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On the Speed of an Excited Asymmetric
Random Walk

Abstract.An excited random walk is a non-Markovian extension of the simple ran-
dom walk, in which the walks behavior at time n is impacted by the path it has
taken up to time n. The properties of an excited random walk are more difficult to
investigate than those of a simple random walk. For example, the limiting speed of
an excited random walk is either zero or unknown depending on its initial condi-
tions. While its limiting speed is unknown in most cases, the qualitative behavior
of an excited random walk is largely determined by a parameter which can be com-
puted explicitly. Despite this, it is known that the limiting speed cannot be written
as a function of . We offer a new proof of this fact, and use techniques from this
proof to further investigate the relationship between and limiting speed. We also
generalize the standard excited random walk by introducing a bias to the right, and
call this generalization an excited asymmetric random walk. Under certain initial
conditions we are able to compute an explicit formula for the limiting speed of an
excited asymmetric random walk.



1 Introduction

A simple random walk is a discrete Markovian model of random motion whose
properties are well understood. Informally, we describe a simple random walk
as follows: a random walker starts at 0 and takes an infinite sequence of
independent steps. Each step is to the right with probability p ∈ (0, 1) and to
the left with probability 1− p.

More precisely, a simple random walk (Wn)n≥0 is a Markov chain with
transition probabilities

p(j, k) = P (Wn = k | Wn−1 = j) =





p k = j + 1

1− p k = j − 1

0 otherwise.

Alternatively, a simple random walk (Wn)n≥0 can be defined as Wn =
∑n

i=1 ωi
where the ωi are i.i.d. random variables with

P (ωi = 1) = p

P (ωi = −1) = 1− p.

Because simple random walks can be represented both as Markov chains
and as sums of i.i.d. random variables, their properties are well understood.
For example, a one-dimensional simple random walk is recurrent, i.e. returns
to 0 infinitely many times with probability 1, if and only if p = 1

2
. Recall that

if an irreducible Markov chain is not recurrent, it is transient, i.e. returns to 0
only a finite number of times. We define the limiting speed of a random walk
(Rn)n≥0 to be

lim
n→∞

Rn

n
, (1.1)

if this limit exists and is equal to a constant with probability 1, and note
that this definition of limiting speed applies also to the more complex random
walk variations described below. For simple random walks, the limiting speed
always exists, and is readily computed:

Proposition 1.2. The limiting speed of a simple random walk (Wn)n≥0 with
probability p of stepping to the right is 2p− 1.

Proof. We have from above that

lim
n→∞

Wn

n
= lim

n→∞

∑n
i=1 ωi
n

.
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Applying the Strong Law of Large Numbers, we obtain

lim
n→∞

∑n
i=1 ωi
n

= E[ω1] = 2p− 1 a.s.

Simple random walks have diverse applications to real world problems, but
some applications are better modeled by processes which are non-Markovian.
To that effect, mathematicians have introduced a number of self-interacting
random walks. One variation is the excited random walk, first introduced by
Benjamini and Wilson [2] in 2003 and later generalized by Zerner [10] and
Kosygina and Zerner [7].

An excited random walk is a non-Markovian extension of a simple ran-
dom walk which can be described informally as follows: at each integer, we
place M cookies, each of which has a “strength.” The random walker starts
at the origin and takes an infinite sequence of steps, each carrying him to an
adjacent integer. The probability distribution of the walker’s future location
conditioned on past steps depends on the number of cookies left at the walker’s
current location, and when the walker leaves a site with cookies remaining, he
eats a cookie (see Figure 1).

-2 -1 0 1 2

p21− p2

1− p3 p3

p11− p1

1
2

1
2

-2 -1 0 1 2

-2 -1 0 1 2 -2 -1 0 1 2

Figure 1: Excited Random Walk with 3 Cookies

Mathematically, we specify the number of cookies M and a vector of cookie
strengths p ∈ (0, 1)M . We let (Yn)n≥0 be an excited random walk and define
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the probabilities of stepping right or left given the first n steps of the walk to
be

P (Yn+1 − Yn = 1 | Y0, . . . , Yn) =

{
pi if # {j;Yj = Yn} = i ≤M

1/2 otherwise,

P (Yn+1 − Yn = −1 | Y0, . . . , Yn) = 1− P (Yn+1 − Yn = 1 | Y0, . . . , Yn) .

That is, the walker’s probability of stepping right on his ith visit to a site
is given by the strength of the ith cookie if i ≤ M , and is 1

2
if i > M . In

this model, the probability of stepping left or right at time n depends on the
number of cookies remaining at the walker’s current site, and hence on the
path the walker took up to the current time. Therefore (Yn)n≥0 is neither a
Markov chain nor a sum of i.i.d. random variables. This makes analyzing
its asymptotic behavior, such as its recurrence or limiting speed, difficult.
Nevertheless, the following theorem has been proven, which shows how the
qualitative behavior of an excited random walk is determined by the parameter
δ(M,p), defined as

δ(M,p) =
M∑

i=1

(2pi − 1). (1.3)

Theorem 1.4 (Zerner [10], Basdevant and Singh [1], Kosygina and Zerner [7]).
A standard excited random walk with M cookies and cookie strength vector p
is transient to the right if and only if δ(M,p) > 1. It has positive speed if and
only if δ(M,p) > 2. For −2 ≤ δ(M,p) ≤ 2, the walk has zero speed.

