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BOUNDS ON THE NUMBER OF IRREDUCIBLE
SEMIGROUPS OF FIXED FROBENIUS NUMBER

Clarisse Bonnand Reid Booth Carina Kaainoa Ethan Rooke

Abstract. In 2011, Blanco and Rosales gave an algorithm for constructing a di-
rected tree graph whose vertices are the irreducible numerical semigroups with a
fixed Frobenius number. Laird and Martinez in 2013 studied the levels of these
trees and conjectured what their heights might be. In this paper, we give an expo-
sition on irreducible numerical semigroups. We also present some data supporting
the conjecture of Laird and Martinez, and give a lower and upper bound on the
number of irreducible numerical semigroups with fixed Frobenius number.



RHIT UNDERGRAD. MATH. J., VoL. 18, No. 1 PAGE 53

1 Introduction

This paper concerns itself with the topic of numerical semigroups, which crop up in many
areas of mathematics. Before introducing specifics, we will begin by going over a simple
example of a numerical semigroup.

Example 1.1. Suppose you live on planet Zort. On the planet Zort, there is a sport,
Zortball, that is incredibly popular. In Zortball, teams can score touchdowns, goals, or
homeruns. These are respectively worth 13, 19, and 20 points. On an unsuspecting day your
annoying neighbor, B’lachla, tells you his team won their game last night by a huge 74-20
split. You, being exceptionally talented at mathematics, are suspicious of his claim, which
is confounded by the fact that you have never heard of a team scoring 74 points before. In
order to verify his point totals, you begin combining possible scores, creating a set S of all
elements of the form

S = {13a + 19b + 20c¢ | a, b, c are nonnegative integers}.

After some calculations, you realize that, indeed, there are no nonnegative integer solutions
for the equation 13a + 190 4+ 20c = 74. Having mathematically demonstrated that 74 points
is impossible to score, you reveal B’lachla for the liar he is.

Whether or not 74 points can be scored in this game is not the only question we could
ask. We also might ask: “Is there a maximum number of points someone cannot score?”
If there is, we could then ask: “Is there a simple relationship between the numbers 13, 19,
20 and the unscorable maximum?” We will answer some of these questions. In particular,
Section 2 will cover a class of objects called numerical semigroups. The set S of possible
scores is an example of a numerical semigroup. A numerical semigroup is, in simple terms,
a subset of the natural numbers where only finitely many numbers are missing and where
adding makes sense. Since we are removing only finitely many elements, it makes sense to
talk about the maximal element which is not in our subset, which is called the Frobenius
number.

We can look at more than just the properties of a given semigroup, however. We can
also look for semigroups which have certain properties. For example, we can investigate
how many numerical semigroups exist with a given Frobenius number. In this paper we do
just that, except instead of considering all numerical semigroups, we look for semigroups
of a certain subclass, which we call irreducible numerical semigroups. Section 2 will also
introduce irreducible numerical semigroups and their properties.

After the introduction to numerical semigroups in Section 2, Section 3 introduces original
results. In particular, it gives formulas which are upper and lower bounds for the number
of irreducible numerical semigroups that have a certain Frobenius number. By letting F' be
the Frobenius number, I(F’) the set of all irreducible semigroups with Frobenius number F'
and #I(F) the number of irreducible semigroups, we can state our main theorem.
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Theorem 1.1. For a positive integer F',

ol SISl gy <14+ Y ol ST ol
2<m<[47, [£1<m<| 5],

mtF miF

Section 3 also contains a plot showing a comparison of computer-generated data to the
bounds. Proofs of the bounds follow in Subsections 3.1 and 3.2. Section 4 concludes with
questions for further research.

2 Numerical Semigroups

Throughout the paper, let N = {1,2,3,...} and Ny = {0,1,2,3,...}. Addition on Nj is
associative, and since 0 is an additive identity in Ny, Ny is also a monoid. A submonoid S
of Ny is a subset of Ny that contains 0 and is closed under addition. Given any A C Ny, let
(A) denote the submonoid of Ny defined as

<A> = {)\lal + - +)\kak ’ )\z € No,aj S A}

If, for a submonoid S of Ny, S = (A) for some A C Ny, then A generates S. In this case, the
elements of A are referred to as a system of generators for S. Furthermore, if |A| < oo, then
S is finitely generated. A system of generators A for a submonoid S of Ny is called minimal
if every proper subset of A generates a proper submonoid of S. If A = {n,...,n;} for some
n; € N, we may also denote (A) as (ny,...,ng).

