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bounds on the number of irreducible
semigroups of fixed frobenius number

Clarisse Bonnand Reid Booth Carina Kaainoa Ethan Rooke

Abstract. In 2011, Blanco and Rosales gave an algorithm for constructing a di-
rected tree graph whose vertices are the irreducible numerical semigroups with a
fixed Frobenius number. Laird and Martinez in 2013 studied the levels of these
trees and conjectured what their heights might be. In this paper, we give an expo-
sition on irreducible numerical semigroups. We also present some data supporting
the conjecture of Laird and Martinez, and give a lower and upper bound on the
number of irreducible numerical semigroups with fixed Frobenius number.
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1 Introduction

This paper concerns itself with the topic of numerical semigroups, which crop up in many
areas of mathematics. Before introducing specifics, we will begin by going over a simple
example of a numerical semigroup.

Example 1.1. Suppose you live on planet Zort. On the planet Zort, there is a sport,
Zortball, that is incredibly popular. In Zortball, teams can score touchdowns, goals, or
homeruns. These are respectively worth 13, 19, and 20 points. On an unsuspecting day your
annoying neighbor, B’lachla, tells you his team won their game last night by a huge 74-20
split. You, being exceptionally talented at mathematics, are suspicious of his claim, which
is confounded by the fact that you have never heard of a team scoring 74 points before. In
order to verify his point totals, you begin combining possible scores, creating a set S of all
elements of the form

S = {13a+ 19b+ 20c | a, b, c are nonnegative integers}.

After some calculations, you realize that, indeed, there are no nonnegative integer solutions
for the equation 13a+ 19b+ 20c = 74. Having mathematically demonstrated that 74 points
is impossible to score, you reveal B’lachla for the liar he is.

Whether or not 74 points can be scored in this game is not the only question we could
ask. We also might ask: “Is there a maximum number of points someone cannot score?”
If there is, we could then ask: “Is there a simple relationship between the numbers 13, 19,
20 and the unscorable maximum?” We will answer some of these questions. In particular,
Section 2 will cover a class of objects called numerical semigroups. The set S of possible
scores is an example of a numerical semigroup. A numerical semigroup is, in simple terms,
a subset of the natural numbers where only finitely many numbers are missing and where
adding makes sense. Since we are removing only finitely many elements, it makes sense to
talk about the maximal element which is not in our subset, which is called the Frobenius
number.

We can look at more than just the properties of a given semigroup, however. We can
also look for semigroups which have certain properties. For example, we can investigate
how many numerical semigroups exist with a given Frobenius number. In this paper we do
just that, except instead of considering all numerical semigroups, we look for semigroups
of a certain subclass, which we call irreducible numerical semigroups. Section 2 will also
introduce irreducible numerical semigroups and their properties.

After the introduction to numerical semigroups in Section 2, Section 3 introduces original
results. In particular, it gives formulas which are upper and lower bounds for the number
of irreducible numerical semigroups that have a certain Frobenius number. By letting F be
the Frobenius number, I(F ) the set of all irreducible semigroups with Frobenius number F ,
and #I(F ) the number of irreducible semigroups, we can state our main theorem.
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Theorem 1.1. For a positive integer F ,

2d
F
2
e−bF

3
c−1 ≤ #I(F ) ≤ 1 +

∑
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3
e,

m-F

2b
F−2m

2
c−bF−2m−1

m
c +

∑
dF
3
e<m≤bF

2
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m-F

2b
F−2m

2
c.

Section 3 also contains a plot showing a comparison of computer-generated data to the
bounds. Proofs of the bounds follow in Subsections 3.1 and 3.2. Section 4 concludes with
questions for further research.

2 Numerical Semigroups

Throughout the paper, let N = {1, 2, 3, . . .} and N0 = {0, 1, 2, 3, . . .}. Addition on N0 is
associative, and since 0 is an additive identity in N0, N0 is also a monoid. A submonoid S
of N0 is a subset of N0 that contains 0 and is closed under addition. Given any A ⊆ N0, let
〈A〉 denote the submonoid of N0 defined as

〈A〉 = {λ1a1 + · · ·+ λkak | λi ∈ N0, aj ∈ A}.