While this theorem suggests δ(M,p) might determine the speed of an excited
random walk, it is possible to use the strict monotonicity conditions given by
Peterson to show that the speed is not a function of δ(M,p) [8]. In Section 4
we present a new proof of this fact. We use the techniques in our proof to give
several concrete examples of known monotonicity properties, and we further
show that δ(M,p) and v(M,p) are unrelated when δ > 2, in the sense that
there exists an excited random walk with arbitrarily large δ parameter and
arbitrarily small speed.

1.1 What is an Excited Asymmetric Random Walk?

We now introduce the primary object of analysis in this paper: the excited
asymmetric random walk. An excited asymmetric random walk is a gen-
eralization of the excited random walk, in which the probabilities of stepping
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p21− p2

1− p3 p3

p11− p1

p01− p0

-2 -1 0 1 2
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Figure 2: Excited Asymmetric Random Walk with 3 Cookies

left or right from a site with no cookies need not be 1
2

(see Figure 2). More
formally, if (Xn)n≥0 is an excited asymmetric random walk, we specify a num-
ber of cookies M , a vector of cookie strengths p ∈ RM , and a bias parameter
p0. Then the probability of stepping right or left given the first n steps of the
walk is

P (Xn+1 −Xn = 1 | X0, . . . , Xn) =

{
pi if #{j;Xj = Xn} = i ≤M

p0 otherwise,

P (Xn+1 −Xn = −1 | X0, . . . , Xn) = 1− P (Xn+1 −Xn = 1 | X0, . . . , Xn) .

We will assume throughout this paper that p0 >
1
2
; a symmetry argument

extends our analysis to the other case.
Our motivation for studying this type of random walk is as follows: in a

standard excited random walk, the speed is known to be zero when the number
of cookies M is less than 3, since δ ≤ 2 if M < 3 by (1.3), and we are not aware
of any case in which the speed has been computed when it is non-zero. Adding
a drift to the excited random walk makes the speed non-zero, even when M
is small (see Lemma 2.1 below). In the case of M = 1, we can compute the
speed explicitly.

Theorem 1.5. The limiting speed of an excited asymmetric random walk with
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one p1 cookie and bias parameter p0, with p1 ∈ (0, 1), p0 ∈ (1/2, 1) is given by

v∗ (p0, p1) =
2p0 − 1

2p0 − 1 + 2(1− p1)
. (1.6)

As an illustration of this speed, we have Figure 3 which shows the speed
as a function of p0 ∈ (.5, 1) for p1 = 0.8, 0.9, 0.99.

p1 = 0.8

p1 = 0.9

p1 = 0.99

0.5 0.6 0.7 0.8 0.9 1.0
p00.0

0.2

0.4

0.6

0.8

1.0
v*(p0, p1)

Figure 3: v∗ (p0, p1) for three values of p1

Before giving the proof of our main results, first we will review some results
about standard excited random walks that are needed for our analysis.

1.2 An Associated Markov Chain

While Theorem 1.4 gives important information about the qualitative behavior
of excited random walks, quantitative analysis will require a more informative
probabilistic representation of the speed. To this end, we introduce what is
known in the literature as the backwards branching-like process associated
to a random walk (Xn)n≥0. The backwards branching-like process (Zn)n≥0
is Markovian and can be associated to both standard excited random walks
and excited asymmetric random walks, so in the remainder of this section we
will use the term excited random walk to refer to both variations. Following
Basdevant and Singh [1], we begin by defining the random variables

Tn = inf
t≥0
{t : Xt = n}, (1.7)

Un
x = #{t < Tn : Xt = x,Xt+1 = x− 1}. (1.8)

Tn is interpreted as the hitting time of site n, while Un
x is the number of left

steps from site x by time Tn (see Figure 4). Under this definition, it is clear
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that Un
n = 0 and that Un

x are random variables which are non-decreasing in n.
We can think of Un

x as the number of left steps from x before reaching x+1 for
the first time plus the number of left steps from x between the first left step
from x+1 and the first return to x+1 before Tn, plus the number of left steps
from x between the second left step from x+ 1 and the second return to x+ 1
before Tn, and so on. The number of left steps taken from x between the ith

left step from x+1 and the ith return to x+1 (given that the walker does take
an ith left step from x+1) is independent of the values of the random variables
Un
j with j > x. Thus the distribution of the random variable Un

x conditional
on the values of Un

n , U
n
n−1, ..., U

n
x+1 is determined by Un

x+1, the number of left
steps taken from site x+ 1 by time Tn. Stated in a more familiar fashion,

P (Un
x = k |Un

n , U
n
n−1, ..., U

n
x+1) = P (Un

x = k |Un
x+1);

that is, (Un
n , U

n
n−1, ..., U

n
0 ) is a Markov chain. Its transition probabilities are

given by

p(l,m) = P
(
Un
x = m|Un

x+1 = l
)

= P (m steps left from x by Tn | l steps left from x+ 1 by Tn)

= P (m steps left from x by Tn | l + 1 steps right from x by Tn) .
(1.9)

The last equality follows from the the fact that if the walk takes l left steps
from x + 1, the walk must take l steps right from x to return to x + 1 after
each left step, plus a step right from x to reach x+ 1 for the first time.

