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Comparison Of Centrality Estimators For Several Distributions

Jamie McCreary
Department of Mathematics

Tennessee Technological University
Cookeville, TN 38505

1. Introduction

The measure of central tendency is the most commonly used tool in sta-
tistical data analysis. The ability to determine an “average” provides a way
to locate data centrality. Central tendency is usually determined by one of
three methods. One can calculate the mean, median or midrange of a sam-
ple set. However, does the best method to determine the central point of
a distribution vary with the types of distributions involved? In this paper
we attempt to determine which methods are best used for several different
distributions. Specifically we will examine the Normal, Uniform, and Cauchy
distributions.

2. General method

We will examine the best estimator of centrality using non-rigorous meth-
ods. We will accomplish this by use of the Monte Carlo Method. The Monte
Carlo procedure involves the generation of a set of pseudo-random numbers.
These numbers, when generated according to a specified distribution’s algo-
rithm, form the data sets for our analysis. We will use the standard notation
of B to indicate the number of Monte Carlo simulation sets. For our anal-
ysis we will be calculating the sample mean, sample median, and sample
midrange for sets of different sizes. Briefly stated, the sample mean is the
familiar arithmetic average, whereas the sample midrange is the arithmetic
average of the highest and lowest values of a data set. The sample median is
simply the middle number from a group of ordered data. The formulas for
these estimators are

Sample mean: x = 1
n

∑
xi where n is number of data in the set

Sample median: The value of the ith position of the ordered data, where
i = n+1

2
Sample midrange: xmax+xmin

2
As an example of how these three estimators are calculated, let S={1,2,5,6,8,11,13,15,17,19}.

The sum of all the numbers in this set is 97, so our mean is 97
10 =9.7. To find

the median in this case, since we have an even number of data points, we take
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the average of the two middle numbers, 8 and 11. Therefore, our median is
9.5. The midrange is the midpoint of the highest and lowest numbers, 1 and
19. So the midrange is 10.

To determine the best estimator we will use the least squares criteria,
which gives us the estimator that produces the lowest variance. Variance is
defined as:

V ar(X) = E(X2)− (E(X))2

and the formula used to calculate the variance for a sample is given as:

V̂ ar(X) =
∑
x2i − 1

n
(
∑
xi)

2

n− 1

Using this formula the variance of the above example set is 39.34.
The criteria we are using to determine the best estimator, namely the

minimum variance or least squares criteria, is related to a value known as the
Fisher Information, or I(θ̂). This value is, in very basic terms, a score of how
easy it is to distinguish between the true parameter θ and any close estimates
θ̂ . The higher I(θ̂), the better your estimate. From Leyman (1983), we know
that if pθ is of the exponential family, then I(θ̂)= 1

var(θ̂)
. Also, from Leyman

(1983), we know that if pθ is of the exponential family and the parameter
of interest is mu, the center of the data, then I(θ̂) is at a maximum if θ̂ is
the sample mean. So, we assumed from this theorem that the sample mean
would be the best estimator where it could be calculated.

3. The analysis results

For our analysis we generated 1000 of these simulation sets for each of
our selected sample sizes. For example, assume we wanted to generate 10
data points from a normal distribution. We would need to specify the central
point, µ, and standard deviation, σ, of our population. The program would
then execute the algorithm that selected 10 points from this population. We
could then calculate the mean, median and midrange of these 10 numbers.
The computer would then repeat this process 999 more times. This would
then gives us three Monte Carlo samples of size 1000, one for the sample
mean for a sample of size 10, one for the sample median for a sample of size
10 and one for the sample midrange for a sample of size 10.

The Central Limit Theorem tells us that a group of sample means will
be approximately normal, with the same central point, µ, as the original
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population. Therefore, we would expect the sample means of these 1000
sets to be centered on µ. Likewise, because of symmetry in the original
population, the sample medians and sample midranges also center themselves
around µ. We measure how these measures of central tendency spread out
by calculating the variance of each of the Monte Carlo sets. According to
our criteria, the one with the lowest variance is the best estimator.

3.1 Summary of the results for the normal distribution

Figure 3.3.1 shows a theoreical distribution of the normal. This distri-
bution is shown with µ = 0 and σ = 1 which is referred to as the Standard
Normal. The mean of the distribution is associated with the peak of the bell
curve. Thus, one can see if the mean were changed, this would cause the
entire curve to shift to the left or right. Standard deviation affects the width
of the bell shape. A change in the standard deviation would cause the curve
to either flatten out or become steeper or narrower.