Remark 2.1. The first example featured the semigroup S which is generated by the system
of generators A = {13,19,20}. Thus S = (A) and S is finitely generated.

We will now consider another example before formally defining a numerical semigroup.

Example 2.1. Let S be the submonoid of Ny generated by {6, 7,10, 11,16}. Note that since
16 = 10 + 6, we have S = (6,7,10,11,16) = (6,7,10,11), so that {6,7,10,11,16} is not a
minimal generating set for S. On the other hand, {6,7,10,11} is a minimal generating set
for S. We have

S == <6, 7, 10, 11> - {)\16 + )\27 + )\510 + )\411 | )\1,)\2,/\37)\4 € No}
—{0,6,7,10,11,12,13,14,16,17,18,19,20,21,22,...} ,
—={0,6,7,10,11,12,13,14,16, =}

where the arrow means that all integers larger than 16 are in S.

Now we can give a formal definition. A numerical semigroup is a submonoid S of Ny
whose complement N\ S is finite. In other words, S is a submonoid of Ny that contains all
but finitely many positive integers.
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Example 2.2. Let S = {0,2,4,6,7,8,9,10,11,—}. Then S is closed under addition, and
since No\S = {1, 3,5}, S is a numerical semigroup.

Since the complement of a numerical semigroup is finite, there is a largest integer lying
outside S, which is called the Frobenius number of S and is denoted by F'(S). That is,

F(S) = max{i € No | i ¢ S}.

The multiplicity of a numerical semigroup S is the smallest nonzero integer that lies
inside S, denoted by m(S). In other words,

m(S) = min{S — {0}}.

Example 2.3. Consider again S = (6,7,10,11) = {0,6,7,10,11,12,13,14,16,—}. Then
F(S) =15 and m(S) = 6.

The greatest common divisor of a nonempty set B C Nj is the unique integer d € Nj
that satisfies the following conditions:

1. d| b for any b € B.

2. fd e Ngand d' | b for all b € B, then d' | d.
This integer d is denoted by ged(B).
Theorem 2.1. The following are true:

1. If S is a numerical semigroup, then S has a unique minimal system of generators A.
Furthermore, A s finite.

2. Let B be a nonempty subset of Ng. Then (B) is a numerical semigroup if and only if
ged(B) = 1.

Proof. See Rosales and Garcia-Sanchez [1, Lemma 2.1, Theorem 2.7]. n
Example 2.4. Let S = (6,10). Then

S - <6, 10> - {)\16 -+ )\210 ’ )\1,)\2 < No}
= {6, 10, 12,16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40,42, .. .}.
Moreover No\S is infinite, since, for example, it contains no odd numbers. Therefore, S

is not a numerical semigroup. We can see this as well by using the above theorem: since
ged(6,10) =2 # 1, S is not a numerical semigroup.

Example 2.5. Let S = (6,7,10). Since ged(6,7,10) = 1, S is a numerical semigroup.
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Surprisingly, despite the seemingly simple definition of a numerical semigroup, there
are many problems related to numerical semigroups that are easy to state yet difficult to
solve. For example, the problem of determining the Frobenius number F(S) of a numerical
semigroup S is still largely unsolved. This is sometimes called the Frobenius problem. In
1884, J.J. Sylvester [2] showed that if S = (n,m) with ged(n,m) = 1, then

F(S)=nm—n—m.

When A = {nq,...,n}, ged(ng,...,ng) = 1, and k > 3, a closed-form formula of the
Frobenius number of S = (A) is still elusive (see Ramirez Alfonsin [6]). We instead focus
on the inverse problem to the Frobenius problem: Find all the numerical semigroups with a
fixed Frobenius number. Rather than try and find all numerical semigroups with the same
Frobenius number, we restrict ourselves to finding a special class of numerical semigroups,
namely the irreducible ones.