0

1

2

3

2 5 6 7 8 9 10 11 12 13 14 151 43

U4
1 = 1 U4

2 = 3 U4
3 = 2U4

0 = 04

160 t

Xt

Figure 4: An example of U4
x .

To construct (Zn)n≥0, we first define independent sequences of random

variables (ξn,j)j≥0 by the probability of jumping right on the jth visit to site n
in the corresponding random walk. For example, in a standard excited random
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walk with M cookies and cookie vector p, we have

ξn,j
dist
=

{
Bernoulli(pj) : j ≤M

Bernoulli(1/2) : j > M.

Then, we define the random variables Ai,k to be the number of “failures” in
the sequence of (ξi,j)j≥0 before k “successes.” That is,

Ai,k = min

{
s ≥ 0 :

s+k∑

j=1

ξi,j = k

}
. (1.10)

Then the backwards branching-like process (Zn)n≥0 is defined to be a Markov
chain with transition probabilities

p(l,m) = P (Zn+1 = m|Zn = l) = P (An+1,l+1 = m) .

Remark 1.11. The backwards branching-like process (Zn)n≥0 is called branching-

like because the sequence
(
Un
n , U

n
n−1, . . . , U

n
0

)
is like a branching process with

migration, in which Un
x−1 is the result of Un

x + 1 individuals reproducing ac-
cording to the probability distributions explained below. The process (Zn)n≥0
is called backwards because the index of the Markov chain (Un

n , Un−1, ..., U
n
0 )

starts at n and decreases.

The backwards branching-like process is designed so that the following
theorem holds.

Theorem 1.12 (Basdevant and Singh Proposition 2.2 [1]). If an excited ran-
dom walk is recurrent or transient to the right, then for all n ∈ N, if Z0 = 0,
then the processes (Z0, Z1, . . . , Zn) and

(
Un
n , U

n
n−1, . . . , U

n
0

)
have the same dis-

tribution.

The connection between the processes (Z0, Z1, . . . , Zn) and
(
Un
n , U

n
n−1, . . . , U

n
0

)

can be seen by considering definitions (1.9) and (1.10) and interpreting left
steps as failures and right steps as successes. In particular, with left steps in-
terpreted as failures, and right steps as successes, the transition probabilities
p(l,m) in both processes give the probability of m failures before the (l+ 1)st

success, and the probabilities of success and failure in each process are linked
by the construction of the random variables ξn,j.

Example 1.13. For an excited asymmetric random walk with one p1 cookie
and bias parameter p0, we have the following transition probabilities for the
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associated backwards branching-like process:

p(0, 0) = p1

p(0, k) = (1− p1)(1− p0)k−1p0 for k > 0

p(1, 0) = p1p0

p(1, k) = p1(1− p0)kp0 + k(1− p1)(1− p0)k−1p20 for k > 0

p(j, k) =
(
k+j−1
j−1

)
p1(1− p0)kpj0 +

(
k+j−1
j

)
(1− p1)(1− p0)k−1pj+1

0

for j ≥ 2, k ≥ 0.

Since the transition probabilities are all non-zero, the backwards branching-
like process (Zn)n≥0 is an irreducible Markov chain. If its unique stationary
distribution exists, we will denote it as π and we will use Pπ and Eπ to denote
probabilities and expectations conditional on Z0 ∼ π.

The following lemma gives a useful decomposition of the random variables
Ai,k, which we will use in our proof of Theorem 1.5.

Lemma 1.14 (Basdevant and Singh 2008 [1]). For all j ≥M , we have

Ai,k
dist
= Ai,M + γ1 + · · ·+ γk−M+1

where (γi)i≥0 are i.i.d. geometric random variables independent of Ai,M−1 with
parameter p0, i.e. P (γ1 = j) = (1 − p0)

jp0, where p0 is the probability of
stepping right on the (M + 1)st visit to a site in the corresponding random
walk.

The proof of Lemma 1.14 is identical to that of Basdevant and Singh’s
Lemma 2.1 [1] for the standard excited random walk, and is thus omitted.

Now, having developed the backwards branching-like process, we have the
machinery necessary to state the following theorem, which gives the proba-
bilistic formulation of the speed which we use to prove Theorem 1.5.

Theorem 1.15 (Basdevant and Singh 2008 [1]). For a standard excited ran-
dom walk with M cookies and cookie strength vector p, the stationary distribu-
tion π of the associated backwards branching-like process (Zn)n≥0 exists if and
only if δ(M,p) > 1.

Further, if δ(M,p) > 1, then the speed of the walk is given by

v(M,p) =
1

1 + 2Eπ [Z0]
. (1.16)

with the convention that 1
+∞ = 0.

RHIT Undergrad. Math. J., Vol. 19, No. 1 Page 9



Remark 1.17. Using Lemma 1.14 and Theorem 1.12, it is possible to derive
(1.16). While we omit the proof, the argument is guided by the intuition that
the speed of the walk at time Tn can be related to the number of left steps
it has taken by that time, which can be investigated through the asymptotic
behavior of (Zn)n≥0. The representation of the speed as given by (1.16) can
be used to show that the speed is nonzero if and only if δ(M,p) > 2. This
is done by showing that an excited random walk with parameters M,p has
Eπ [Z0] <∞ (and thus positive speed) if and only if δ(M,p) > 2 [1].

