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Abstract. The Euclidean log convex density theorem, proved by Gregory Chambers
in 2015, asserts that in Euclidean space with a log convex density spheres about the
origin are isoperimetric. We provide a partial extension to hyperbolic space in which
volume and perimeter densities are related but different.
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1 Introduction

The Euclidean log convex density theorem, proved by Gregory Chambers [Ch] in 2015, asserts
that in Euclidean space with a log convex density spheres about the origin are isoperimetric
(minimize perimeter for given volume). The analogous conjecture in hyperbolic space, Hn,
says that for a log convex density, spheres about the origin are isoperimetric. We prove an
easier version in which the perimeter is weighted by a larger density than the volume:

Theorem 7. Consider Hn with smooth, radial, log convex volume density φ(R) and perime-
ter density

φ(R) · 2 cosh2(R/2),

where R is distance from the origin. Then spheres about the origin are uniquely isoperimetric.

Note that a smooth, radial density is log convex if and only if it is a log convex function
of R.

The problem of perimeter minimization is an ancient one. Two thousand years ago, Zen-
odorus showed that planar circles are perimeter minimizers for given enclosed area. Similar
results were proven over the past 150 years for spheres in Rn, Sn, and Hn (see Morgan, [Mo,
§13.2]). Here, Sn denotes the n-dimensional unit sphere.

More recently, mathematicians have studied manifolds with density. A density f is a
positive function defined on a manifold. For a region Ω, the weighted volume of Ω with
respect to density f is ∫

Ω

f dV,

and the weighted area of its boundary is ∫
∂Ω

f dA.

The interest in manifolds with density is partially due to their role in Perelman’s 2002
proof of the Poincaré conjecture [Mo, Chapter 18]. The notion of minimizing weighted area
with respect to weighted volume is the underlying principle found in Theorem 7. We break
its proof into two steps.

Firstly, we use the Poincaré ball model of hyperbolic space to reduce the problem to
the open unit ball in Rn with equal volume and perimeter densities which diverge at the
boundary.

Secondly, Proposition 6 shows that a component of an isoperimetric region must be
bounded. Otherwise, we carefully truncate the region and restore the volume elsewhere to
get a good candidate which nonetheless must have no less perimeter. This inequality, paired
with other differential inequalities relating the boundary of the truncation to the rate of
volume growth, forces the volume outside the ball of radius r to reach 0 in finite time.

Structurally, the outline of this paper is as follows: Section 2 provides notation. Section
3 begins with an explicit formula (Lemma 1) relating Poincaré and exponential coordinates
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on Hn. Proposition 3 shows that Hn featuring two densities is equivalent to the Euclidean
ball featuring only one density. Propositions 5 and 6 after Morgan-Pratelli [MP, Thms. 3.3,
5.9] establish the existence and boundedness of isoperimetric regions. The local analysis
of Chambers [Ch] for a single density on Euclidean space completes the proof of our main
Theorem 7.

2 Notation

Here we provide a reference for the notation used in many of our lemmas and propositions.

Figure 1: By relating the slice Er to the rate of growth of the volume of E inside the sphere,
one can obtain inequalities useful in proving existence and boundedness of isoperimetric
regions E.

As in Figure 1, in both hyperbolic and Euclidean space, denote the sphere and closed ball
of radius r by S(r) and B(r). Let |Ω| denote the unweighted measure of a surface or region
Ω. For a region E, let Er be the slice of E by the sphere S(r) (see Morgan, [Mo, 4.11]). Let
Fr be the restriction of the boundary of E to the exterior of the ball B(r) and define P (r)
as |Fr|. Similarly, let V (r) be the volume of the restriction of E to the exterior of the ball
B(r). Let p(r) denote the perimeter of Er. In the presence of any density f , apply f as a
subscript to indicate weighted volume or perimeter.