If, for a submonoid S of N0, S = 〈A〉 for some A ⊆ N0, then A generates S. In this case, the
elements of A are referred to as a system of generators for S. Furthermore, if |A| <∞, then
S is finitely generated. A system of generators A for a submonoid S of N0 is called minimal
if every proper subset of A generates a proper submonoid of S. If A = {n1, . . . , nk} for some
nj ∈ N, we may also denote 〈A〉 as 〈n1, . . . , nk〉.

Remark 2.1. The first example featured the semigroup S which is generated by the system
of generators A = {13, 19, 20}. Thus S = 〈A〉 and S is finitely generated.

We will now consider another example before formally defining a numerical semigroup.

Example 2.1. Let S be the submonoid of N0 generated by {6, 7, 10, 11, 16}. Note that since
16 = 10 + 6, we have S = 〈6, 7, 10, 11, 16〉 = 〈6, 7, 10, 11〉, so that {6, 7, 10, 11, 16} is not a
minimal generating set for S. On the other hand, {6, 7, 10, 11} is a minimal generating set
for S. We have

S = 〈6, 7, 10, 11〉 = {λ16 + λ27 + λ310 + λ411 | λ1, λ2, λ3, λ4 ∈ N0}
= {0, 6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, . . .}
= {0, 6, 7, 10, 11, 12, 13, 14, 16,→}

,

where the arrow means that all integers larger than 16 are in S.

Now we can give a formal definition. A numerical semigroup is a submonoid S of N0

whose complement N0\S is finite. In other words, S is a submonoid of N0 that contains all
but finitely many positive integers.
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Example 2.2. Let S = {0, 2, 4, 6, 7, 8, 9, 10, 11,→}. Then S is closed under addition, and
since N0\S = {1, 3, 5}, S is a numerical semigroup.

Since the complement of a numerical semigroup is finite, there is a largest integer lying
outside S, which is called the Frobenius number of S and is denoted by F (S). That is,

F (S) = max{i ∈ N0 | i /∈ S}.

The multiplicity of a numerical semigroup S is the smallest nonzero integer that lies
inside S, denoted by m(S). In other words,

m(S) = min{S − {0}}.

Example 2.3. Consider again S = 〈6, 7, 10, 11〉 = {0, 6, 7, 10, 11, 12, 13, 14, 16,→}. Then
F (S) = 15 and m(S) = 6.

The greatest common divisor of a nonempty set B ⊆ N0 is the unique integer d ∈ N0

that satisfies the following conditions:

1. d | b for any b ∈ B.

2. If d′ ∈ N0 and d′ | b for all b ∈ B, then d′ | d.

This integer d is denoted by gcd(B).

Theorem 2.1. The following are true:

1. If S is a numerical semigroup, then S has a unique minimal system of generators A.
Furthermore, A is finite.

2. Let B be a nonempty subset of N0. Then 〈B〉 is a numerical semigroup if and only if
gcd(B) = 1.

Proof. See Rosales and Garćıa-Sánchez [1, Lemma 2.1, Theorem 2.7].

Example 2.4. Let S = 〈6, 10〉. Then

S = 〈6, 10〉 = {λ16 + λ210 | λ1, λ2 ∈ N0}
= {6, 10, 12, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, . . .}.

Moreover N0\S is infinite, since, for example, it contains no odd numbers. Therefore, S
is not a numerical semigroup. We can see this as well by using the above theorem: since
gcd(6, 10) = 2 6= 1, S is not a numerical semigroup.

Example 2.5. Let S = 〈6, 7, 10〉. Since gcd(6, 7, 10) = 1, S is a numerical semigroup.
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Surprisingly, despite the seemingly simple definition of a numerical semigroup, there
are many problems related to numerical semigroups that are easy to state yet difficult to
solve. For example, the problem of determining the Frobenius number F (S) of a numerical
semigroup S is still largely unsolved. This is sometimes called the Frobenius problem. In
1884, J.J. Sylvester [2] showed that if S = 〈n,m〉 with gcd(n,m) = 1, then

F (S) = nm− n−m.

When A = {n1, . . . , nk}, gcd(n1, . . . , nk) = 1, and k ≥ 3, a closed-form formula of the
Frobenius number of S = 〈A〉 is still elusive (see Ramı́rez Alfonśın [6]). We instead focus
on the inverse problem to the Frobenius problem: Find all the numerical semigroups with a
fixed Frobenius number. Rather than try and find all numerical semigroups with the same
Frobenius number, we restrict ourselves to finding a special class of numerical semigroups,
namely the irreducible ones.

