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SUBGROUP LATTICES THAT ARE CHAINS 
     

AMANDA JEZ 
     
ABSTRACT.  A group G has a subgroup lattice that is a chain if for all subgroups H and K of G, we 
have that H is a subset of K or K is a subset of H.  In this article, we first provide elementary proofs of 
results describing groups whose subgroup lattices are chains, and then generalize this concept to look at 
groups in which the subgroup lattice can be constructed by pasting together chains. 
 

I. INTRODUCTION 
 

A subgroup lattice provides a visual depiction of the subgroup structure of a 
group.   A subgroup lattice is a diagram that includes all the subgroups of the group and 
then connects a subgroup H at one level to a subgroup K at a higher level with a sequence 
of line segments if and only if H is a proper subgroup of K [2, pg. 81].  In Example 1.1, 
you see the subgroup lattice of the quaternion group of order 8, denoted by 8Q .  Many 
other nice examples of subgroup lattices can also be found in [1, pg. 67-70]. 

We consider this group as presented by k,-k}-j,-ji,-i,1,-1,{Q8 =  where  
1) 1a=a1=a for all a in 8Q  
2) -1a=-a for all a in 8Q  
3) i2 = j2 = k2   = -1 and  
4) ij=k, ji=-k, jk=i, kj=-i, ki=j, ik=-j [1, pg. 34].  
  

Example 1.1  
                                                                Q8 

                                         
  

Subgroup lattices have been studied in great depth, as one can see by examining 
Roland Schmidt’s book Subgroup Lattices of Groups [3].  But in this article we study 
what is perhaps the most basic type of subgroup lattice that can occur.  We will focus on 
groups whose subgroup lattices are chains.  We say a group G has a subgroup lattice that 
is a chain if for all subgroups H and K of G, we have that H is a subset of K or K is a 
subset of H.  Example 1.2 identifies some groups whose subgroup lattices are chains.   
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Example 1.2 
Note: Zn = < {0,1,2,…,n-1}, + mod n > 

One can readily see that in all of these examples, the groups are cyclic of prime 
power order.  It indeed turns out that a finite group has a subgroup lattice that is a chain if 
and only if it is isomorphic to npZ  for some prime p and nonnegative integer n.  We 

dedicate Section 2 of this article to the proof of this result.  Although we did not find it 
presented in the literature, this characterization is likely well known by those with 
expertise in the field of group theory.  We present it in this article using elementary 
proofs.   That is, the reader will find that we do not quote deeper group theoretic results 
such as Cauchy’s Theorem or Sylow’s Theorem.    
 

There is also an infinite group whose subgroup lattice is a chain.  Consider the 
group G = {k/pn + Z| k,n are varying elements of Z and p is a fixed prime}, which is a 
subgroup of Q/Z, where Q is the group of rational numbers under addition.  For each 
nonnegative integer i, there is a proper subgroup Gi of G such that Gi = {k/pi +Z: k is an 
element of Z}.  It turns out that for any proper subgroup of G, there is a nonnegative 
integer i such that the proper subgroup is equal to Gi. We present the subgroup lattice of 
G in Example 1.3 and prove that the subgroup lattice is a chain in Theorem 2.5.  
  
Example 1.3 
Subgroup lattice for G = {k/pn + Z| k,n are varying elements of Z and p is a fixed prime} 
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While it is interesting to consider the subgroup lattices of specific groups, one 
may also ask the question, “Given a lattice, is it possible to find a group for which this 
lattice is the subgroup lattice?”  Our investigations in Section 3 stem from this question.  
We examine whether a subgroup lattice might be constructed by taking two chains and 
pasting them together.  In particular, given a group G, is it possible that the collection of 
all of its subgroups splits into 2 non-empty sets of subgroups of G, each of which forms a 
chain with respect to set containment?  Definition 1.4 carefully describes the scenario that 
we wish to consider.   
 
Definition 1.4 - A group G is a group whose subgroup lattice is formed by two chains if 
there are two nonempty sets of proper subgroups S and T of G such that: 

• S U T is the set of all nontrivial proper subgroups of G. 
• S ∩ T is the empty set. 
• For all H in S, every nontrivial subgroup of H is in S and similarly for all K in T, 

every nontrivial subgroup of K is in T. 
• For all S1, S2 in S, S1 is a subset of S2 or S2 is a subset of S1. Similarly, for all T1, 

T2 in T, T1 is a subset of T2 or T2 is a subset of T1 . 
 

