used to create a new model to clarify the
linear effect coefficient within the data’s many trends. Expanding this study
to locations in all parts of the world can distinguish locations of the Earth
that are warming at a faster rate than others, and potentially lead to stronger
conclusions about global warming. In addition to studying different locations,
identifying the source of the discovered 4 and 15 year trends could yield a
periodic trend currently unknown to climate scientists.

References

[1] Crawley, Michael J. The R Book. 2nd ed. Chichester: Wiley, 2013. Print.

[2] Cryer, Jonathan D., and Kung-sik Chan. Time Series Analysis with Ap-
plications in R. New York: Springer, 2011. Print.

RHIT Undergrad. Math. J., Vol. 19, No. 1 Page 9



[3] Gelman, Andrew, and Jennifer Hill. Applied Regression and Multi-
level/Hierarchical Models. Cambridge University Press, 2006. Print.

[4] Kutner, Michael H., Chris Nachtsheim, and John Neter. Applied Linear
Regression Models. Boston: McGraw-Hill, 2008. Print.

[5] Morano, Marc.“No Global Warming at All for 18 Years 9 Months ? a
New Record ? The Pause Lengthens Again ? Just in Time for UN
Summit in Paris.” Climate Depot. N.p., 13 Jan. 2016. Web. 13 Mar.
2017. climatedepot.com

[6] “Climate Change Evidence: How Do We Know?” NASA. NASA, 23 Feb.
2017. Web. 13 Mar. 2017. NASA.gov

[7] National Centers for Environmental Information (NCEI). ”Climate Data
Online.” Climate Data Online (CDO) - The National Climatic Data
Center’s (NCDC). National Oceanic and Atmospheric Administration,
n.d. Web. 03 Apr. 2017. ncdc.noaa.gov

[8] Rahmstorf, Stefan. “Recent Global Warming Trends: Significant or
Paused or What?” RealClimate. N.p., 4 Dec. 2014. Web. 13 Mar. 2017.
realclimate.org

[9] “Global Warming – Research Issues.” Stanford Solar Center. N.p., 2008.
Web. 14 Mar. 2017. solar-center.stanford.edu

[10] Vanderbei, Robert J.“Local Warming.” SIAM Review 54.3 (2012): 597-
606. 17 Mar. 2011. Web. 13 Mar. 2017.

Page 10 RHIT Undergrad. Math. J., Vol. 19, No. 1



A

Vanderbei Model Results

Location Linear Effect Coefficient p value Adjusted R2

Abilene 1.53 · 10−4 0 0.6558
Anderson (SC) 2.57 · 10−5 0 0.7355
Athens (GA) 1.43 · 10−4 0 0.7237

Atlanta 1.19 · 10−4 0 0.7181
Austin 2.34 · 10−4 0 0.6783

Baton Rouge 1.41 · 10−4 0 0.6805
Beaumont 1.35 · 10−4 0 0.7016

Birmingham 1.25 · 10−4 0 0.7148
Charleston (SC) 1.07 · 10−4 0 0.6814
Columbia (SC) 6.56 · 10−5 2.94 · 10−7 0.6972

Dallas 1.18 · 10−4 0 0.6991
El Paso 9.29 · 10−5 1.71 · 10−15 0.7675
Fresno 1.25 · 10−4 0 0.7983

Houston 1.38 · 10−4 0 0.6808
Jacksonville 3.70 · 10−5 0.000567 0.6443
Key West 2.50 · 10−5 3.54 · 10−5 0.6645
Lafayette 1.15 · 10−4 0 0.6842
Lubbock 1.79 · 10−4 0 0.6386
Memphis 1.24 · 10−4 0 0.7331

Miami 1.48 · 10−4 0 0.6004
Mobile 5.01 · 10−5 3.38 · 10−6 0.7045

Montgomery 1.77 · 10−4 0 0.7086
New Orleans 8.75 · 10−5 0 0.6837

Odessa 1.65 · 10−4 0 0.6554
Orlando 5.10 · 10−5 1.31 · 10−6 0.6097

Pensacola 7.40 · 10−5 8.05 · 10−14 0.7295
San Antonio 1.59 · 10−4 0 0.6667

Savannah 8.32 · 10−5 4.66 · 10−13 0.6818
Shreveport 1.39 · 10−4 0 0.6936
Tallahassee 1.26 · 10−4 0 0.6902