A numerical semigroup S is irreducible if it is not the intersection of two numerical
semigroups which properly contain S. In other words, if S is an irreducible numerical
semigroup and S = S; N Sy for numerical semigroups 57, So, then S =5 or S, = 5.

Example 2.6. Let S = (5,7,8),5; = (4,5,7,8) and Sy = (5,6,7,8). Then S = 5N S, and
both S; and S, properly contain S. Thus S is reducible.

Theorem 2.2. Let S be a numerical semigroup. Then:

1. If F(S) is odd, S is irreducible if and only if x € Z\S implies F(S) —x € S.

2. If F(S) is even, S is irreducible if and only if x € Z\S implies F(S) —x € S or
o F(S)
==

Proof. See Rosales and Garcia-Sénchez [1, Proposition 4.4]. ]

Irreducible numerical semigroups with odd Frobenius number are symmetric numerical
semigroups, while those with even Frobenius number are pseudo-symmetric numerical semi-
groups.

Remark 2.2. If S is a numerical semigroup, observe that for any x € Z, at most one of x or
F(S)—xliesin S. Indeed, if both z and F(S)—x were in S, then F'(S) = z+(F(S)—x) € S,
which is a contradiction. On the other hand, Theorem 2.2 states that S is irreducible when,
for any x € Z, precisely one of x or F'(S) — x lies in S.

Example 2.7. Let S = (3,7). Then F(S) = 11. To see that S is symmetric, and hence
irreducible, consider Figure 2.1 below. This image establishes a pairing between x and F'—x
for values of x between 0 and 11. These are the only values of interest, since we know which
values outside this interval lie in S. By the above remark, since each pairing has exactly one
filled in circle (indicating that value lies in S), we see that S is symmetric.
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[ S
0 1 4 5 6 7 8
Figure 2.1 A symmetric semigroup
Example 2.8. Consider again the semigroup S = (5,7,8). Then F(S) = 11. We have
seen in Example 2.6 that S is not irreducible; but, we can also see this using Theorem 2.2.

Indeed, observe that in Figure 2.2 below, the pairing (2,9) has no filled-in circle, meaning
that neither 2 nor 11 —2 =9 lie in S.

e o 6@ —0 0 —-—0 O
o 1 2 3 4 5 6 T 8 9 10 1

Figure 2.2 A non-symmetric semigroup

Example 2.9. Let S = (3,8,13). Then F(S) = 10. To see that S is pseudo-symmetric,
observe that Figure 2.3 below establishes a pairing between x and F' — x for values of z
between 0 and 10, ignoring F'/2 = 5. In each such pairing, only one circle is filled, so that
we see S must be pseudo-symmetric, and hence irreducible.

o O O 0 OO 0O 0 0O
o 1 2 3 4 5 6 T 8 9

Figure 2.3 A pseudo-symmetric semigroup

We will now introduce some terms from graph theory. A (directed) graph G is an ordered
pair (V, E) of sets V and E, where V is any set and E is a collection of ordered pairs of
elements of V. V is the vertex set and E is the edge set of G. Elements v, w € V are adjacent
vertices of G if (v, w) € E. In this case, v is a child of w. A tree is a type of graph where for

any two vertices v, w € V, there exists a unique sequence of edges connecting v and w (see
Figure 2.4).
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@)

() (&) ()

() ()

Figure 2.4 A tree

It is often useful to designate a specific vertex in the tree as the root of the graph. In
general, there is nothing special about the vertex we choose to be the root. The level of a
vertex v € V' is the number of edges between v and the root. The height (with respect to a
root) of a tree is the maximum level of a vertex in V. In Figure 2.4, if v; is the root, then
the tree has height two. The vertex vz is on level one and has one child, vg.

In a paper by Blanco and Rosales [3], they give an algorithm which constructs all irre-
ducible numerical semigroups with a given Frobenius number in a tree structure. They begin
with a numerical semigroup C'(F’) that has the property that its elements are all larger than
£):

C(F) = {0, [F/2] +1,—}\{F},

which is irreducible by Theorem 2.2.