A numerical semigroup S is irreducible if it is not the intersection of two numerical
semigroups which properly contain S. In other words, if S is an irreducible numerical
semigroup and S = S1 ∩ S2 for numerical semigroups S1, S2, then S1 = S or S2 = S.

Example 2.6. Let S = 〈5, 7, 8〉, S1 = 〈4, 5, 7, 8〉 and S2 = 〈5, 6, 7, 8〉. Then S = S1 ∩ S2 and
both S1 and S2 properly contain S. Thus S is reducible.

Theorem 2.2. Let S be a numerical semigroup. Then:

1. If F (S) is odd, S is irreducible if and only if x ∈ Z\S implies F (S)− x ∈ S.

2. If F (S) is even, S is irreducible if and only if x ∈ Z\S implies F (S) − x ∈ S or

x =
F (S)

2
.

Proof. See Rosales and Garćıa-Sánchez [1, Proposition 4.4].

Irreducible numerical semigroups with odd Frobenius number are symmetric numerical
semigroups, while those with even Frobenius number are pseudo-symmetric numerical semi-
groups.

Remark 2.2. If S is a numerical semigroup, observe that for any x ∈ Z, at most one of x or
F (S)−x lies in S. Indeed, if both x and F (S)−x were in S, then F (S) = x+(F (S)−x) ∈ S,
which is a contradiction. On the other hand, Theorem 2.2 states that S is irreducible when,
for any x ∈ Z, precisely one of x or F (S)− x lies in S.

Example 2.7. Let S = 〈3, 7〉. Then F (S) = 11. To see that S is symmetric, and hence
irreducible, consider Figure 2.1 below. This image establishes a pairing between x and F −x
for values of x between 0 and 11. These are the only values of interest, since we know which
values outside this interval lie in S. By the above remark, since each pairing has exactly one
filled in circle (indicating that value lies in S), we see that S is symmetric.
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0 1 2 3 4 5 6 7 8 9 10 11

Figure 2.1 A symmetric semigroup

Example 2.8. Consider again the semigroup S = 〈5, 7, 8〉. Then F (S) = 11. We have
seen in Example 2.6 that S is not irreducible; but, we can also see this using Theorem 2.2.
Indeed, observe that in Figure 2.2 below, the pairing (2, 9) has no filled-in circle, meaning
that neither 2 nor 11− 2 = 9 lie in S.

0 1 2 3 4 5 6 7 8 9 10 11

Figure 2.2 A non-symmetric semigroup

Example 2.9. Let S = 〈3, 8, 13〉. Then F (S) = 10. To see that S is pseudo-symmetric,
observe that Figure 2.3 below establishes a pairing between x and F − x for values of x
between 0 and 10, ignoring F/2 = 5. In each such pairing, only one circle is filled, so that
we see S must be pseudo-symmetric, and hence irreducible.

0 1 2 3 4 5 6 7 8 9 10

Figure 2.3 A pseudo-symmetric semigroup

We will now introduce some terms from graph theory. A (directed) graph G is an ordered
pair (V,E) of sets V and E, where V is any set and E is a collection of ordered pairs of
elements of V . V is the vertex set and E is the edge set of G. Elements v, w ∈ V are adjacent
vertices of G if (v, w) ∈ E. In this case, v is a child of w. A tree is a type of graph where for
any two vertices v, w ∈ V , there exists a unique sequence of edges connecting v and w (see
Figure 2.4).
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v1

v2 v3 v4

v5 v6

Figure 2.4 A tree

It is often useful to designate a specific vertex in the tree as the root of the graph. In
general, there is nothing special about the vertex we choose to be the root. The level of a
vertex v ∈ V is the number of edges between v and the root. The height (with respect to a
root) of a tree is the maximum level of a vertex in V . In Figure 2.4, if v1 is the root, then
the tree has height two. The vertex v3 is on level one and has one child, v6.

In a paper by Blanco and Rosales [3], they give an algorithm which constructs all irre-
ducible numerical semigroups with a given Frobenius number in a tree structure. They begin
with a numerical semigroup C(F ) that has the property that its elements are all larger than
bF
2
c:

C(F ) := {0, bF/2c+ 1,→}\{F},
which is irreducible by Theorem 2.2.

