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1 Abstract

Every function from a finite field to itself can be represented by a polynomial. The functions which

are also permutations give rise to “permutation polynomials,” which have potential applications in

cryptology. We will introduce a generalization of permutation polynomials called “degree-preserving

polynomials” and show a classification scheme of the latter. The criteria for a polynomial to qualify

as degree preserving are certainly less stringent than those for the permuting qualification. Thus the

idea to study degree-preserving polynomials allows more opportunity to maneuver and gain intuition

about the occurrence of such polynomials.

2 Introduction

Before starting discussion of these polynomials we give a brief summary of the main relevant ideas in

finite fields. The following facts are used. Proofs are are found in [4].

• For a given prime p, the field Fp is isomorphic to Z mod p.

For example, F5 = {0, 1, 2, 3, 4} with addition and multiplication mod 5.

• The set of all polynomials with coefficients in Fp forms a ring. We denote the ring of polynomials

over Fp as Fp[x].

• For each such polynomial ring and each integer d there exists at least one monic irreducible

polynomial m(x) (a polynomial that will not factor and maintain coefficients from Fp in its

factors) of degree d so that the ring Fp[x] modulo m(x) is a field. We express this field as

Fp[x]/ < m(x) >.

• In Fp[x]/ < m(x) > the monic irreducible m(x) has a root α such that m(α) = 0.

• We may now speak of the extension field Fpd as the set

{a0 + a1α
1 + ... + ad−1α

d−1|ai ∈ Fp}.

For example, F52 = F25 = {0, 1, 2, 3, 4, α, α+1, α+2, α+3, α+4, 2α, 2α+1, 2α+2, 2α+3, 2α+

4, 3α, 3α + 1, 3α + 2, 3α + 3, 3α + 4, 4α, 4α + 1, 4α + 2, 4α + 3, 4α + 4}.

• Addition of elements within Fpd is carried out modulo p. Multiplication is also modulo p and

m(α) = 0 is applied as necessary to reduce products to standard equivalent expressions in degree

less than d.
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For instance consider the elements 3α+1 and 1α+4, 2α+3, 4α+1, from the field F25, generated

by the monic irreducible polynomial m(x) = x2 + x + 1.

We have 3α + 1 + 1α + 4 = 4α and

(2α + 3) · (4α + 1) = 3α2 + 4α + 3 = 3(α2 + α + 1) + α = α.

• The extension field Fpd contains a subfield isomorphic to Fp. Henceforth we will merely refer

to Fpd as containing Fp so that F9 contains F3.

The motivating idea in the handling of f ∈ Fp[x], the ring of polynomials over Fp, is as follows:

consider that each of these polynomials has the form

f(x) =
∑n

i=0 aix
i = a0 + a1x + ... + anxn for ai ∈ Fp[x]

This expression is not unique, as there remains a considerably inconvenient amount of redundancy

here we will expose and remove, using the following ideas [4].

1 Proposition. The multiplicative group of the field Fpd is cyclic.

2 Proposition. The order of the multiplicative group of Fpd is pd − 1. For any nonzero element

λ ∈ Fpd , λpd

= λ and λp = λ if and only if λ ∈ Fp.

Consequently we adopt the convention of expressing each polynomial in a form with degree less

than pd. So we may assume f(x) =
∑pd−1

i=0 aix
i = a0 + a1x + ... + apd−1x

pd−1 where ai ∈ Fp[x].

3 Degree Preserving Polynomials and Degree Annihilating

Polynomials

We proceed now to recognize that as a result of the additional and multiplicative closure of properties

of the field Fp each of these polynomials of f ∈ Fp[x] represents a mapping from Fpd to itself.

If the mapping induced by a polynomial f upon Fpd is one-to-one and onto, thus describing a

permutation of the elements in Fpd , then f is a permutation polynomial (PP). Permutation poly-

nomials over finite fields have potential applications in coding and encryption [2]. In our particular

approach, we shifted focus from permutation polynomials exclusively to work on a related broader

class of polynomials.

Before we discuss this broader class, we need to a few definitions about the elements of Fpd .

1 Theorem. [1] Each element α ∈ Fpd is the root of a unique, monic, irreducible polynomial in

Fp[x].
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This theorem leads us to a very important concept in our specific area of study for this paper.

That is the concept of the degree of an element. We present the most general definition below.

1 Definition. The degree of an element α over Fp is the degree of its unique, monic, irreducible

polynomial in Fp[x].