Example 2.10. Let F' = 11. Then C(F) = (6,7,8,9,10). From the figure below, we can
see that each pairing has one filled in circle, and so C'(F') is symmetric.

¢ O O O OO 0 06 0@

0 1 2 3 4 5 6 7 9
Figure 2.5 The semigroup C'(F) = (6,7,8,9, 10)

Let I(F) denote the set of all numerical semigroups with Frobenius number F. The algo-

rithm of Blanco and Rosales below recursively defines a tree graph G(I(F)), starting with
the root C'(F'), whose vertices are precisely the elements of I(F).

Theorem 2.3. Let ' € N. The elements of I1(F') comprise the vertices of a directed tree
graph, denoted G(I(F)), with root C(F). If S € I(F), then the children of S in G(I(F)) are

the semigroups
(S\{z1}) U{F =21}, (S\{2,}) U{F — 2.},



RHIT UNDERGRAD. MATH. J., VoL. 18, No. 1 PAGE 59

where {xy,...,x,} are the minimal generators of S that satisfy the following conditions for
each x € {z1,...,x,}:

1. F2<xz<F
2.20—F ¢85S
3. 3x #2F
4. 4w+ 3F
5. F—x <m(S).
Proof. See Blanco and Rosales [3, Theorem 9]. O]

Example 2.11. Figure 2.6 is an image of G(/(11)). The six vertices of this tree are the
irreducible numerical semigroups with Frobenius number 11.

(6,7,8,9,10)
(5,7,8,9) (4,6, 9N 7)
(4,5) (2,13)

Figure 2.6 The tree of semigroups with Frobenius number 11

We have introduced Frobenius numbers, numerical semigroups, irreducible numerical
semigroups, and their properties. We have discussed the graph theory properties of the
algorithm we used to generate data. Now we will introduce our original results: upper
and lower bounds on the number of irreducible numerical semigroups of a fixed Frobenius
number.

3 Results

Laird and Martinez [4] investigate the graph-theoretic properties of G(I(F')) such as the
height and the number of vertices of G(I(F')). They produced a table of the number of
vertices and levels in G(I(F')) up to F' = 52 (see Laird and Martinez [4, Figure 9]). They
have shown the following about G(I(F")) [5]:

Theorem 3.1. Let k > 6 be a positive integer. Then the height of G(I(F)) is |%] for
F=2k+1 and L%J for ' = 2k. Moreover, in the case F' is odd, there is a unique branch
in G(I(F)) of this length.
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To further the research they have started, we generated data for the number of vertices
and levels of G(I(F')) up to F' = 174. This data is located in the appendix. To create the
data, we implemented the tree generating algorithm into a C++ program, which is available
upon request, or online at

https://sites.google.com/site/ucrundergradmathresearch/about /numerical-semigroups.

Rather than looking at the graph-theoretic properties of G(I(F')), our effort went to finding
estimates for the number of vertices of G(I(F)), that is, the number of irreducible numerical
semigroups with Frobenius number F. Our result is a lower and upper bound on #I(F),
where #I(F') denotes the number of irreducible numerical semigroups of Frobenius number
F. We now restate Theorem 1.1:

Theorem 1.1 Let F' € N. Then

oS- 15l < UI(F) <1+ 3 glEgm |- | F=2m=ty 3 o=

2<m<[£7, [El<m<| £,
mtF miF

Figure 3.1 below gives a plot of these inequalities.

10000000
1000000
100000
10000
1000

100

10

1517 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 58 61 63 65 67

====ower Bound

Actual Number

- == = |lpper Bound

Figure 3.1 Plots of the inequalities and actual data
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We split our proof into two subsections: the lower bound and upper bound. The lower
bound is established by giving a collection of irreducible numerical semigroups with Frobenius
number F whose size is easy to count. For the proof of the upper bound, the general idea
is that an irreducible numerical semigroup is determined completely by the elements in a
certain finite subset of Nj.

3.1 Lower Bound

In this subsection we will prove Lemma 3.1, which shows how we can construct unique
semigroups given a Frobenius number, and Corollary 3.1, which counts the number of these
semigroups. Together these proofs give us the lower bound of Theorem 1.1. Let F' be any
natural number and let N. r denote the set of natural numbers strictly larger than F.