3 Proof of Theorem

After two lemmas, Proposition 3 equates hyperbolic space featuring two densities with the
Euclidean ball featuring one density. Propositions 5 and 6 prove existence and boundedness
of isoperimetric regions. Our main Theorem 7 now can apply Chambers [Ch] to prove spheres
are uniquely isoperimetric in Hn with our unequal densities.
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Lemma 1. On the Poincaré ball model of Hn with radial coordinate r, distance from the
origin is 2 tanh−1 r.

Proof. This distance may be written as∫ r

0

2

1− x2
dx =

∫ r

0

1

1− x
+

1

1 + x
dx

= ln

(
1 + r

1− r

)
= 2 tanh−1 r.

A density φ(x) on the line segment [0, 1) can be converted into a radial density on the
open unit ball in Rn by considering the density φ(r), where r is Euclidean distance from
the origin. Thus, by Lemma 1, φ may be similarly converted into a radial density on
hyperbolic space as a function of hyperbolic distance from the origin, R, by computing the
composition φ◦tanh (R/2). This allows for conversion between radial densities on hyperbolic
space and radial densities on the Euclidean ball. Lemma 2 establishes that log convexity of
φ ◦ tanh (R/2) on [0,∞) implies log convexity of φ on [0, 1).

Lemma 2. Let g be a smooth function with g′ positive and g′′ negative. If the composition
of a smooth positive nondecreasing function f with g is log convex, then f is log convex.

Proof. By assumption,

0 ≤ f 2 · (log(f ◦ g))′′ = (g′)2 · (ff ′′ − (f ′)2) + ff ′g′′

≤ (g′)2 · (ff ′′ − (f ′)2) = (g′ · f)2(log f)′′.

Therefore f is log convex.

Take any smooth radial density on hyperbolic space. Let φ(r) be the density as a function
of Poincaré radial coordinate r. Then if the density is log convex, φ must be nondecreasing.
This is because the symmetry and smoothness of the density at the origin implies we have
φ′(0) = 0 and log convexity of the density implies convexity of the density, so the quantity
φ′ could not become negative anywhere on (0, 1). By hypothesis, the composition of φ with
tanh (R/2) is log convex on [0,∞). Taking g to be tanh (R/2) and f to be φ provides that
φ is log convex on [0, 1).

The hyperbolic metric in Poincaré coordinates is a conformal rescaling of that on the
Euclidean ball by a factor of 2/(1 − r2). By the effects of conformally rescaling a metric,
we see that hyperbolic space has the same isoperimetric profile in Poincaré coordinates as
the open unit Euclidean ball with with area density (2/(1 − r2))n−1 and volume density
(2/(1 − r2))n. We are now able to establish the equivalence between hyperbolic space with
multiple densities and the Euclidean ball with a single density.
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Proposition 3. The space Hn with radial volume density φ(R) and perimeter density

φ(R) · 2 cosh2 (R/2)

is equivalent to the open unit Euclidean ball with density

φ(2 tanh−1 r) ·
(

2

1− r2

)n
,

where R is hyperbolic distance from the origin and r is Euclidean distance from the origin.

Proof. Note that cosh2(R/2) = 1/(1−tanh2(R/2)). So, the perimeter density may be written
as

φ(R) · 2

1− tanh2 (R/2)
.

By Lemma 1, we may rewrite these functions in Poincaré coordinates to see that the volume
density becomes φ(2 tanh−1 r) and the perimeter density becomes

φ(2 tanh−1 r) · 2

1− r2
,

where r is the radial Poincaré coordinate. Finally, let dV0 and dA0 denote the Euclidean
volume and area elements. Then in Poincaré coordinates, the weighted volume element is

φ(2 tanh−1 r) ·
(

2

1− r2

)n
dV0,

and the weighted area element is

φ(2 tanh−1 r) ·
(

2

1− r2

)n
dA0.

These volume and area elements are equivalent to those on the described weighted Euclidean
ball.

Having demonstrated this equivalence between Hn and the unit ball with certain densities,
we are now ready to make statements about existence and boundedness of isoperimetric
regions. First, we need a brief lemma relating area of slices of a region to the perimeter of
its boundary.