If a group G had any of the lattices from Example 1.5 as its subgroup lattice, then 
it would satisfy this definition.  We will see in Section 3 that there are no groups for 
which the first two lattices in Example 1.5 serve as subgroup lattices.  We prove in 
Theorem 2.1 that if G is a group whose subgroup lattice is formed by two chains, then G 
is isomorphic to Zpq where p and q are primes such that p ≠ q.  The only possible 
subgroup lattice from the three presented in Example 1.5 is the third.  
  
Example 1.5 
 
Lattices that would satisfy the definition of being formed by two chains. 
 

 
 
 We close the article by considering how we might generalize Definition 1.4 to 
describe groups with subgroup lattices that are formed by n chains for any positive 
integer n, and providing examples of such groups.  The reader should also observe that all 
of the groups examined in Sections 2 and 3 are groups in which every proper subgroup is 
a group whose subgroup lattice is a chain.  Yet groups in which every proper subgroup 
has a subgroup lattice that is a chain may clearly have more complicated structures than 
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cyclic groups or direct products of cyclic groups, as can be seen in the quaternion group 
of order 8, which is presented in Example 1.1.     
  

Most group theoretic notation in this article is standard.  We do wish to point out 
to the reader that for an element x of a group G, o(x) denotes the order of x.  Work done 
on this project was completed during an independent study at King’s College, Wilkes-
Barre, PA under the supervision of Dr. Joseph Evan. 
 
 

II. GROUPS WHOSE SUBGROUP LATTICES ARE CHAINS 
  
 This section is an in-depth discussion of groups whose subgroup lattices are 
chains.  We first provide elementary proofs of three results, Lemmas 2.1, 2.2, and 2.3, 
that combine to form the proof Theorem 2.4, describing all finite groups whose subgroup 
lattices are chains.  One might also attempt to apply Cauchy’s Theorem or Sylow’s 
Theorem in proving these results, but we aim to give efficient proofs that do not require a 
deep group theoretic background from the reader.  
 
Lemma 2.1.  If G is a finite group and the subgroup lattice of G is a chain, then G is 
cyclic. 
 
Proof.  We prove the contrapositive of this statement.  Suppose G is not cyclic and finite.  
We wish to show that the subgroup lattice of G is not a chain.  Choose x in G such that 
o(x)=max{ Gg|o(g) ∈ }.  Then <x> is a subgroup of G with order o(x).  Recall that G is 
not cyclic, and so there is y in G such that y is not in <x>.  Since y∉<x>, ,<y> is not 
contained in <x>.  So suppose <x> is properly contained in <y>.  Then o(y)>o(x), 
contradicting the choice of o(x).  Thus, <x> is not a subset of <y>.  Therefore, the 
subgroup lattice of G is not a chain. 
 
Lemma 2.2.  If the subgroup lattice of nZ  is a chain, then n has prime power order. 
 
Proof.  Suppose that the subgroup lattice of nZ  is a chain and n does not have prime 
power order.  Then akpn =  and n= bmq  for primes p and q and positive integers a, b, k, 
m such that p does not divide k and q does not divide m.   
 Let nZ =<x>.  Then the orders of < kx >and  < mx > are powers of p and q 
respectively.  It follows from Lagrange’s Theorem that neither of these subgroups is 
contained in the other, contradicting that the subgroup lattice of nZ  is a chain.  Therefore, 
n has prime power order. 
 
Lemma 2.3.  If p is a prime and n is a natural number, then the subgroup lattice of np

Z is 

a chain. 
 
Proof.  For this proof consider, np

Z = <{0,1, … np -1}, + mod np  >.  We first show that 

for any nonzero x in {0,1, … np -1}, there is a nonnegative integer i such that <x>=< ip >. 