Lemma 3.1. Fir F €N, and let AC {x e N| £ <a < £}. Then define the two sets
F F 2F
B::{F—x|§<m<§andx¢z4} andC::{mEN|?§x<F}.

If S is the set defined by
S={0}UAUBUCUN.p,

then S 1s an irreducible numerical semigroup with Frobenius number F'.

Proof. Observe that each element of S is in only one of {0}, A, B,C, or Ny p. We also note
that, if x,y € S, then = +y # F. Indeed, if on the other hand =z + y = F, since % §7_f S,
without loss of generality we can say r < % If z € S, then x can only lie in A, and SO
% <y=F —x < % This forces y € B. However this implies y = F — 2’ for some 2’ ¢ A.
This would mean that F—x=y=F —2 = x =2 a contradiction.

We will now show that S is closed under addition. That is, we claim that if z,y € S,
then x+y € S. To do this, we look at several cases. If at least one of = or y is 0, then clearly
x4y €S, so that we can assume r and y are both nonzero. If x and y are both nonzero,
then they are both larger than L sothat x +y > 2. Since 24y # F by the above remark,
we conclude r +y € C UNyp Q S Thus S is closed under addition.

Since Ny C S, it is clear that S has a finite complement in N and hence is a numerical
semigroup. By construction, it is apparent the Frobenius number of S is F'. Therefore, the
last thing to prove is that S is irreducible. Since £ 5 ¢ S, by Theorem 2.2, it is enough to

show that if x € Z\S, then F' — 2 € S. We thus have the following cases for x ¢ S:
e If x < 0, then since the Frobenius number of S'is F', FF —xz € S.
elf0<z< %L thn2  <F—-z<F,sothat F—ze€CCS.

° If5<x<—,thenF—x€B§S.

e If L <o <2 then L < F—z < L. Nowif F—z ¢ A, then F—(F—z) =2 € BC S,
acontradlctlon ThusF—xEAQS.
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In every case, we conclude F'—x € S, and so S is symmetric or pseudo-symmetric depending
on the parity of F'. Hence S is irreducible. O

Corollary 3.1. If F is a natural number, then the number of irreducible numerical semi-
F F
groups with Frobenius number F is at least 21z 1-151-1,

Proof. By the above lemma, for each A C {z € N | £ <z < £} there is an irreducible
numerical semigroup S with Frobenius number F' such that SN {z € N | % <z < %} =A.
Since S € I(F), the set of all such S is contained in I(F'); therefore, the cardinality |S| <
|[I(F)|. Thus there are at least as many irreducible numerical semigroups with Frobenius
number F' as there are subsets of {z e N| £ <z < £} O

3.2 Upper Bound

In this section, Lemmas 3.2, 3.3 and 3.4 show how we can construct sets with the symmetric
property. Corollary 3.2 and Lemma 3.5 show how these lemmas can be used to prove
the upper bound for Theorem 1.1. For F' € N, we define A to be an F-irreducible set if
A = 5nN[0,%] for some irreducible numerical semigroup S with Frobenius number F. We
make a simple observation:

Lemma 3.2. Let F' be a natural number. There is a bijection between the collection of F'-
wrreducible sets and the collection of irreducible numerical semigroups with Frobenius number

F.

Proof. It A is F-irreducible, then A = SN |0, %] for some irreducible numerical semigroup
S with Frobenius number F'. From Theorem 2.2, we then see that

S=AU{F—z|ze€Zn|0,F/2] and x ¢ A} UNsp,
and so S and A uniquely determine each other. O

By the above lemma, if we establish an upper bound on the number of F-irreducible sets
(for fixed F'), this will be the same as finding an upper bound for the number of irreducible
numerical semigroups with Frobenius number F. With this in mind, we shall frequently take
advantage of this one-to-one correspondence.

Lemma 3.3. If S is an irreducible numerical semigroup with Frobenius number F and
multiplicity m, then m < £ or S = C(F).