We let the normal sets be simulated as shown in Table 3.1.1.

Table 3.1.1
Sample size B µ σ

N1 10 1000 100 5
N2 20 1000 100 5
N3 100 1000 100 5
N4 1000 1000 100 5

In Table 3.1.2 we have the variances for our estimators for the four sets.

Table 3.1.2
Var(Mean) Var(Median) Var(Midrange)

N1 2.65302 3.540903 4.493488
N2 1.226015 1.923207 3.632372
N3 0.2727760 0.4300725 2.355683
N4 0.02276362 0.03668264 1.503110

As you can see, the mean has the lowest variance in every case. Thus, the
results from this test of the normal distribution confirmed our expectations
that the sample mean would be the best estimator. To emphasize this result,
Figures 3.1.2, 3.1.3, 3.1.4 and 3.1.5 show the sampling distributions of the
three estimators for the four different sample sizes. Again, one can readily
see that the sample mean has the smallest variance in each case. In Table
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3.1.3 we have the calculated efficiencies (i.e., the ratio of the variances) for
the three estimators:

Table 3.1.3
Mean vs. Median Mean vs. Midrange Median vs. Midrange

N1 .749 .590 .788
N2 .637 .338 .529
N3 .634 .116 .183
N4 .621 .015 .024

3.2 Summary of the results for the Cauchy distribution

For the Cauchy distribution we had different expectations. As can be
seen from the graph of the theoretical Cauchy distribution in Figure 3.2.1,
this distribution is quite different from the normal. Basically, the Cauchy
distribution has what is called heavy tails. In other words, with the Cauchy
distribution, there is always a chance of having a very extreme value, either
positive or negative. The position and shape of the Cauchy is described by
two parameters much in the same way the normal is described. However, in
the case of the Cauchy, the parameters are location and scale not mean and
standard deviation. The effect of changing these parameters is explained
fairly well by their names. With regards to our expectations in this part
of the study, the Cauchy distribution violates an assumption of the Central
Limit Theorem that requires a finite variance. The heavy-tailed Cauchy has
an infinite variance and mean and therefore we should not be able to calculate
a meaningful sample mean for our sets. For this distribution we expect the
sample mean and likewise the sample midrange to perform poorly (We say
this as well for the midrange because it is in its simple form a sample mean.).
Hence, that leaves the median, which exists for all distributions, to be the
best estimator of centrality for the Cauchy (See Appendix for details). Table
3.2.1 shows the simulations for the Cauchy distribution sets.

Table 3.2.1
Sample size B Location Scale

C1 10 1000 5 25
C2 20 1000 5 25
C3 100 1000 5 25
C4 1000 1000 5 25
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Looking at the results in Table 3.2.2, we see that our expectations were
correct, and that the mean is not the best estimator of centrality for the
Cauchy distribution based on our criteria of minimum variance. In fact,
we see that the median is the only useful method of determinig centrality
in a Cauchy distribution of these three. Again, as a quick summary, Figure
3.2.2 shows the resulting sampling distributions for the three estimators for a
sample size of 10. Notice in Figure 3.2.2 that the median is centered at about
5, which is where we centered the original distribution for our simulations.

Table 3.2.2
Var(Mean) Var(Median) Var(Midrange)

C1 149534.6 218.4611 3644467
C2 223825.1 93.08229 21756615
C3 15781623 17.02836 39415852614
C4 12304283 1.687272 3.078242 x 1012

3.3 Summary of the results for the uniform distribution

Figure 3.3.1 shows a theoretical uniform distribution. The uniform is
best described simply by its endpoints. We assumed the mean would be the
best estimator in this case because it could be calculated. We simulated the
uniform distribution sets as shown in Table 3.3.1.

Table 3.3.1
Sample size B Minimum = a Maximum = b

U1 10 1000 -10 10
U2 20 1000 -10 10
U3 100 1000 -10 10
U4 1000 1000 -10 10

However, as we see in Table 3.3.2 our results showed a departure from
our expectations. The midrange has the lowest variance for each sample size.

Table 3.3.2
Var(Mean) Var(Median) Var(Midrange)

U1 3.36165 7.43223 1.532403
U2 1.556647 4.163423 0.3856667
U3 0.3024832 0.8995905 0.01635394
U4 0.03338836 0.1035157 0.0002013420
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Table 3.3.3 shows the calculated efficiencies.