Example 2.10. Let F = 11. Then C(F ) = 〈6, 7, 8, 9, 10〉. From the figure below, we can
see that each pairing has one filled in circle, and so C(F ) is symmetric.

0 1 2 3 4 5 6 7 8 9 10 11

Figure 2.5 The semigroup C(F ) = 〈6, 7, 8, 9, 10〉

Let I(F ) denote the set of all numerical semigroups with Frobenius number F . The algo-
rithm of Blanco and Rosales below recursively defines a tree graph G(I(F )), starting with
the root C(F ), whose vertices are precisely the elements of I(F ).

Theorem 2.3. Let F ∈ N. The elements of I(F ) comprise the vertices of a directed tree
graph, denoted G(I(F )), with root C(F ). If S ∈ I(F ), then the children of S in G(I(F )) are
the semigroups

(S\{x1}) ∪ {F − x1}, . . . , (S\{xr}) ∪ {F − xr},
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where {x1, . . . , xr} are the minimal generators of S that satisfy the following conditions for
each x ∈ {x1, . . . , xr}:

1. F/2 < x < F

2. 2x− F /∈ S

3. 3x 6= 2F

4. 4x 6= 3F

5. F − x < m(S).

Proof. See Blanco and Rosales [3, Theorem 9].

Example 2.11. Figure 2.6 is an image of G(I(11)). The six vertices of this tree are the
irreducible numerical semigroups with Frobenius number 11.

〈6, 7, 8, 9, 10〉

〈5, 7, 8, 9〉 〈4, 6, 9〉 〈3, 7〉

〈4, 5〉 〈2, 13〉

Figure 2.6 The tree of semigroups with Frobenius number 11

We have introduced Frobenius numbers, numerical semigroups, irreducible numerical
semigroups, and their properties. We have discussed the graph theory properties of the
algorithm we used to generate data. Now we will introduce our original results: upper
and lower bounds on the number of irreducible numerical semigroups of a fixed Frobenius
number.

3 Results

Laird and Martinez [4] investigate the graph-theoretic properties of G(I(F )) such as the
height and the number of vertices of G(I(F )). They produced a table of the number of
vertices and levels in G(I(F )) up to F = 52 (see Laird and Martinez [4, Figure 9]). They
have shown the following about G(I(F )) [5]:

Theorem 3.1. Let k > 6 be a positive integer. Then the height of G(I(F )) is bk
2
c for

F = 2k + 1 and bk−1
3
c for F = 2k. Moreover, in the case F is odd, there is a unique branch

in G(I(F )) of this length.
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To further the research they have started, we generated data for the number of vertices
and levels of G(I(F )) up to F = 174. This data is located in the appendix. To create the
data, we implemented the tree generating algorithm into a C++ program, which is available
upon request, or online at

https://sites.google.com/site/ucrundergradmathresearch/about/numerical-semigroups.

Rather than looking at the graph-theoretic properties of G(I(F )), our effort went to finding
estimates for the number of vertices of G(I(F )), that is, the number of irreducible numerical
semigroups with Frobenius number F . Our result is a lower and upper bound on #I(F ),
where #I(F ) denotes the number of irreducible numerical semigroups of Frobenius number
F . We now restate Theorem 1.1:

Theorem 1.1 Let F ∈ N. Then

2d
F
2
e−bF

3
c−1 ≤ #I(F ) ≤ 1 +

∑
2≤m≤dF

3
e,

m-F

2b
F−2m

2
c−bF−2m−1

m
c +

∑
dF
3
e<m≤bF

2
c,

m-F

2b
F−2m

2
c.

Figure 3.1 below gives a plot of these inequalities.

Figure 3.1 Plots of the inequalities and actual data
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We split our proof into two subsections: the lower bound and upper bound. The lower
bound is established by giving a collection of irreducible numerical semigroups with Frobenius
number F whose size is easy to count. For the proof of the upper bound, the general idea
is that an irreducible numerical semigroup is determined completely by the elements in a
certain finite subset of N0.

3.1 Lower Bound

In this subsection we will prove Lemma 3.1, which shows how we can construct unique
semigroups given a Frobenius number, and Corollary 3.1, which counts the number of these
semigroups. Together these proofs give us the lower bound of Theorem 1.1. Let F be any
natural number and let N>F denote the set of natural numbers strictly larger than F .