Importantly, the proof of Theorem 1.15 requires only that the walk is
transient to the right, not that there are finitely many cookies. Since an
excited asymmetric random walk can be interpreted as an excited random walk
with infinitely many cookies at each location, (1.16) is valid for the excited
asymmetric random walk model when it is transient to the right.

2 Calculating the Speed

In this section we prove Theorem 1.5. We will need the following lemma, which
we will prove in the next section.

Lemma 2.1. The backwards branching-like process (Zn)n≥0 associated to an
excited asymmetric random walk with parameters M ≥ 1,p ∈ (0, 1)M and bias
parameter p0 ∈ (1/2, 1) has a stationary distribution π, and Eπ [Z0] <∞.

Let (Zn)n≥0 be the backwards branching-like process associated to an ex-
cited asymmetric random walk with one p1 cookie and bias parameter p0 >

1
2
,

and let π be its stationary distribution. From (1.16), we know that if we can
calculate Eπ[Z0], then we can calculate the speed of the walk. Since calcu-
lating explicit values of π seems to be a very difficult problem (see Appendix
A), we instead follow the approach of Basdevant and Singh [1] and attempt to
calculate Eπ[Z0] by studying the probability generating function of π. Let

G(s) = Eπ[sZ0 ] =
∞∑

k=0

π(k)sk (2.2)

be the probability generating function of π. We study the p.g.f. of π because of
the well-known property that G′(1) = Eπ[Z0], where G′(1) is the left derivative
at 1. This enables us to calculate Eπ[Z0] without calculating π explicitly.

Page 10 RHIT Undergrad. Math. J., Vol. 19, No. 1



2.1 Deriving a Recursive Formula for the P.G.F

Since explicitly calculating π, and hence G(s), is a difficult problem, we instead
find a recursive formula for G(s).

Proposition 2.3. The probability generating function of π satisfies the recur-
sive formula

G(s) =

(
p1 + s(p0 − p1)
1− s(1− p0)

)
G

(
p0

1− s(1− p0)

)
. (2.4)

Proof. Since π is a stationary distribution, we know that Eπ[sZ0 ] = Eπ[sZ1 ],
and thus we can also write G(s) as

G(s) =
∞∑

k=0

π(k)E[sZ1|Z0 = k]. (2.5)

From Lemma 1.14, we have

E[sZ1|Z0 = k] = E[sA1,1+γ1+···+γk ] = E[sA1,1 ]E[sγ1 ]k,

where E[sA1,1 ] = E[sZ1|Z0 = 0] from our definitions. Using the transition
probabilities given in Example 1.13, we can calculate E[sZ1|Z0 = 0] as

E[sZ1|Z0 = 0] =
∞∑

k=0

skp(0, k) =
p1 + s(p0 − p1)
1− s(1− p0)

.

Using the p.g.f. of a geometric random variable and substituting into (2.5),
we have

G(s) = E[sZ1|Z0 = 0]
∞∑

k=0

π(k)

(
p0

1− s(1− p0)

)k

=

(
p1 + s(p0 − p1)
1− s(1− p0)

)
G

(
p0

1− s(1− p0)

)
.

2.2 Finding Eπ [Z0]

Using Lemma 2.1 and Proposition 2.4, we now prove Theorem 1.5.
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Proof. Recall that all probability generating functions are differentiable on
[0, 1], so G′(1) = Eπ [Z0], where G′(1) is the left-hand derivative of G(s) at 1.
Applying the product and chain rules to (2.4) yields

G′(s) =

(
p1 + s(p0 − p1)
1− s(1− p0)

)
G′
(

p0
1− s(1− p0)

)(
p0(1− p0)

(1− s(1− p0))2
)

+G

(
p0

1− s(1− p0)

)(
p0(1− p1)

(1− s(1− p0))2
)
.

Evaluating at s = 1 yields

G′(1) = G′ (1)

(
1− p0
p0

)
+

(
1− p1
p0

)
,

and solving for G′(1), which is possible since G′(1) = Eπ[Z0] <∞ by Lemma
2.1, we obtain

G′(1) = Eπ [Z0] =
1− p1
2p0 − 1

.

Substituting into (1.16), we obtain the formula for the speed given in Theorem
1.5.

3 Proof of Lemma 2.1

Lemma 2.1 follows from Theorem 1.6 in [6], but we offer the following direct
proof, both in the interest of self-containment and because the techniques used
in the proof will be referenced later.