 Choose i such that ip  divides x but 1ip +  does not divide x.  Then ip  divides x, 
and it is clear that <x>⊆< ip >.  Since these subgroups are finite it is sufficient to prove 
that o(x)=o( ip ) in order to demonstrate that <x>=< ip > .   
 Of course, o( ip )= i-np .  Now by the choice of i, x=m ip for a positive integer m 
where p does not divide m.  As a consequence of Lagrange’s Theorem, o(x)= kp  for 
some positive integer k.  Observe that i-np x= i-np m ip  is divisible by np .  So k≤  n-i.  But 

np  divides kp x= kp m ip =m ikp + .  Since p does not divide m, n≤  k+i, and thus, k≥  n-i.  
Hence, k=n-i.  Therefore, o(x)=o( ip ), completing our proof that <x>=< ip >. 
 Now the only distinct subgroups of np

Z are of the form < ip > for nonnegative 

integers i, and so in proving that the subgroup lattice of np
Z is a chain, it is sufficient to 

consider only these subgroups.  Thus, let < ip > and < jp > be subgroups of np
Z  where j>i.  

Then, jp = ∈ii-j pp < ip >.  Hence, < jp > ⊆< ip >, completing the proof. 
   
 Lemmas 2.1 and 2.2 together form the proof of the forward direction of Theorem 
2.4.  Lemma 2.3 gives us the proof of the other direction. 
 
Theorem 2.4.  A finite group has a subgroup lattice that is a chain if and only if it is 
isomorphic to npZ . 

 Of course, there is also an infinite group whose subgroup lattice is a chain.  The 
group G = {k/pn + Z| k,n are varying elements of Z and p is a fixed prime}, which is a 
subgroup of Q/Z, is such a group.  We leave it to the reader to prove that G is indeed a 
subgroup of Q/Z.   

 
In order to prove that the subgroup lattice of this group is a chain, we will 

demonstrate that the proper subgroups of G are of the form Gi = {k/pi +Z: k is an element 
of Z} where i is a nonnegative integer.  Once this is shown, one can see that the subgroup 
lattice of G is a chain since for any nonnegative integers i and j with j>i, we can write any 
k/pi as k ji-j /pp  and hence, ji GG ⊆ . 

 
Theorem 2.5.  Let G= {k/pn + Z| k,n are varying elements of Z and p is a fixed prime}.  
If S is a proper subgroup of G, then for some nonnegative integer i, S= iG  where Gi = 
{k/pi +Z: k is an element of Z}. 
 
Proof.  Let S be a proper subgroup of G, and consider the set X={i| i is a nonnegative 
integer and for some integer k which is not divisible by p, k/ pi +Z is in S}.  Clearly X is 
nonempty.  We claim that X has a maximum value. 
 Suppose not.  We will prove that S=G.  Let k/ jp +Z be any element of G.  It 
follows that there is m∈X with m>j.  So there is an integer r, not divisible by p, such that 
r/ mp +Z is in S.  Clearly, the order of r/ mp +Z is mp .  Since the order of 1/ mp +Z is also 



mp , and < r/ mp +Z> is contained in <1/ mp +Z>, we have < r/ mp +Z> = <1/ mp +Z>.  But 
now k/ jp +Z=k j-mp (1/ mp +Z)∈  <1/ mp +Z>=< r/ mp +Z>⊆S.  Hence, G=S. 
 Now X has a maximum value, and so we let h=max(X).  We claim that S= hG .  
Observe that hG =<1/ hp +Z>.  For some integer s that is not divisible by p, s/ hp +Z is in 
S.  Arguing as in the preceding paragraph, the order of s/ hp +Z is clearly hp , and since 
o(1/ hp +Z)= hp  and < s/ hp +Z>⊆<1/ hp +Z>, we have that < s/ hp +Z>=<1/ hp +Z>.  As a 
result, hG ⊆S.   
 On the other hand, any element of S can be written as Zk/p i +  for an integer k 
and nonnegative integer i≤ h.  Therefore any such Zk/pi + in S is equal to kph-i(1/ph + Z) 
and so S ⊆<1/ hp + Z> = hG .       
 
   

III. GROUPS WHOSE SUBGROUP LATTICES ARE FORMED BY TWO CHAINS 
 
 The goal of this section is to characterize a group whose subgroup lattice is 
formed by two chains. We state our result in Theorem 3.1.  Notice that there is no 
assumption regarding the finiteness of G in this result. 
 
Theorem 3.1. If G is a group whose subgroup lattice is formed by two chains, then G is 
isomorphic to Zpq where p and q are primes such that p ≠ q. 
 