Lemma 3.1. Fix F ∈ N, and let A ⊆ {x ∈ N | F
3
< x < F

2
}. Then define the two sets

B :=
{
F − x | F

3
< x <

F

2
and x /∈ A

}
and C :=

{
x ∈ N | 2F

3
≤ x < F

}
.

If S is the set defined by
S = {0} ∪ A ∪B ∪ C ∪ N>F ,

then S is an irreducible numerical semigroup with Frobenius number F .

Proof. Observe that each element of S is in only one of {0}, A,B,C, or N>F . We also note
that, if x, y ∈ S, then x + y 6= F . Indeed, if on the other hand x + y = F , since F

2
/∈ S,

without loss of generality we can say x < F
2

. If x ∈ S, then x can only lie in A, and so
F
2
< y = F − x < 2F

3
. This forces y ∈ B. However this implies y = F − x′ for some x′ /∈ A.

This would mean that F − x = y = F − x′ ⇒ x = x′, a contradiction.
We will now show that S is closed under addition. That is, we claim that if x, y ∈ S,

then x+y ∈ S. To do this, we look at several cases. If at least one of x or y is 0, then clearly
x + y ∈ S, so that we can assume x and y are both nonzero. If x and y are both nonzero,
then they are both larger than F

3
, so that x+ y > 2F

3
. Since x+ y 6= F by the above remark,

we conclude x+ y ∈ C ∪ N>F ⊆ S. Thus S is closed under addition.
Since N>F ⊆ S, it is clear that S has a finite complement in N and hence is a numerical

semigroup. By construction, it is apparent the Frobenius number of S is F . Therefore, the
last thing to prove is that S is irreducible. Since F

2
/∈ S, by Theorem 2.2, it is enough to

show that if x ∈ Z\S, then F − x ∈ S. We thus have the following cases for x /∈ S:

• If x < 0, then since the Frobenius number of S is F , F − x ∈ S.

• If 0 < x ≤ F
3

, then 2F
3
≤ F − x < F , so that F − x ∈ C ⊆ S.

• If F
3
< x < F

2
, then F − x ∈ B ⊆ S.

• If F
2
< x < 2F

3
, then F

3
< F−x < F

2
. Now if F−x /∈ A, then F−(F−x) = x ∈ B ⊆ S,

a contradiction. Thus F − x ∈ A ⊆ S.
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In every case, we conclude F −x ∈ S, and so S is symmetric or pseudo-symmetric depending
on the parity of F . Hence S is irreducible.

Corollary 3.1. If F is a natural number, then the number of irreducible numerical semi-
groups with Frobenius number F is at least 2d

F
2
e−bF

3
c−1.

Proof. By the above lemma, for each A ⊆ {x ∈ N | F
3
< x < F

2
} there is an irreducible

numerical semigroup S with Frobenius number F such that S ∩ {x ∈ N | F
3
< x < F

2
} = A.

Since S ∈ I(F ), the set of all such S is contained in I(F ); therefore, the cardinality |S| ≤
|I(F )|. Thus there are at least as many irreducible numerical semigroups with Frobenius
number F as there are subsets of {x ∈ N | F

3
< x < F

2
}.

3.2 Upper Bound

In this section, Lemmas 3.2, 3.3 and 3.4 show how we can construct sets with the symmetric
property. Corollary 3.2 and Lemma 3.5 show how these lemmas can be used to prove
the upper bound for Theorem 1.1. For F ∈ N, we define ∆ to be an F-irreducible set if
∆ = S ∩ [0, F

2
] for some irreducible numerical semigroup S with Frobenius number F . We

make a simple observation:

Lemma 3.2. Let F be a natural number. There is a bijection between the collection of F -
irreducible sets and the collection of irreducible numerical semigroups with Frobenius number
F .

Proof. If ∆ is F -irreducible, then ∆ = S ∩ [0, F
2

] for some irreducible numerical semigroup
S with Frobenius number F . From Theorem 2.2, we then see that

S = ∆ ∪ {F − x | x ∈ Z ∩ [0, F/2] and x /∈ ∆} ∪ N>F ,

and so S and ∆ uniquely determine each other.