For p = (p1, p2, . . . , pM), let p
′

= (p1, p2, . . . , pM , p0, p0, ..., p0) ∈ RN , and
choose N > M such that δ(N,p

′
) > 2. We now construct the backwards

branching-like processes associated to two excited random walks, the first an
excited asymmetric random walk (X∞,n)n≥0 with parameters M,p, p0 for p0 >
1/2, and the second walk (XN,n)n≥0 a standard excited random walk with N
cookies and cookie vector p

′ ∈ RN . We will use a coupling argument with the
backwards branching-like processes associated to (X∞,n)n≥0 and (XN,n)n≥0 to
prove the lemma. To construct these backwards branching-like processes, we
first let (ξi,j)j≥1 be given by

ξi,j
dist
=

{
Bernoulli(pj) : 1 ≤ j ≤M

Bernoulli(p0) : j > M,
(3.1)

Page 12 RHIT Undergrad. Math. J., Vol. 19, No. 1



and let (ζi,j)j≥1 be similarly defined sequences of random variables independent
of the (ξi,j)j≥1 such that

ζi,j
dist
=





Bernoulli(pj) : 1 ≤ j ≤M

Bernoulli(p0) : M < j ≤ N

Bernoulli(1
2
) : j > N.

(3.2)

We define the random variables Ai,k and Bi,k to be the number of failures
before k successes in the sequences of Bernoulli random variables (ξi,j)j≥1 and
(ζi,j)j≥1, respectively. Then we let (Z∞,n)n≥0 and (ZN,n)n≥0 be Markov chains
with transition probabilities given by:

P∞,z (Z∞,0 = z) = 1,

P∞,z (Z∞,n+1 = k|Z∞,n = j) = P (An+1,j+1 = k) ,

PN,z (ZN,0 = z) = 1, and

PN,z (ZN,n+1 = k|ZN,n = j) = P (Bn+1,j+1 = k) .

Then (Z∞,n)n≥0 and (ZN,n)n≥0 are the backwards branching-like processes as-
sociated to (X∞,n)n≥0 and (XN,n)n≥0, respectively.

We now define a coupling of (ξi,j)j≥1 and (ζi,j)j≥1 that we will use to bound
Z∞,n by ZN,n. We can then use the bound to show that when ZN,n is posi-
tive recurrent, Z∞,n is also positive recurrent, from which Lemma 2.1 follows.
Coupling is a proof technique that takes independent random variables and
constructs a new set of random variables with a new joint distribution. The
new joint distribution has marginal distributions that are equal in distribution
to the original random variables, but the new variables aren’t independent.
This dependence can then be manipulated to prove things about the original
random variables. For more information on coupling, see [9].

Since p0 > 1/2, we can couple (ξi,j)j≥1 and (ζi,j)j≥1 such that:

• For all i, j, ξi,j are independent Bernoulli random variables as defined in
(3.1).

• For all i, j, ζi,j are independent Bernoulli random variables as defined in
(3.2).

• P(ξi,j ≥ ζi,j) = 1 for all i, j.
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One such coupling would be

P(ξi,j = 1, ζi,j = 1) =





pi if 1 ≤ i ≤M

p0 if M < i ≤ N

1/2 if i > N,

P(ξi,j = 1, ζi,j = 0) =

{
0 if 1 ≤ i ≤ N

p0 − 1/2 if i > N,

P(ξi,j = 0, ζi,j = 0) =

{
1− pi if 1 ≤ i ≤M

1− p0 if i > M.

Since P(ξi,j ≥ ζi,j) = 1, it is clear from the definitions of Ai,k and Bi,k that
Ai,k ≤ Bi,k for all i, k. Also, by definition Bi,k is nondecreasing in k. Therefore
if Z∞,k ≤ ZN,k, then

Z∞,k+1 = Ak+1,Z∞,k+1 ≤ Bk+1,Z∞,k+1 ≤ Bk+1,ZN,k+1 = ZN,k+1. (3.3)

Since Z∞,0 = ZN,0 by construction, induction shows that Z∞,n ≤ ZN,n for all
n.

We now use the coupling to show that the stationary distribution of (Z∞,n)n≥0
exists. Let T+

∞,0 and T+
N,0 be the times at which Z∞,n and ZN,n first return to

0, respectively. That is,

T+
∞,0 = inf{n > 0 : Z∞,n = 0},
T+
N,0 = inf{n > 0 : ZN,n = 0}.

Because Z∞,n ≤ ZN,n under our coupling, we have that ZN,n = 0 implies
Z∞,n = 0, so T+

0,∞ ≤ T+
0,N , and hence E0[T

+
0,∞] ≤ E0[T

+
0,N ]. Therefore if

(ZN,n)n≥0 is positive recurrent, so is (Z∞,n)n≥0. We chose N so that (XN,n)n≥0
would have positive speed (equivalently, δ(N,p

′
) > 2), and hence be tran-

sient, so we know that (ZN,n)n≥0 has a stationary distribution πN (which is
equivalent to being positive recurrent). Therefore (Z∞,n)n≥0 has a stationary
distribution, which we will denote π∞.

A similar application of the coupling can be used to show

Eπ∞ [Z∞,0] ≤ EπN [ZN,0] <∞,

where the last inequality holds because N was chosen such that δ(N,p
′
) > 2,

and hence v(N,p
′
) > 0.
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4 Monotonicity Properties of Excited Random

Walks

It is known that a standard excited random walk with parameters M ≥ 1 and
p ∈ RM is transient if and only if δ(M,p) > 1, and has positive speed if and
only if δ(M,p) > 2. But while δ(M,p) completely determines these qualitative
properties, it is known that the speed of a standard excited random walk is
not a function of δ(M,p) [5]. In Section 4.2 we give a new proof of this fact.
Further, our argument can be used to show that δ(M,p) and v(M,p) are
unrelated when δ(M,p) > 2, in the sense that there exist excited random
walks with arbitrarily large δ parameters and arbitrarily small speeds. Before
proving this, we present some previous results on monotonicity.