Lemma 4. Let E be a region in either Hn or the unit ball in Rn with continuous, nonde-
creasing radial volume density, with infinite weighted radial distance to the boundary in the
ball case. If E has finite weighted volume then for any r,

P (r) ≥ |Er|.
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Proof. Since the radial projection πr of the exterior Fr onto the sphere S(r) is area nonin-
creasing, it suffices to show that πr(Fr) covers Er, up to set of measure zero. If not, then a
set of positive measure in Er is not in the projection. The product of this set with either
(r,∞) or (r, 1), depending on the space, is contained in E. But this set must have infinite
weighted volume, violating our assumption of finite weighted volume.

Now we may show the existence of isoperimetric regions in our space. Note that this
proof follows a similar structure of an existence proof in Morgan-Pratelli [MP, Thm. 3.3].

Proposition 5. Isoperimetric regions exist in Hn with nondecreasing, continuous radial
volume density g(R) and radial perimeter density g(R) · 2 cosh2(R/2), where R is distance
from the origin, for all volumes.

Proof. By Proposition 3, it is enough to show that isoperimetric regions exist on the open
unit Euclidean ball with radial density

f(r) = g(2 tanh−1 r) ·
(

2

1− r2

)n
.

Consider a sequence of regions of the prescribed volume with perimeter tending to the
infimum. By compactness [Mo, §9.1] we may assume convergence of a subsequence to a
perimeter-minimizing region.

The difficulty is that the enclosed volume may be strictly less than the prescribed volume,
that some volume disappears to infinity. In that case, for some ε > 0, for all r, for a tail of
the sequence, the volume outside the ball of radius r about the origin is at least ε. Fix R
and such a region E, determined by R, in the tail of the sequence. We have∫ 1

R

|Er|f(r) dr ≥ ε.

Because f satisfies the conditions of Lemma 4, we know |Er| converges to zero as r tends
to 1, as |Er| is bounded above by P (r) which must also converge to 0. Hence, when r is
chosen close enough to 1, |Er| is no larger than half the unweighted surface area of the sphere
of radius r. When this condition holds, we may apply the standard isoperimetric inequality,

p(r) ≥ c|Er|
n−2
n−1 ,

where c is some dimensional constant.

Let M be the supremum of |Er| for r ≥ R, which is finite by Lemma 4. In addition,
Lemma 4 implies that

|∂E|f ≥Mf(R). (1)
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To see why this relationship holds, let {Ern} be a sequence of slices with area tending to
supremum M , with rn ≥ R. Then we have that

P (rn) ≥ |Ern|,
Pf (rn) ≥ |Ern|f(rn),

|∂E|f ≥ |Ern|f(R),

where we have used that f is nondecreasing. Taking a limit produces the desired inequality.
Take note that the function P (r) is nonincreasing, so it must be differentiable almost

everywhere, and by extension, Pf (r) is differentiable almost everywhere. By standard slicing
theory [Mo, §4.11], for almost all r,

f(r)p(r) ≤ −P ′f (r).

Since any singular changes in Pf are positive, integration yields that for R close enough to
1, we have

|∂E|f ≥
∫ 1

R

−P ′f (r) dr ≥
∫ 1

R

p(r)f(r)dr

≥ c

∫ 1

R

|Er|
n−2
n−1f(r)dr ≥ c

M
1

n−1

∫ 1

R

|Er|f(r)dr

≥ c

M
1

n−1

ε.

By (1),

|∂E|
n

n−1

f ≥ cf(R)
1

n−1 ε. (2)

Note that because the weighted perimeters of the regions in the sequence converge, the
sequence of perimeters is bounded by some positive k. Because E is one of the sequence
elements, (2) provides that

εk
n

n−1

c
≥ f(R)

1
n−1 . (3)

This implies that f is bounded above. Recalling the definition of f and noting that g is
bounded below provides that f must be unbounded, a contradiction.