For the remainder of the paper we assume that p and d are prime. Thus we have that every

α ∈ Fpd but not in Fp is of degree d [?]. The concept of degree leads us into a discussion of the actual

topic of this paper: degree preserving polynomials over finite fields (DPP’s). First let us define what

it means for a polynomial to be degree preserving. The definition is due to Theresa Vaughan (private

communication).

2 Definition. A polynomial f(x) ∈ Fpd preserves degree d over Fp if for all α ∈ Fpd of degree d,

f(α) also has degree d.

DPP’s are a relatively new area of study. We have been looking for classes of these polynomials

and ways to generate them. One reason they might be interesting is their close connection with the

afore mentioned permutation polynomials. This connection, also due to Theresa Vaughan, is shown

in the next theorem.

2 Theorem. If f(x) ∈ Fp[x] and f(x) is a permutation polynomial for Fpd then f(x) preserves degree

d.

Proof. If f(x) ∈ Fp[x] then all of the elements of Fp will be mapped to elements of Fp. Assume

for contradiction that ϕ ∈ Fpd , ϕ /∈ Fp is mapped to an element of Fp. Then there are not enough

elements left in the field to map to all of the elements in Fpd . Thus f(x) does not permute the field,

contradicting our given information. Therefore f(x) preserves degree.

Thus we can see that DPP’s are generalizations of permutation polynomials. We will now touch

upon some important qualities of degree preserving polynomials. This will lead us into a discussion

of how to generate all of the DPP’s for a given finite field.

3 Theorem. If f(x) ∈ Fp[x] preserves degree d over Fp, then so do α · f(x), f(α · x), f(x) + α, and

f(x + α), for any non-zero α ∈ Fp.

Proof. If α is an element of the base field Fp and β has degree d over Fp then α + β, α · β cannot be

elements of the base field, which is closed under addition and multiplication. Therefore α + β, α · β

also have degree d.
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3 Definition. For β of degree d over Fp, the conjugates of β are β, βp, β(p2), ..., β(pd−1).

The following results about conjugates are due to Priscilla Bremser (private communication).

1 Lemma. For any polynomial f(x) ∈ Fp[x], [f(x)]p = f(xp).

Proof. Consider (x1 + x2)p. This is equal to
∑p

k=0(
(

p
k

)
)xk

1xp−k
2 where (

(
p
k

)
) = p!

k!(p−k)! . But for

k = 1...p − 1, (
(

p
k

)
) will be a multiple of p, and will vanish in Fp. Only the first and last terms, xp

1

and xp
2 remain. Now in general, consider (x1 + x2 + ... + xn)p. We set y = x1 + ... + xn−1 and obtain

(y + xn)p, which will give us yp + xp
n.

4 Theorem. If f(x) is the minimum polynomial for β of degree d over Fp, the roots of f(x) are the

conjugates of β.

Proof. Since [f(x)]p = f(xp) if f(x) ∈ Fp[x], f(α(pj)) = [f(α)]p
j

for j = 1, 2, ..., d− 1. Since f is the

minimum polynomial for β, the other roots are βp, β(p2), ..., β(pd−1). Since f is a polynomial of degree

d, and we have d unique roots, these are all the roots for f(x).

5 Theorem. A polynomial f(x) ∈ Fp[x] preserves degree d over Fp if and only if for any monic

irreducible polynomial g(x) of degree d over Fp, f(xp) 6≡ f(x) mod g(x).

Proof. i) First, suppose α is of degree d over Fp where g(x) is its minimum polynomial and f(x)

preserves degree d. If f(xp) ≡ f(x) mod g(x), then f(xp)−f(x) = p(x)g(x) for some polynomial p(x).

As g(x) is α’s minimum polynomial, g(α) = 0. Thus we have [f(α)]p − f(α) = 0. So [f(α)]p = f(α),

therefore f(α) ∈ Fp. But then f(x) does not preserve degree d. Thus f(xp) 6≡ f(x) mod g(x) for any

monic irreducible polynomial g(x).

ii) Now assume f(xp) 6≡ f(x) mod g(x) for any monic irreducible polynomial g(x) of degree d. Let

α be a root of g(x) with degree d over Fp. Then f(xp)−f(x) = p(x)g(x)+r(x) where 0 < deg r(x) < d.

Since g(x) is α’s minimum polynomial, r(α) 6= 0. So we have [f(α)]p − f(α) 6= 0. Thus f(α) 6∈ Fp.

Therefore, f(x) preserves degree d.

6 Corollary. For a polynomial f(x) ∈ Fp[x] and any α of degree d over Fp, f(α) has degree d if and

only if f(αpi

), 0 < i < p− 1, has degree d for any conjugate αpi

of α.