Table 3.3.3
Mean vs. Median Mean vs. Midrange Median vs. Midrange

U1 .452 2.193 4.854
U2 .374 4.032 10.753
U3 .336 18.518 55.556
U4 .323 166.667 500

Also, Figures 3.3.2, 3.3.3, 3.3.4 and 3.3.5 reiterate this unexpected result
that the midrange appears to be the best estimator for the uniform distribu-
tion.

3.3.1 A closer look at the uniform distribution

Certain distributions belong to a family of distributions known as the
exponential family. This name is refers to the probability density functions
(pdf’s) that are used to define distributions. Examining the different types
of distributions in the exponential family is beyond the scope of this article;
it will be sufficient to examine the properties and characteristics of a distri-
bution which make it a part of the exponential family. Distributions in the
exponential family can be defined as those having pdf’s of the form

pθ(x) = exp[
s∑

i=1
ni(θ)Ti(x)−B(θ)]h(x)

where, most importantly, h(x) is a function of only x and defines the sample
space for the distribution. As detailed by Lehmann (1983) this one assump-
tion of the exponential family is:

The distributions Pθ have common support, so that without loss
of generality, the set A = {x | pθ > 0} is independent of θ.

In other words, the sample space of pθ(x) must be independent of θ in the
exponential family.

As an example of how to determine if a distribution is part of the expo-
nential family, consider the Normal distribution. Its pdf is given by

pθ(x) =
1√
2πσ2

e−
1

2σ2 (x−µ)2 for −∞ < x <∞

where θ = (µ, σ). Note that pθ(x) can be rewritten as
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pθ(x) = e−
1

2σ2 x
2+ µ

σ2 x−µ2−2 ln(2πσ2)

where, using the definition written above for a distribution in the exponential
family, s = 2, n1(θ) = − 1

2σ2 , T1(x) = x2, n2(θ) = µ
σ2 , T2(x) = x , B(θ) =

µ2 + 2 ln(2πσ2) and h(x) = 1. Hence, the normal is part of the exponential
family because we can write its pdf in the required form and its support is
independent of any of the parameters, i.e., h(x) = 1.

Upon examination, we realized that the uniform distribution violates this
basic assumption of the exponential family. The pdf of the uniform is:

f(x) =
{ 1

(b−a) , a ≤ x ≤ b where a = ξ − λ
2 , b = ξ + λ

2

0 elsewhere

from Hogg and Craig (1995) where ξ is the center of the distribution and λ is
simply the distance between the endpoints of the distribution. In exponential
form, the pdf is given as

pθ(x) = e− ln(b−a)I[a,b](x)

where, from the definition given above, θ = ξ, s = 1, n1(θ) = − ln(b − a),
T1(x) = 1, B(θ) = 0 and h(x) = I[a,b](x) and I[a,b](x) = 1 if a ≤ x ≤ b, 0
otherwise. Note that, though, h(x) is really hθ(x) and is based on θ because
a and b are both based on θ.

Therefore, it is evident that the uniform distribution’s support (i.e., the
sample space of x) is dependent upon θ and thus violates the assumption
that the sample space be independent of θ. So, how does this affect our
study? Previously it was stated that if pθ is of the exponential family and
the parameter of interest is mu, the center of the data, then I(θ̂) is at a
maximum if θ̂ is the sample mean. So, we see that the uniform does not
meet the criteria to be in the exponential family and therefore we should not
use the result given above.

Next we examine why the midrange has the lowest variance. For this
purpose we obtain the variance of the midrange of a uniform distribution by
using order statistics. Hence, using the previous notation for the uniform
distribution, the result is

V ar(midrange) =
b− a

2(n+ 1)(n+ 2)
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from David (1970). Note this variance can be rewritten as

V ar(midrange) =

(
ξ + λ

2

)
−
(
ξ − λ

2

)
2(n+ 1)(n+ 2)

=
λ

2(n+ 1)(n+ 2)

Obviously, this gives us an n2 term in the denominator, whereas the
variance of the sample mean only has an n term in the denominator. To
show this fact, note that

V ar(mean) =
σ2

n

from Hogg and Craig(1995). To compare the two variances, we need to put
them into similar terms. Hence, it is known that the variance of the uniform
distribution is given as

V ar(x) =
(b− a)2

12

Without loss of generality let the above variance be simply σ2. Now we
find λ = b − a in terms of σ2. Thus, with respect to the variance for the
midrange,

σ2 =
λ2

12
⇔ λ =

√
12σ2

and hence

V ar(midrange) =
λ

2(n+ 1)(n+ 2)
=

√
12σ2

2(n+ 1)(n+ 2)
=

√
3σ

(n+ 1)(n+ 2)

Next, we consider the efficiency of the two estimators. Thus,

V ar(midrange)
V ar(mean)

=

√
3σ

(n+1)(n+2)
σ2

n

=
n
√
3

σ(n+ 1)(n+ 2)
<

√
3

σ(n+ 2)
< 1 for n >

√
3
σ

−2

since σ is a fixed value. Therefore, we see that the sample midrange beats
the sample mean as an estimator for the mean of the uniform distribution
with respect to the least squares criteria as soon as n >

√
3
σ

− 2.