Therefore there is no loss of volume to infinity and the limit provides the desired perimeter-
minimizing region.

Proposition 6 establishes that these isoperimetric regions must be bounded. See Morgan-
Pratelli [MP, Thm. 5.9] for a similar proof in Rn.

Proposition 6. Isoperimetric regions are bounded in Hn with nondecreasing, continuous
radial volume density g(R) and radial perimeter density g(R) · 2 cosh2(R/2), where R is
distance from the origin.
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Proof. Denote the volume and perimeter densities by g and f .
Suppose we have such an isoperimetric region E with Vg(R) never zero. Because the

volume density is continuous and nondecreasing, and because E encloses finite weighted
volume, Lemma 4 implies that

|Er| ≤ P (r).

Because f is nondecreasing,

|Er|f ≤ Pf (r).

The standard isoperimetric inequality on the sphere tells us that for any r for which |Er|
is at most half of the area of S(r), one has

p(r) ≥ c|Er|
n−2
n−1 , (4)

where c is some positive dimensional constant. Because P (r) is bounded by |∂E|, which is
finite because |∂E|f is finite and f is bounded below, for all r large enough |Er| is at most
half of the area of S(r) and (4) holds. Because the f density on Er is constant, we may
multiply inequality (4) by f(r) = g(r) · 2 cosh2 (r/2) to obtain, for all r large enough,

pf (r) ≥ c|Er|
n−2
n−1

f g(r)
1

n−1 cosh
2

n−1 (r/2),

where we’ve absorbed the power of 2 into constant c. Noting that g is bounded below by
some constant we may absorb this lower bound into a new constant c to obtain

pf (r) ≥ c|Er|
n−2
n−1

f cosh
2

n−1 (r/2),

≥ c|Er|f · |Er|
−1
n−1

f cosh
2

n−1 (r/2),

≥ c|Er|f · Pf (r)
−1
n−1 cosh

2
n−1 (r/2). (5)

Note that we have taken negative powers of |Er|, which may be zero if E is disconnected.
However, for such values of r, every quantity in the inequality is zero and so the statements
hold trivially. Furthermore, we are justified in taking a negative power of Pf (r) as it is never
zero, because E is unbounded.

Because V (r), P (r), and f are monotonic functions, Vf (r) and Pf (r) are differentiable
almost everywhere. By Morgan [Mo, §4.11], the differential relationships (6) and (7) hold
almost everywhere:

−P ′f (r) ≥ pf (r) (6)

−2 cosh2 (r/2)V ′g (r) = −V ′f (r) = |Er|f . (7)

Hence, for almost all r large enough, (5) may be rewritten using (6) and (7) as
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−P ′f (r) ≥ c(−V ′f (r))Pf (r)
−1
n−1 cosh

2
n−1 (r/2),

−P ′f (r)Pf (r)
1

n−1 ≥ −2 · cV ′g (r) cosh
2n
n−1 (r/2),

−(P
n

n−1

f )′(r) ≥ −cV ′g (r) cosh
2n
n−1 (r/2),

where c may change from line to line. Because this inequality holds for almost all r large

enough, we may perform an integration from all large r to ∞. The quantity −(P
n

n−1

f ) may
not be continuous, but it is increasing, so the integral of its derivative is no larger than the

absolute change in P
n

n−1

f . Knowing that Vg(r) is continuous provides that the integral of its
derivative is exactly the change in Vg(r). Finally, noting that Pf (r) and Vg(r) converge to 0
at ∞, we integrate starting at an r large enough,

P
n

n−1

f (r) ≥
∫ ∞
r

−(P
n

n−1

f )′(x) dx,

P
n

n−1

f (r) ≥ c cosh
2n
n−1 (r/2)

∫ ∞
r

−V ′g (x) dx,

Pf (r) ≥ c cosh2 (r/2)(Vg(r))
n−1
n , (8)

where the positive constant c may be modified from line to line.
The goal in the remainder of the proof is to derive a contradiction by shifting small pieces

of volume of E from far away to places closer to the center. We would like to do this in a
way that does not increase the perimeter of the isoperimetric region too dramatically.