Proof. This follows immediately from the previous proof as the conjugates of α are precisely the other

roots of the minimum polynomial and the proof did not depend on the choice of root.

Conjugates turn out to be very useful. For example in testing for DPP’s: Corollary 6 tells us that

if we test one representative from each set of conjugates we can tell if a polynomial is a DPP or not
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(see Appendix for algorithms). Next we will introduce another class of polynomials over finite fields.

We named these degree annihilating polynomials (DAP’s), because they take every element in the

field and send it to an element in the base field.

4 Definition. A polynomial f(x) ∈ Fp[x] is described as degree annihilating if for all α ∈ Fpd ,

f(α) ∈ Fp.

This class of polynomials turns out to be very useful in generating DPP’s due to the fact that the

addition of a DAP to a DPP generates another DPP. This follows from Theorem 3 as the value set

of a DAP consists only of elements in the base field. It is important to note the following features

of DAP’s, namely the closures under addition (DAP + DAP = DAP) and scalar multiplication by

an element of the base field (kDAP = DAP with k ∈ Fp). Also, if f(x) is a DAP and g(x) is some

polynomial over the base field, then f(g(x)) is a DAP, since g(x) maps Fpd into itself and f(x) maps

Fpd into Fp. Thus DAP’s form a subspace of the vector space of all polynomials with coefficients in

the base field. We will next find a basis for this subspace.

2 Lemma. [4] Both the trace, tr(x) = x + xp + x(p2) + ... + x(p(d−1)), and the norm,

n(x) = x((pd−1)/(p−1)), are DAP’s over Fpd .

7 Theorem. We can generate all of the DAP’s for a given finite field by linear combinations of polyno-

mials of the forms: (i) the composed trace tri(x) = tr(xi) = (xi)+(xi)p+(xi)(p
2)+...+(xi)(p

(d−1)) for all

i not a multiple of pd−1
p−1 and exponents reduced mod pd − 1;

(ii) the composed norm nk(x) = n(xk) = xk( pd−1
p−1 ) for k = 0, 1, 2..., p− 1.

Proof. First we will prove that all of these polynomials are DAP’s. This is simple enough. Note that

tr(x) and n(x) are the trace and the norm, and are being composed with xi and xk respectively to give

us our basis of DAP’s. Since the trace and the norm are established DAP’s, their composition with xn

will certainly result in another DAP. We see that if the polynomials tr(xi) and tr(xj) have one term

in common, then they have all terms in common. This is due to the fact that if l ≡ k mod pd − 1,

then lp, lp2, ..., l(pd − 1) ≡ kp, kp2, ..., k(pd − 1) mod pd − 1. This gives us pd−p
d distinct polynomials

of type (i); there are clearly p polynomials of type (ii). Next we note that all of these polynomials are

linearly independent seeing as no two of them contain an x to the same power. Next we will show

that they form a basis for the subspace of DAP’s over a given finite field. We know that we are in an

pd-dimensional vector space of polynomials with each vector being expressed as an ordered pd-tuple of

the coefficients of a polynomial. We also know that each set of conjugates gets mapped to a single set

of conjugates. We see this by noting that the set {α, αp, α(p2), ..., α(p(d−1))} of conjugates gets mapped
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to the set {f(α), [f(α)]p, [f(α)](p
2), ..., [f(α)](p

(d−1))} of conjugates of f(α). However in Fp a set of

conjugates contains just a single element. So the subspace of DAP’s is in 1-1 correspondence with the

family of functions from the set of conjugacy classes to Fp.There are pd−p
d conjugacy classes of degree

d elements, and p conjugacy classes of elements in Fp. Therefore the dimension of the subspace is

pd−p
d +p. This dimension is exactly the number of linearly independent DAP’s in our set generated by

the composed trace and the composed norm. Therefore we have generated a basis for the sub space

of DAP’s with coefficients in Fp over the field Fp.

4 Representatives for Conjugacy Classes

Let α be a primitive element of the field Fpd . Two elements αa, αb of Fpd will be conjugates if and

only if a ≡ b ∗ pm(mod pn − 1) for some m ∈ Zn. We shall write a in base p. That is, we consider

a =
∑n−1

i=0 aip
i with 0 ≤ ai < p. Then, ap =

∑n−1
i=0 aip

i+1 =
∑n

i=1 ai−1p
i. Since a is considered mod

pn − 1, pn ≡ 1 so ap = an +
∑n−1

i=1 ai−1p
i.