Tampa 3.65 · 10−5 1.91 · 10−5 0.6352
Los Angeles 8.15 · 10−7 9.31 · 10−1 0.3081
San Diego −3.45 · 10−5 4.37 · 10−5 0.3583
Average 1.13 · 10−4 0.6674
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B

Adjusted Model Results

Location Linear E. C. p val Adj. R2 New Linear E. C. p val Adj. R2

Abilene 1.53 · 10−4 0 0.6558 1.66 · 10−4 0 0.6561

Anderson (SC) 2.57 · 10−5 0 0.7355 2.64 · 10−5 0.0392 0.7408

Athens (GA) 1.43 · 10−4 0 0.7237 1.41 · 10−4 0 0.7238

Atlanta 1.19 · 10−4 0 0.7181 1.19 · 10−4 0 0.7183

Austin 2.34 · 10−4 0 0.6783 1.40 · 10−4 0 0.6796

Baton Rouge 1.41 · 10−4 0 0.6805 1.36 · 10−4 0 0.6808

Beaumont 1.35 · 10−4 0 0.7016 1.25 · 10−4 0 0.7020

Birmingham 1.25 · 10−4 0 0.7148 1.25 · 10−4 0 0.7148

Charleston (SC) 1.07 · 10−4 0 0.6814 1.08 · 10−4 0 0.6816

Columbia (SC) 6.56 · 10−5 2.94 · 10−7 0.6972 6.81 · 10−5 1.02 · 10−7 0.6979

Dallas 1.18 · 10−4 0 0.6991 1.16 · 10−4 0 0.7065

El Paso 9.29 · 10−5 1.71 · 10−15 0.7675 9.92 · 10−5 0 0.7701

Fresno 1.25 · 10−4 0 0.7983 1.30 · 10−4 0 0.7984

Houston 1.38 · 10−4 0 0.6808 1.39 · 10−4 0 0.6808

Jacksonville 3.70 · 10−5 0.000567 0.6443 3.89 · 10−5 0 0.6447

Key West 2.50 · 10−5 3.54 · 10−5 0.6645 NO NEW TRENDS

Lafayette 1.15 · 10−4 0 0.6842 1.14 · 10−4 0 0.68653

Lubbock 1.79 · 10−4 0 0.6386 1.81 · 10−4 0 0.6387

Memphis 1.24 · 10−4 0 0.7331 1.24 · 10−4 0 0.7332

Miami 1.48 · 10−4 0 0.6004 1.58 · 10−4 0 0.6012

Mobile 5.01 · 10−5 3.38 · 10−6 0.7045 NO NEW TRENDS

Montgomery 1.77 · 10−4 0 0.7086 1.78 · 10−4 0 0.7087

New Orleans 8.75 · 10−5 0 0.6837 8.80 · 10−5 9.04 · 10−16 0.6841

Odessa 1.65 · 10−4 0 0.6554 1.65 · 10−4 0 0.6555

Orlando 5.10 · 10−5 1.31 · 10−6 0.6097 NO NEW TRENDS

Pensacola 7.40 · 10−5 8.05 · 10−14 0.7295 7.50 · 10−5 3.76 · 10−14 0.7298

San Antonio 1.59 · 10−4 0 0.6667 1.59 · 10−4 0 0.6682

Savannah 8.32 · 10−5 4.66 · 10−13 0.6818 8.54 · 10−5 0 0.6826

Shreveport 1.39 · 10−4 0 0.6936 1.37 · 10−4 0 0.6944

Tallahassee 1.26 · 10−4 0 0.6902 1.26 · 10−4 0 0.6908

Tampa 3.65 · 10−5 1.91 · 10−5 0.6352 5.89 · 10−5 3.50 · 10−12 0.6373

Los Angeles 8.15 · 10−7 9.31 · 10−1 0.3081 1.26 · 10−6 0.8977 0.3127

San Diego −3.45 · 10−5 4.37 · 10−5 0.3583 −3.46 · 10−5 4.34 · 10−5 0.3583

Average 1.13 · 10−4 0.6674 1.15 · 10−4 0.6684
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