On this note, for large R, there is a small positive ε and an inflated version of E, Eε, that
agrees with E outside B(R) and contains ε more g-weighted volume satisfying

|∂Eε|f ≤ |∂E|f + ε(H + 1),

where H denotes the constant generalized unaveraged mean curvature of ∂E with respect to
densities f and g. To understand why this version of E exists, recall that H is the derivative
of f -weighted perimeter with respect to small increases of g-weighted volume. So, there is a
small number ε̄ such that ε ≤ ε̄ implies

∆P ≤ ε(H + 1),

where ∆P is understood as the increase in f -weighted perimeter of ∂E from adding g-
weighted volume ε to E somewhere relatively close to the origin. Noting that Vg(r) converges
to 0 at ∞, we may pick R large enough to ensure both that Vg(R) = ε ≤ ε̄ and that the
necessary inflation of E by ε units of g-weighted volume happens within B(R). Finally, once
ε is determined by R, we can construct the described Eε by inflating E inside B(R) with ε
units of g-weighted volume.

Fix R large, as determined by ε̄ and the requirements in (8). Let Ē denote the restriction
of Eε to the ball B(R) and note that this truncation provides |E|g = |Ē|g. By (8),
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|∂Ē|f = |∂Eε|f − Pf (R) + |ER|f
≤ |∂E|f + ε(H + 1)− c cosh2 (R/2)ε

n−1
n (9)

+ |ER|f .

Since E is an isoperimetric region, |∂Ē|f ≥ |∂E|f , as they enclose the same volume, and
(9) becomes

0 ≤ ε(H + 1)− c cosh2 (R/2)ε
n−1
n + |ER|f .

Recall that ε is determined by R and can be made arbitrarily small by making R arbitrarily
large. For ε very small, the linear term is dwarfed by the power term. Hence, for any R
large enough, modifying the constant c as necessary,

c cosh2 (R/2)ε
n−1
n ≤ |ER|f = −2 cosh2 (R/2)V ′g (R),

c(Vg(R))
n−1
n ≤ −V ′g (R),

c ≤ −(V
1
n
g )′(R).

This last estimate gives a contradiction with the assumption Vg(r) > 0 for all r, and the
proof is complete.

Now that we know by Propositions 5 and 6 that isoperimetric regions exist and are
bounded, we can apply the local analysis in Chambers to conclude they are balls about the
origin.

Theorem 7. Consider Hn with smooth, radial, log convex volume density φ(R) and perimeter
density

φ(R) · 2 cosh2(R/2),

where R is distance from the origin. Then spheres about the origin are uniquely isoperimetric.

Proof. By Proposition 3, we may reduce the problem to the open unit Euclidean ball with
volume and perimeter density φ(2 tanh−1(r))·(2/(1−r2))n. By Lemma 2, this is a log convex
density on the open unit ball. Because there is infinite weighted distance to the boundary,
Proposition 5 guarantees that isoperimetric regions exist. These isoperimetric regions are
bounded by Proposition 6.

Because this isoperimetric region is bounded in a subset of Rn with smooth, log convex,
radial density, we may apply the same local analysis done by Chambers [Ch] on isoperimetric
regions in Rn. From this, we conclude that spheres about the origin are isoperimetric,
uniquely because the density is strictly log convex.
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Remark. The proof of our main Theorem 7 compared hyperbolic space featuring perime-
ter density much larger than volume density with Euclidean space featuring equal densities.
Since the log convex density conjecture for Hn involves equal densities, the comparison would
be with the Euclidean ball featuring perimeter density much smaller than volume density,
about which little is known.

Conjecture 8. (The log convex density conjecture on hyperbolic space). In Hn with smooth,
log convex radial density, every sphere about the origin is isoperimetric.
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