By the above lemma, if we establish an upper bound on the number of F -irreducible sets
(for fixed F ), this will be the same as finding an upper bound for the number of irreducible
numerical semigroups with Frobenius number F . With this in mind, we shall frequently take
advantage of this one-to-one correspondence.

Lemma 3.3. If S is an irreducible numerical semigroup with Frobenius number F and
multiplicity m, then m ≤ F

2
or S = C(F ).

Proof. Suppose m > F
2

and x ∈ Z\S for some F > x > F
2

. Then F − x ∈ S since S is
irreducible. Furthermore, 0 < F − x < F − F

2
= F

2
< m, which contradicts that m is the

multiplicity of S. Thus S contains bF
2
c+ 1, bF

2
c+ 2, . . . , F − 1, and so S = C(F ).

Lemma 3.4. Suppose m - F . Let

A(F,m) = {x ∈ N | m < x < F/2 and m | x}



RHIT Undergrad. Math. J., Vol. 18, No. 1 Page 63

and
B(F,m) = {F − x ∈ N | F/2 < x < F −m and m | x}.

Then A(F,m)∩B(F,m) = ∅. Moreover, if ∆ is an F -irreducible set with m = min{∆−{0}},
then A(F,m) ⊆ ∆ and B(F,m) ∩∆ = ∅.

Proof. Suppose y ∈ A(F,m) ∩ B(F,m). Then y = x where m < x < F/2, and y = F − x′
where F/2 < x′ < F −m. Then F = x+ x′, but since both m | x and m | x′, we get m | F ,
which is a contradiction to our initial assumptions. So A(F,m) ∩ B(F,m) = ∅. Let S be
the irreducible numerical semigroup corresponding to ∆. Now if x ∈ A(F,m), then

x = mt = m+m+ · · ·+m︸ ︷︷ ︸
t times

∈ S

for some t ∈ N. Since x < F/2, x ∈ ∆. On the other hand, if y ∈ B(F,m), then y = F − x
for some x where m | x. By the same reasoning as above, x ∈ S, so that y /∈ S, otherwise
F = x+ y ∈ S. As well, y /∈ ∆.

Corollary 3.2. If m - F and m ≤ dF
3
e, then there are at most 2b

F−2m
2
c−bF−2m−1

m
c irreducible

numerical semigroups with Frobenius number F and multiplicity m.

Proof. Suppose that ∆ is any F -irreducible subset with m = min{∆−{0}}. In the notation
of the above lemma, we know that A(F,m)∩B(F,m) = ∅, A(F,m) ⊆ ∆, and B(F,m)∩∆ =
∅. Now ∆, A(F,m), and B(F,m) are contained in {0, 1, . . . , bF

2
c}. We know that 0,m ∈ ∆

and 1, . . . ,m−1 /∈ ∆, and since there are bF
2
c+1 elements in the set {0, 1, . . . , bF

2
c}, we have

bF−2m
2
c choices for the remaining elements of ∆. Also, we know every element of A(F,m)

lies in ∆, and no element of B(F,m) lies in ∆. The set B(F,m) is in bijection with the set

B̃(F,m) = {x ∈ N | F/2 < x < F −m and m | x}.

The sets A(F,m) and B(F,m) are disjoint, so we have

#A(F,m) ∪B(F,m) = #A(F,m) ∪ B̃(F,m) = #{x ∈ N | m < x < F −m and m | x}

=
⌊F − 2m− 1

m

⌋
Thus there are at most bF−2m

2
c − bF−2m−1

m
c choices for elements we can add to ∆.

Remark 3.1. We require m ≤ dF
3
e in the above corollary to ensure a multiple of m lies in

the set {x ∈ N | m < x < F −m}, otherwise the above bound is trivial. Indeed, if m ≤ dF
3
e,

then m < 2m < F −m.