In other words, we have shifted all the base-p digits of a over one, then moved the last digit to

the first. If we do this m times, we transform a into b. Thus, all the conjugates of an element a can

be found by a cyclic permutation of the digits of a in base p. This proved to be very useful in our

work in Maple. In this way we could easily produce all the sets of conjugates. This let us choose a

representative for each set of conjugates that we could then use to test a polynomial.

5 Basic DPP’s

Now that we can generate a list of all the DAP’s for Fpd , we would like to take advantage of this to

generate DPP’s. Let α be a primitive element of Fpd . Each element β = αa ∈ Fpd is in a conjugacy

class {β(pk)|k ∈ N}. If we think of each element of the conjugacy class as a power of α, we can indicate

the class by the associated powers of α. That is, for a given a we consider {apk|k ∈ N}, where apk is

considered modulo pd−1. We would like to pick a representative for each of these classes, and we will

choose the maximal element, m(a) = max{apk|k ∈ N} (again modulo pd − 1) We can then collect all

our representatives in a set M = {m(a)|a ∈ Zpd−1}.

For each m ∈ M , there is a monic DAP fm of degree m, either the trace composed with xm or

the norm composed with xm, because in both cases we are taking the highest integer after reduction

mod(pd − 1) . If f is a DPP whose mth coefficient is b, then f − bfm is a DPP whose mth coefficient

is 0. By continuing this process, we can find a DPP f ′ such that the mth coefficient of f ′ is 0 for
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every m ∈ M and f can be constructed from f ′ by adding a number of DAP’s. We call an f ′ with

this property a basic DPP. Thus every DPP is the sum of a basic DPP and a number of DAP’s, so

we can generate every DPP by simply generating the basic DPP’s.

6 Characterizing Base Field Polynomials

We will find a necessary and sufficient criterion for a function f : Fpd → Fpd to be represented by a

polynomial with coefficients in the base field. We begin by counting the number of unique base field

polynomials. Since every polynomial over Fpd can be written as f(x) =
∑pd−1

n=0 anxn, where the set

{an} is uniquely defined, there are p(pd) unique base field polynomials.

We will say that a function f has property (P) if f(xp) = f(x)p for all x ∈ Fpd . This property

essentially means that the image of any element in a given conjugacy class is determined by the

image of any other element of that conjugacy class. Thus if we choose a set of representatives for the

conjugacy classes, the function f is determined by the images of our representatives.

As we have seen, if d is prime, there are pd−p
d conjugacy classes of elements of degree d and p

singleton conjugacy classes of elements of degree 1. There are p choices for image of each degree

1 conjugacy class, because under a well-defined mapping a single element can only have a single

image. There are pd choices for the image of the representative for each degree d conjugacy class. Let

a = pd−p
d , then there are (pd)app = pad+p functions with property (P). But ad + p = dpd−p

d + p = pd.

We see that there are the same number of base field polynomials as functions with property (P).

We also know that every base field polynomial has property (P). It follows that every function with

property (P) is represented by a base field polynomial. We state this as a theorem:

8 Theorem. A function f is represented by a base field polynomial if and only if f has property (P).

We can now use this result to calculate the number of PP’s, DPP’s and basic DPP’s for a field

Fpd . For DPP’s, we do the same calculation as we did to find functions with property (P), except

that we only allow f to map degree d conjugacy classes to other degree d conjugacy classes. We thus

find that there are (pd − p)
pd−p

d pp DPP’s.

We saw already that there are p
pd−p

d +p DAP’s over Fpd . We also saw that there is a natural

partition of the set of all DPP’s into subsets. Each subset has one basic DPP, and every other DPP is

the sum of that basic one and a DAP. Thus for every p
pd−p

d +p DPP’s, there is exactly one basic DPP.

We divide the number of DPP’s by the number of DAP’s and we see that there are (pd−1 − 1)
pd−p

d

basic DPP’s.
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If f is a PP of Fpd with property (P), then each conjugacy class must be sent to a distinct conjugacy

class of elements of the same degree. (If f does not have property (P), then f has coefficients outside

of Fp and might send a degree 1 element to another of degree d.) There are (pd−p
d )! ways to assign

conjugacy classes to conjugacy classes and for each such assignment there are d ways to choose the

images of individual elements (because of property (P)). There are thus (pd−p
d )! ways to distribute

the degree d conjugacy classes and d
pd−p

d ways to arrange them. For the degree 1 classes, there are

p! ways to distribute them. Thus there are (pd−p
d )!d

pd−p
d p! PP’s with coefficients in Fp, out of the pd!