4.1 Previous Results on Monotonicity

When considering vectors of cookie strengths p = (p1, p2, p3, . . . , pM), a natural
partial ordering between two cookie vectors p and q of length M arises. If for
all i = 1, . . . ,M , pi ≤ qi, we write p ≤ q. Zerner [10] showed that if p ≤ q,
then v(M,p) ≤ v(M,q). Holmes and Salisbury [5] developed a weaker partial
ordering for cookie vectors, generalizing the results from Zerner.

Definition 4.1. We write p � q if there exists a coupling of (Y,Z), Y =
(Y1, Y2, . . . , YM), Z = (Z1, Z2, . . . , ZM) such that

• {Y1, Y2, . . . , YM} are independent Bernoulli random variables with Yi ∼
Bernoulli (pi).

• {Z1, Z2, . . . , ZM} are independent Bernoulli random variables with Zi ∼
Bernoulli (qi).

• P
{∑m

j=1 Yj ≤
∑m

j=1 Zj

}
= 1 for all m = 1, 2, . . . ,M .

Moreover, we write p ≺ q if p � q and p 6= q.

Under this partial ordering, if p � q, then v(M,p) ≤ v(M,q) and δ(M,p) ≤
δ(M,q) [5]. If p ≺ q, then either v(M,p) = v(M,q) = 0 or v(M,p) <
v(M,q), but importantly this strict partial ordering does not imply a strict
inequality between δ(M,p) and δ(M,q) [5, 8].

We take a moment now to discuss what these partial ordering techniques
can and cannot show regarding the relationship between δ(M,p) and v(M,p),
and to describe the new monotonicity results given in Section 4.2. First, the
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strict partial ordering can be used to find M,p,q such that δ(M,p) = δ(M,q),
but v(M,p) < v(M,q), which shows that the speed is not a function of δ [5].
Additionally, a continuity argument together with the above example gives
δ(M,p+ε) > δ(M,q), but v(M,p+ε) < v(M,q) for some ε = (ε, ε, ..., ε) ∈ RM
[8]. However, this argument cannot be used to produce a specific numerical
example, since it is unknown how small ε must be. Furthermore, it is clear
from the definition of the partial orderings that p � q implies p1 ≤ q1. Just
as with the relationship between the speed and δ, the strict partial ordering
together with a continuity argument can show that there exist M,p,q with
p1 > q1 and v(M,q) > v(M,p) > 0 [8], but again the proof is not constructive.
Finally, the partial ordering techniques in general give information about the
speed of excited random walks only in relation to each other and so cannot
give any absolute information about the speed.

4.2 Our Results on Monotonicity

Throughout this section, we let v(M,p) be the speed of a standard excited
random walk with cookie vector p ∈ RM , we let v∗(p0, p1) be the speed of
an excited asymmetric random walk with one cookie of strength p1 and bias
parameter p0, and we let vs(p) = 2p− 1 be the speed of a simple random walk
with parameter p .We prove that v(M,p) cannot be written as a function of
δ(M,p) if δ(M,p) > 2 by proving a slightly more general theorem, which
loosely speaking states that an excited random walk with a few strong cookies
tends to move faster than an excited random walk with many weaker cookies.

Theorem 4.2. Choose M ≥ 3 and p = (p, p, . . . , p) ∈ RM such that δ(M,p) =
M(2p− 1) > 2. For i ∈ N we define

p(i) =
1

2
+
M(2p− 1)

2(M + i)
, (4.3)

pi ∈ RM+i = (p(i), p(i), . . . , p(i)), (4.4)

so that δ(M + i,pi) = δ(M,p) for all i. Then

lim
i→∞

v(M + i,pi) = 0. (4.5)

As i increases, the number of cookies at each site increases and the strength
of each cookie decreases in such a way that the “total drift” at each site, as
measured by the parameter δ, is unchanged. That the speed should decrease
as i increases is intuitive, since as i→∞, the excited random walk acts more
and more like a simple symmetric random walk, which has speed 0. The proof
below is guided by this intuition.
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Proof. A simple random walk with parameter p(i) is equivalent to an excited
asymmetric random walk with one cookie of strength p(i) and bias parameter
p(i). From the proof of Lemma 2.1, it is clear that v(Mi,pi) ≤ v∗(p(i), p(i)).
Since v∗(p(i), p(i)) = vs(p(i)) = 2p(i) − 1 where vs(p(i)) is the speed of a simple
random walk with parameter p(i), we have v(Mi,pi) ≤ 2p(i) − 1. As i → ∞,
p(i) → 1

2
, and hence vs(p

(i))→ 0. Therefore v(Mi,pi) is a sequence of positive
numbers bounded above by a sequence which tends to zero, and hence itself
tends to zero.

It is clear from Theorem 4.2 that two excited random walks with the same
δ value need not have the same speed, and hence that the speed of an excited
random walk cannot be expressed as a function of δ.