Proof. Suppose m > % and x € Z\S for some F > z > % Then F' — z € S since S is
irreducible. Furthermore, 0 < F — 2z < F — g = g < m, which contradicts that m is the
multiplicity of S. Thus S contains [£]+1,[£|+2,...,F — 1, and so S = C(F). O
Lemma 3.4. Suppose m1{ F. Let

A(F,m)={zeN|m<z < F/2 andm | x}
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and
B(F,m)={F—-zeN|F/2<xz<F—mandm | x}.

Then A(F,m)NB(F,m) = &. Moreover, if A is an F-irreducible set with m = min{ A—{0}},
then A(F,m) C A and B(F,m)NA = @.

Proof. Suppose y € A(F,m) N B(F,m). Then y = x where m < x < F/2, and y = F — 2’
where F/2 < 2’ < F—m. Then F = x + 2/, but since both m | x and m | 2/, we get m | F,
which is a contradiction to our initial assumptions. So A(F,m)N B(F,m) = &. Let S be
the irreducible numerical semigroup corresponding to A. Now if x € A(F,m), then

x:mt:m+m+-~'+7@65

t times

for some ¢t € N. Since z < F'/2, x € A. On the other hand, if y € B(F,m), theny = F —z
for some = where m | z. By the same reasoning as above, x € S, so that y ¢ S, otherwise
F=x+4+yeS. Aswell, y ¢ A. O

F—QmJ_LF—Zm—l

Corollary 3.2. If m{ F and m < [£], then there are at most 21 w1 irreducible
numerical semigroups with Frobenius number F' and multiplicity m.

Proof. Suppose that A is any F-irreducible subset with m = min{A —{0}}. In the notation
of the above lemma, we know that A(F,m)NB(F,m) = &, A(F,m) C A, and B(F,m)NA =
@. Now A, A(F,m), and B(F,m) are contained in {0,1,..., |£|}. We know that 0,m € A
and1,...,m—1¢ A, and since there are | £ | +1 elements in the set {0, 1,...,[£]}, we have
| 522 choices for the remaining elements of A. Also, we know every element of A(F,m)
lies in A, and no element of B(F, m) lies in A. The set B(F, m) is in bijection with the set

B(F,m)={zeN|F/2<z<F—mandm |z}
The sets A(F,m) and B(F, m) are disjoint, so we have

#A(F,m)UB(F,m) = #AF,m)UB(F,m)=#{zr eN|m <z < F—mand m | 2}

B LF —2m —1 J
B m
Thus there are at most | £ | — [£=22=1] choices for elements we can add to A. O

Remark 3.1. We require m < [g} in the above corollary to ensure a multiple of m lies in
the set {z € N|m < 2 < F —m}, otherwise the above bound is trivial. Indeed, if m < [£],
then m < 2m < F' —m.

Lemma 3.5. If I € N, then the number of irreducible numerical semigroups with Frobenius
number F' is at most

1+ Z o F52 | = [ F5=t + Z ol 57
2<m<[£], [E1<m<| 5,

3
miF mtF
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Proof. There is only one numerical semigroup with Frobenius number F' and multiplicity
m > g by Lemma 3.3. Furthermore, m > 1, since, if m = 1, then F' = 0. This can be

observed since, for any G > 1, then G = Zf 1, implying the largest number not in the set
is less than 1. Suppose S is an irreducible numerical semigroup with Frobenius number F
and multiplicity 2 < m < % and corresponding F-irreducible set A. Notice that m { F,

3 m ’

then since 1,2,...,m—1¢ A and 0,m € A with A C {0, 1,..., ng}, then we have at most
ol =] possibilities for A in this case. On the other hand, if m < (%L then by Corollary 3.2,

there are only ol - L= possibilities for A. Therefore we have proved the lemma. [

4 Further Research

The proof for the upper bound has us ignore sets where the multiplicity does not divide
the Frobenius number. This suggests the number of divisors of F' plays a role in the size of
#I1(F); the data as well seems to confirm this. Indeed, if p is prime, it seems we can expect
#1(p) to be larger than #I(F) for values of F' close to p. For example, compare p = 173,
which is a prime number, to the numbers around it:

#I(172) = 2489384088
H#I(173) = 4295034112
#1(174) = 2501329283

From our graph depicted in Figure 3.1, it appears that our upper bound for #I(F) is
significantly less tight than our lower bound, so this leaves room for further investigation. Our
lower bound worked by essentially building irreducible numerical semigroups with Frobenius
number F from scratch. However, our construction only produced irreducible numerical
semigroups where the multiplicity was larger than F'/3. By modifying our proof, it may be
possible to build more irreducible numerical semigroups with even smaller multiplicity, thus
improving our lower bound.
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Data Appendix

This is the data we generated with our code. It is sorted into columns by Frobenius number
F, number of semigroups #I(F'), and height of the tree H.