PP’s of Fpd .

7 Conclusion

The subject of permutation polynomials continues to be an active area of research. We have partici-

pated in this by looking at the related degree-preserving polynomials which are in a sense a general-

ization of permutation polynomials. By using the vector space of degree-annihilating polynomials, we

have developed a method for generating all the base field DPP’s of Fpd where d is prime. This has

allowed us to count the permutation polynomials with coefficients in the base field.

8 Appendix

This section will introduce ways to explore our work computationally. We computed examples in

many special cases which suggested the results presented above.

For an arbitrary polynomial, the task of determining whether or not it is a permutation polynomial

is difficult. With degree preserving polynomials, the situation is easier. To check whether a

polynomial preserves degree d or not, it is only necessary to check one member of each conjugacy

class in Fpd , excluding the p in the base field (see Corollary 6 above).

For our computations, we used Maple V. We will now proceed through two algorithms for finding

DPPs and DAPs.

The following code must be executed in Maple before the main algorithm is performed (values that

must be entered by the user for particular cases will be enclosed in quotes (’ ’)):

readlib(GF):

G :=GF(’p’,’n’,’enter a monic irreducible polynomial of degree n’):

a:= G[ConvertIn](alpha);

G[isPrimitiveElement](’a+some number such that the output is true’);
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q:=’the element input in above’;

T:={’the elements of the base field Fp separated by commas’};

Now create a list L of the representatives of the conjugacy classes of degree d elements:

L:=[’the representatives separated by commas’];

t:=’the number of elements of L’

Now choose a degree m to check. We define a generic polynomial function f′m′ :

fd := (x, a1, a2, ..., a(′m− 1′))− >

G[‘ + ‘](G[‘ ∗ ‘](G[‘ ∧ ‘](x, 1), a1), G[‘ ∗ ‘](G[‘ ∧ ‘](x, 2), a2), ..., G[‘ ∧ ‘](x,′ m′));

Here is the algorithm which cycles through all monic polynomials of degree m and prints out which

ones preserve degree and which ones do not:

for a(m-1) from 0 to ’p-1’ do

...

for a2 from 0 to ’p-1’ do

for a1 from 0 to ’p-1’ do

v:=true;

for n from 1 to t while v do

v:=not member(G[ConvertOut](fd(G[‘ ∧ ‘](q, L[n]), a1, a2, ..., a(m− 1), 1)), T )

od;

if(v,print(a1,a2,...,1,DPP),print(a1,a2,...,1,no))

od ... od od;

(Note that “od” must appear as often as “do” so that each loop is completed.)

The output is a list of ordered m-tuples, the entries in each corresponding to the coefficients of a

polynomial, and each followed by ”DPP” or ”no” depending on whether that polynomial is a DPP

or not.

The degree annihilating case is similar:

for b(m-1) from 0 to ’p-1’ do

...

for b2 from 0 to ’p-1’ do

for b1 from 0 to ’p-1’ do

v:=true;

for n from 1 to t while v do

v:=member (G[ConvertOut](f(G[‘ ∧ ‘](q, L[n]), b1, b2, ..., b(m− 1), 1)), T )
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od;

if(v,print(b1,b2,...,1,DAP),print(b1,b2,...,1,no))

od ... od od;

—————————–

Using this algorithm we generated lists of DPP’s in several special cases. In studying the patterns of

distribution of DPP’s among non-DPP’s , we conjectured that there was a set of basic DPP’s from

which all others could be derived by adding DAP’s.

For example, for p = 3 and d = 2, we found the following DPP’s of degree up to 4 (because of

Theorem 3, we can restrict our attention to monic polynomials with constant term 0):

x,

x3, 2x + x3,

x + x4, 2x + x4, x3 + x4, 2x + x3 + x4, 2x3 + x4, x + 2x3 + x4.

We also found the following DAP’s of degree up to 4 (again, monic with constant term 0):

x + x3,

x4, x + x3 + x4, 2x + 2x3 + x4.

Note that the first two DAP’s are the trace and the norm, respectively, for F9, and that some of the

DPP’s listed clearly differ from others by DAP’s. We now know, of course, that a basis for the

vector space of DAP’s is {1, x4, x8, x + x3, x2 + x6, x5 + x7}, the set M = {0, 3, 4, 6, 7, 8} (the degrees

of the DAP’s), and the basic DPP’s are

{x, 2x, x5, 2x5, x + x2 + x5, 2x + 2x2 + 2x5, x + 2x2 + x5, 2x + x + x5}.
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