We have a corollary which shows that it is possible to construct an excited
random walk with parameters M ≥ 3,p ∈ RM with δ(M,p) arbitrarily large
and v(M,p) arbitrarily small.

Corollary 4.6. Given any η, ε > 0, there exist M ≥ 3,p ∈ RM such that
δ(M,p) > η and v(M,p) < ε.

Corollary 4.6 easily follows from Theorem 4.2, since δ(M,p) can be made
arbitrarily large by increasing M and Theorem 4.2 shows how v(Mi,pi) can
be made arbitrarily small.

We now give a corollary and example showing how to construct specific
cookie vectors whose δ parameters and speed are in opposite relations.

Corollary 4.7. There exist cookie vectors q ∈ R3,pi ∈ R3+i such that v(3,q) >
v(3 + i,pi) and δ(3,q) < δ(3 + i,pi).

Proof. Let M = 3. Choose q, p such that 5
6
< q < p < 1. Let p = (p, p, p),

q = (q, q, q), and define p(i),pi as in Theorem 4.2. While v(3,q) cannot be
calculated exactly for a cookie vector q = (q, q, q), there is a lower bound f(q)
on the speed v(3,q) [3] given by:

v(3,q) ≥ f(q) =
(6q − 5) (q2 − 2q − 1)

24q4 − 42q3 − 3q2 + 28q − 9
. (4.8)

Since

vs(p(i)) = 2p(i) − 1 =
3(2p− 1)

i+ 3
,

for sufficiently large i ∈ N, vs(p(i)) < f(q) ≤ v(3,q). As a result of (4.8), such
an i must therefore satisfy the following inequality:

i >
6 (p (24q4 − 42q3 − 3q2 + 28q − 9) + 2 (−6q4 + 9q3 + 5q2 − 8q + 1))

(6q − 5) (q2 − 2q − 1)
.
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It is clear from the proof of Theorem 4.2 that v(3 + i,pi) ≤ vs(p(i)), so we
v(3 + i,pi) < v(3,q), and simple algebra also shows δ(3,q) = 3(2q − 1) <
3(2p− 1) = δ(3 + i,pi).

Example 4.9. Let p = 0.99, q = 0.85, N = 7. Let pi and p(i) be defined as in
Theorem 4.2. Then p(8) = 1

2
+ 3(2·0.99−1)

2·11 = 697
1100

, and it is clear from the proof of
Corollary 4.7 that v(11,p8) < v(3,q) while δ(11,p8) = 2.94 > 2.1 = δ(3,q).

Finally, we give a proposition and example that show how to construct two
excited random walks with positive speeds whose initial cookies and speed are
in opposite relations.

Proposition 4.10. There exist cookie vectors q ∈ R3,p ∈ RM such that
q1 < p1, but v(3,q) > v(M,p) > 0.

Proof. Let 5
6
< q < p < 1 and q = (q, q, q). Then δ(3,q) > 2, so 0 < f(q) ≤ 1

[3]. Choose ε > 0 such that

ε <
(1− p)f(q)

1− f(q)
=

(1− p)(6p− 5) (q2 − 2q − 1)

2 (12q4 − 24q3 + 7q2 + 12q − 7)

where f(q) is as defined in (4.8). Then we have

v∗ (1/2 + ε, p) =
2(1/2 + ε)− 1

2(1/2 + ε)− 1 + 2(1− p)
=

ε

ε+ (1− p)
< f(q),

so v∗ (1/2 + ε, p) < v(3,q). Choose N such that

N ≥ 4− 2p

1 + 2ε
.

Then for p = (p, 1/2 + ε, 1/2 + ε, . . . , 1/2 + ε) ∈ RM with M > N , we
have δ(M,p) > 2. It is clear from the proof of Lemma 2.1 together with the
values of δ(3,q) and δ(M,p) that 0 < v(M,p) < v∗(1/2 + ε, p). Therefore,
v(M,p) < v∗(1/2 + ε, p) < v(3,q), whereas p1 = p > q by construction.

Example 4.11. Let p = 0.99, q = 0.85. We choose ε = 0.0045 and N = 114.
It is clear from the proof of Proposition 4.10 that if M > N , p = (p, 0.5 +
ε, 0.5 + ε, . . . , 0.5 + ε) ∈ RM , q = (q, q, q), we have 0 < v(M,p) < v(3,q) and
q1 < p1.
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4.3 Open Question

Let pi be described as in Theorem 4.2. Theorem 4.2 shows that the terms
v(M + i,pi) become arbitrarily small as i increases, but do they do so mono-
tonically? That is, does the inequality v(M + i+ 1,pi+1) ≤ v(M + i,pi) hold
for all i? It is in general not possible to use the partial ordering (�) to answer
this question, as is demonstrated by the following example.

Example 4.12. Let M = 3, p > 1/2, and p = (p, p, p). Then p(1) =
6p+1
8

and p(2) = 3p+1
5

by (4.3). In order to compare cookie vectors of the
same length, we will consider

p̃1 = (p(1), p(1), p(1), p(1), 1/2) and

p2 = (p(2), p(2), p(2), p(2), p(2)).