FT#I(F)| H F 1 #I(F)| H F ZI(F) | H
50| 844 8 02 | 159833 | 15 131 | 28837942 | 22
51 1121 | 12 93 | 222990 | 23 135 | 35684844 | 33
52| 981 8 94 | 227059 | 15 136 | 34851905 | 22
53 | 2015 | 13 95 | 375582 | 23 137 | 60616978 | 34
54| 1039 | 8 96 | 195266 | 15 138 | 34528656 | 22
55| 2496 | 13 97 | 490585 | 24 139 | 76862606 | 34
56 | 1715 | 9 98 | 369450 | 16 140 | 54324644 | 23
57| 2436 | 14 99 | 471036 | 24 141 | 73350497 | 35
58 | 2499 | 9 100 | 419865 | 16 142 | 74940935 | 23
59 | 4350 | 14 101 | 799237 | 25 143 | 123578768 | 35
60 | 1857 | 9 102 | 439443 | 16 144 | 67741811 | 23
61| 5602 | 15 103 | 1018271 | 25 145 | 155117402 | 36
62| 4173 |10 104 | 721159 | 17 146 | 120786427 | 24
63| 531715 105 | 947145 | 26 147 | 149694073 | 36
64 | 4866 | 10 106 | 984242 | 17 148 | 143249418 | 24
65| 892516 107 | 1655267 | 26 149 | 252298397 | 37
66 | 4839 | 10 103 | 839515 | 17 150 | 143390078 | 24
67 | 11971 | 16 109 | 2106583 | 27 151 | 319562578 | 37
68 | 7826 | 11 110 | 1570954 | 18 152 | 236185377 | 25
69 | 11276 | 17 111 | 2001431 | 27 153 | 307429383 | 38
70 | 10977 | 11 112 | 1907837 | 18 154 | 312030392 | 25
71| 19812 | 17 113 | 3417576 | 28 155 | 508565162 | 38
72| 9667 | 11 114 | 1904303 | 18 156 | 276966778 | 25
73| 25405 | 18 115 | 4273853 | 28 157 | 650111516 | 39
74| 19020 | 12 116 | 3035371 | 19 158 | 502427320 | 26
75| 23297 | 18 117 | 4162984 | 29 159 | 621579732 | 39
76 | 21564 | 12 118 | 4213006 | 19 160 | 605352079 | 26
77| 41642 | 19 119 | 7023282 | 29 161 | 1043060844 | 40
78 | 22178 | 12 120 | 3669716 | 19 162 | 606264503 | 26
79 | 53629 | 19 121 | 8945931 | 30 163 | 1320746892 | 40
80 | 35886 | 13 122 | 6829161 | 20 164 | 964432914 | 27
81| 51367 |20 123 | 8512341 | 30 165 | 1253705942 | 41
82 | 51572 | 13 124 | 8001407 | 20 166 | 1294345668 | 27
83 | 88093 | 20 125 | 14243981 | 31 167 | 2118472893 | 41
84 | 41858 | 13 126 | 8191764 | 20 168 | 1183417468 | 27
85 | 109693 | 21 127 | 18354729 | 31 169 | 2676151556 | 42
86 | 84770 | 14 128 | 13300505 | 21 170 | 2061857849 | 28
87 | 106526 | 21 129 | 17488308 | 32 171 | 2577806875 | 42
88 | 100439 | 14 130 | 17564858 | 21 172 | 2489384088 | 28
89 | 184466 | 22 131 | 29633619 | 32 173 | 4295034112 | 43
90 | 98332 | 14 132 | 15515628 | 21 174 | 2501329283 | 28
91 | 233557 | 22 133 | 37519331 | 33
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