Lemma 3.5. If F ∈ N, then the number of irreducible numerical semigroups with Frobenius
number F is at most

1 +
∑

2≤m≤dF
3
e,

m-F

2b
F−2m

2
c−bF−2m−1

m
c +

∑
dF
3
e<m≤bF

2
c,

m-F

2b
F−2m

2
c.
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Proof. There is only one numerical semigroup with Frobenius number F and multiplicity
m > F

2
by Lemma 3.3. Furthermore, m > 1, since, if m = 1, then F = 0. This can be

observed since, for any G ≥ 1, then G =
∑G

1 1, implying the largest number not in the set
is less than 1. Suppose S is an irreducible numerical semigroup with Frobenius number F
and multiplicity 2 ≤ m ≤ F

2
and corresponding F -irreducible set ∆. Notice that m - F ,

otherwise we would have F ∈ S. If ⌈F
3

⌉
< m ≤

⌊F
2

⌋
,

then since 1, 2, . . . ,m− 1 /∈ ∆ and 0,m ∈ ∆ with ∆ ⊆ {0, 1, . . . , bF
2
c}, then we have at most

2b
F−2m

2
c possibilities for ∆ in this case. On the other hand, if m ≤ dF

3
e, then by Corollary 3.2,

there are only 2b
F−2m

2
c−bF−2m−1

m
c possibilities for ∆. Therefore we have proved the lemma.

4 Further Research

The proof for the upper bound has us ignore sets where the multiplicity does not divide
the Frobenius number. This suggests the number of divisors of F plays a role in the size of
#I(F ); the data as well seems to confirm this. Indeed, if p is prime, it seems we can expect
#I(p) to be larger than #I(F ) for values of F close to p. For example, compare p = 173,
which is a prime number, to the numbers around it:

#I(172) = 2489384088

#I(173) = 4295034112

#I(174) = 2501329283.

From our graph depicted in Figure 3.1, it appears that our upper bound for #I(F ) is
significantly less tight than our lower bound, so this leaves room for further investigation. Our
lower bound worked by essentially building irreducible numerical semigroups with Frobenius
number F from scratch. However, our construction only produced irreducible numerical
semigroups where the multiplicity was larger than F/3. By modifying our proof, it may be
possible to build more irreducible numerical semigroups with even smaller multiplicity, thus
improving our lower bound.
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Data Appendix

This is the data we generated with our code. It is sorted into columns by Frobenius number
F , number of semigroups #I(F ), and height of the tree H.

F #I(F ) H
50 844 8
51 1121 12
52 981 8
53 2015 13
54 1039 8
55 2496 13
56 1715 9
57 2436 14
58 2499 9
59 4350 14
60 1857 9
61 5602 15
62 4173 10
63 5317 15
64 4866 10
65 8925 16
66 4839 10
67 11971 16
68 7826 11
69 11276 17
70 10977 11
71 19812 17
72 9667 11
73 25405 18
74 19020 12
75 23297 18
76 21564 12
77 41642 19
78 22178 12
79 53629 19
80 35886 13
81 51367 20
82 51572 13
83 88093 20
84 41858 13
85 109693 21
86 84770 14
87 106526 21
88 100439 14
89 184466 22
90 98332 14
91 233557 22

F #I(F ) H
92 159833 15
93 222990 23
94 227059 15
95 375582 23
96 195266 15
97 490585 24
98 369450 16
99 471036 24
100 419865 16
101 799237 25
102 439443 16
103 1018271 25
104 721159 17
105 947145 26
106 984242 17
107 1655267 26
108 839515 17
109 2106583 27
110 1570954 18
111 2001431 27
112 1907837 18
113 3417576 28
114 1904303 18
115 4273853 28
116 3035371 19
117 4162984 29
118 4213006 19
119 7023282 29
120 3669716 19
121 8945931 30
122 6829161 20
123 8512341 30
124 8001407 20
125 14243981 31
126 8191764 20
127 18354729 31
128 13300505 21
129 17488308 32
130 17564858 21
131 29633619 32
132 15515628 21
133 37519331 33

F #I(F ) H
134 28837942 22
135 35684844 33
136 34851905 22
137 60616978 34
138 34528656 22
139 76862606 34
140 54324644 23
141 73350497 35
142 74940935 23
143 123578768 35
144 67741811 23
145 155117402 36
146 120786427 24
147 149694073 36
148 143249418 24
149 252298397 37
150 143390078 24
151 319562578 37
152 236185377 25
153 307429383 38
154 312030392 25
155 508565162 38
156 276966778 25
157 650111516 39
158 502427320 26
159 621579732 39
160 605352079 26
161 1043060844 40
162 606264503 26
163 1320746892 40
164 964432914 27
165 1253705942 41
166 1294345668 27
167 2118472893 41
168 1183417468 27
169 2676151556 42
170 2061857849 28
171 2577806875 42
172 2489384088 28
173 4295034112 43
174 2501329283 28
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