For the limit defined in Theorem 4.2 to be monotone, we must have v(5,p2) ≤
v(4,p1), which we can try to prove by showing p2 � p̃1. But to have p2 �
p̃1, we must have that the probability of all p(2) cookies being successes is
less than the probability of four p(1) and one 1/2 cookie being successes, i.e.

(p(2))5 ≤ (p(1))4

2
. On the contrary, we have

(p(2))5 − (p(1))4

2
=

(
(3p+ 1)

5

)5

− 1

2

(
(6p+ 1)

8

)4

=
9(2p− 1)2 (55296p3 + 34956p2 + 7572p+ 563)

25600000
> 0 for p > 1/2.

Since (p(2))5 > (p(1))4

2
, we have p2 � p̃1. Similarly, since p(2) < p(1), we

have p2 � p̃1, so we cannot determine any relationship between v(5,p2) and
v(4,p1) by this partial ordering.
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Appendices

A Computing π(0) and π(1)

We attempted to compute π(0) and π(1), where π is the stationary distribution
of the backwards branching-like process associated to an excited asymmetric
random walk with one cookie of strength p1 and bias parameter p0. For an
excited asymmetric random walk (Xn)n≥0 which is transient to the right, we
have π(0) = P (U∞0 = 0) and π(1) = P (U∞0 = 1), where U∞0 is the total
number of steps from 0 to −1 during the walk. This fact follows from the
equality in distribution of the processes (Un

x )0≤x≤n and (Zn)n≥0, and the fact
that the limiting distribution of a Markov Chain is equal to its stationary
distribution.

Throughout this analysis, it will be helpful to know the probability Pz(Tx <
Ty) in a simple random walk with parameter p, where Tx is as defined in (1.7).
The solution to this problem, often called the Gambler’s Ruin problem, is
known to be given by the function

h(p, x, y, z) =





1−( 1−p
p

)z−y

1−( 1−p
p

)x−y
, p 6= 1

2

z−y
x−y , p = 1

2
.

A derivation of this formula can be found in Richard Durrett’s book Essentials
of Stochastic Processes [4].

We will use our interpretation of the stationary distribution in terms of
the random variable U∞0 together with the function h to investigate π(0) and
π(1). We have

π(0) = P (walker never steps from 0 to -1) =
∞∏

k=0

P

(
inf

Tk≤n≤Tk+1

Xn > −1

)
.

We will condition each probability in the infinite product above on XTk+1 using
the following probabilities:

P (XTk+1 = k + 1) = p1,

P (XTk+1 = k − 1) = 1− p1,

P

(
inf

Tk≤n≤Tk+1

Xn > −1|XTk+1 = k + 1

)
= 1, and

P

(
inf

Tk≤n≤Tk+1

Xn > −1|XTk+1 = k − 1

)
= h(p0, k + 1,−1, k − 1).
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All of these equalities are clear except the last, which holds because after
the walker steps down from k at time Tk, there are no cookies at any site
j ∈ {0, 1, ..., k}. Now, conditioning P

(
infTk≤n≤Tk+1

Xn > −1
)

on XTk+1 yields

∞∏

k=0

P

(
inf

Tk≤n≤Tk+1

Xn > −1

)
=
∞∏

k=0

{p1 + (1− p1)h(p0, k + 1,−1, k − 1)},

(A.1)

To compute π(1), we use the interpretation π(1) = P (U∞0 = 1) to determine

π(1) =
∞∑

k=0

P (step left from 0 once between Tk and Tk+1, nowhere else).

(A.2)

We further note that the probability of stepping left nowhere except possibly
between Tk and Tk+1 is related to π(0) by the equation

P (no left steps from except possibly between Tk and Tk+1)

=
∏

j≥0,j 6=k
P

(
inf

Tj≤n≤Tj+1

Xn > −1

)
=

π(0)

p1 + (1− p1)h(p0,k+1,−1,k−1)
. (A.3)

Now we observe that the probability of the walker stepping left from zero once
between Tk and Tk+1 and nowhere else is equal to the probability that he does
not step left from 0 at any time not between Tk and Tk+1 multiplied by the
probability that he steps left exactly once between Tk and Tk+1 given he has
not stepped left from zero elsewhere. Further, the probability that the walker
steps left exactly once between Tk and Tk+1 given he has not stepped left from
zero elsewhere is given by the probability that he reaches −1 between Tk and
Tk+1 exactly once. Mathematically,

P (walker steps left from 0 exactly once between Tk and Tk+1)

= P (#{Tk ≤ n ≤ Tk+1 : Xn = −1} = 1), (A.4)

which we can compute exactly using gambler’s ruin probabilities:

P (#{Tk ≤ n ≤ Tk+1 : Xn = −1} = 1)

= (1− P (no left steps from 0 between Tk and Tk+1))h(p0, k + 1,−1, 0)
(A.5)
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Now combining (A.2), (A.3), (A.4), and (A.5) yields the equation

π(1) =
∞∑

k=0

π(0)
(1− p1 − (1− p1)h(p0,−1, k + 1, k − 1))h(p0, k + 1,−1, 0)

p1 + (1− p1)h(p0, k + 1,−1, k − 1)

(A.6)

Unfortunately, while (A.1) and (A.6) are explicit, they are too difficult to
simplify even with the help of software - a fact which highlights the complexity
of the backwards branching-like process and its stationary distribution.
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