In a similar manner the sample midrange can as well be shown to out-
perform the sample median. Hence, we can safely conclude that the median
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is the best estimator of centrality of the three when the data set comes from
a uniform distribution with a relatively large n.

5. Summary

We see now that our assumption of the sample mean being the best
estimator of centrality was incorrect. It is obvious that the distribution in
question determines the best estimator and we must the fully check all the
necessary conditions of a theorem before we apply its result.

6. Appendix

The probability density function of the Cauchy distribution is given by

f(x) =
1

βπ(1 + (x−α
β
)2)

for −∞ < x <∞

where −∞ < α < ∞ and β > 0. Next, the characteristic function of the
Cauchy is given by

ϕ(t) = eitα−β|t|

from Hogg and Craig (1995).
By definition, the kth moment of X can calculated by

E(Xk) =
ϕ(k)(0)
ik

where ϕ(k)(0) is the kth derivative of ϕ evaluated at 0 (from Chow and
Teicher (1988)). For example, if X ∼ N(µ, σ2), then

ϕ(t) = eiµt−
σ2t2
2

and then

E(X) =
ϕ′(0)
i

=
iµeiµ(0)−

σ2(0)2

2

i
= µ

Analogously, E(X) for the Cauchy distribution is then

E(X) =
ϕ′(0)
i

=
d
dt
eitα−β|t|

∣∣∣
t=0

i
=
{
limt→0+

iαeitα−βe−βt

i

limt→0−
iαeitα+βe−βt

i

=
{
α− β

i

α+ β
i
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Since the two limits are not equal, this implies that the mean (i.e. E(X)) of
the Cauchy distribution does not exist. To further show this result, consider
the direct definition of E(X) which is

E(X) =
∫ ∞

−∞
xf(x)dx

Hence, in the case of the Cauchy distribution, we have

E(X) =
∫ ∞

−∞
1
βπ

x

(1 +
(
x−α
β

)2
)
dx

Using the change of variable technique with y = x−α
β

we have

E(X) =
∫ ∞

−∞
1
π

α+ βy

(1 + y2)
dx =

∫ ∞

−∞
1
π

α

(1 + y2)
dx+

∫ ∞

−∞
1
π

βy

(1 + y2)
dx

= α+
β

2π
ln(1 + x2)

∣∣∣∣∣
∞

−∞

which does not exist. In a similar fashion, E(Xk) can be shown not to exist
for any k ≥ 1.

Yet, a measure of the center of the Cauchy distribution can be found by
looking at the population median. By definition, the population median is
the value m such that P (X ≤ m) = P (X > m) = 1

2 . Hence, we simply need
to find the value of m that solves the following integral equation:∫ m

−∞
1
βπ

1

(1 +
(
x−α
β

)2
)
dx =

1
2

Again, using the change of variable technique with y = x−α
β

we have

∫ m−α
β

−∞
1

π(1 + y2)
dy =

1
2

Integrating, we get

1
π

[
tan−1 (x)

]∣∣∣∣
m−α

β

−∞
=

1
2
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⇒ 1
π
tan−1

(
m− α

β

)
− lim

x→−∞

(1
π
tan−1 (x)

)
=

1
2

⇒ 1
π
tan−1

(
m− α

β

)
−
(
−1
2

)
=

1
2

1
π
tan−1

(
m− α

β

)
= 0

⇒ m− α

β
= 0

⇒ m = α

Hence, the population median of the standard Cauchy distribution is α.
In our simulations we chose α = 5 and β = 25 for variety.

This paper was completed under the supervison of Dr. Michael Allen
during an independent project course on Monte Carlo Simulation. I would
like to thank Dr. Allen for all his help.
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Figure 3.1.5: Normal Distribution 4
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Figure 3.2.2: Cauchy Distribution 1
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Figure 3.3.2: Uniform Distribution 1
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Figure 3.3.3: Uniform Distribution 2
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Figure 3.3.4: Uniform Distribution 3
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