In order to prove Theorem 3.1, we need to apply three well known results.  
Lemmas 3.2 and 3.3 follow from the study of inner automorphisms and the definition of a 
normal subgroup, while Lemma 3.4 is the internal characterization of a direct product [2, 
pg. 182-185].    
 
Lemma 3.2.  Let G be a group, and let Gg∈ .  Then the function, Φg: G→G defined by  
Φg(x) =g-1xg is an isomorphism.   
 
Lemma 3.3.  A subgroup S of a group G is normal if and only if for all g in G, Φg(S) = S. 

 
Lemma 3.4.  If G is a group, and H and K are normal subgroups, then HK is a subgroup 
of G.  Furthermore, if G = HK  where HK = {hk | h∈H and k∈K}and H∩K = {e} (where 
e is the identity in G), then G is isomorphic to H×K.  
 
Now we give the proof of Theorem 3.1 
 
Proof of Theorem 3.1. 
  Suppose G is a group whose subgroup lattice is formed by two chains.  Then there 
are two nonempty sets S and T of nontrivial proper subgroups of G.  We claim S contains 
a unique subgroup of prime order.  Since S is nonempty, there exists S1 such that S1 is an 
element of S.  Notice that since the subgroup lattice of S1 is a chain, the subgroup lattice 



of each of its subgroups is a chain. Thus every element of S1 generates a cyclic subgroup 
whose subgroup lattice is a chain. 

Observe that the subgroup lattice of an infinite cyclic group is not a chain.  This is 
true since every infinite cyclic group is isomorphic to the group of integers under addition. 
For any two distinct primes, p and q, < p > and < q > will be subgroups of the integers 
consisting of all multiples of p and q respectively.  It is then clear that < p > is not a 
subset of < q > and < q > is not a subset of < p >.  So every element of S1 must generate a 
finite cyclic subgroup whose subgroup lattice is a chain.  By applying Theorem 2.4 to 
each of these finite cyclic subgroups, it follows that every element of S1 generates a 
cyclic subgroup of prime power order. 

Since S1 is nontrivial, it has at least one nontrivial cyclic subgroup, and we have 
proved that this subgroup has prime power order.  This nontrivial cyclic subgroup will 
then have a subgroup of prime order.  Thus S1 has a subgroup P of order p, where p is a 
prime.  Observe that P is an element of S.  We must now show that the subgroup P is 
unique.  Suppose that P1 is also an element of S that has order p. By definition, P1 is a 
subset of P or P is a subset of P1. But notice both have order p, so P1 = P. Therefore, S 
contains a unique element of order p.  By a similar argument, T contains a unique 
element of prime order q.  Denote this subgroup by Q.   

Now we will show P and Q are normal subgroups.  Let g be an arbitrary element 
of G such that g ≠ e.  If <g> = G, then G is cyclic and P and Q are normal.  If <g> ≠ G, 
then <g> is an element of S or <g> is an element of T.  Now either P≤ <g> or Q≤ <g>.  
Suppose P≤ <g>. Then for all x in P, x is an element of <g>.  Notice then that  
 Φg(x) = g -1 x g  = x for all x in P, since x is a power of g.  So we have that Φg[P] = P, 
when P≤ <g>.  

Suppose then that Q≤ <g>. We need to show that Φg[P] = P.  Now by similar 
argument Φg[Q] = Q.  Since Φg is an isomorphism by Lemma 3.2, Φg[P] is a subgroup 
of prime order, and thus Φg[P] = P or Φg[P] = Q.  But recall Φg[Q] = Q.  Since Φg is an 
injection, Φg[P] = P. So for all g in G, Φg[P] = P and P is normal by Lemma 3.3.  By a 
similar argument, Q is normal.  

Now that P and Q are normal, by Lemma 3.4, PQ ≤ G. We wish to show PQ = G. 
Suppose PQ is a proper subgroup of G.   Then PQ is an element of S or PQ is an element 
of T. Suppose PQ is an element of S.  Then P ≤ PQ and Q ≤ PQ.  But then P is an element 
of S and Q is an element of S.  But recall Q is an element of T. This contradicts that S ∩ 
T is the empty set, and so PQ is not in S. Similarly, PQ is not an element of T. Thus, PQ 
is not a proper subgroup of G, and PQ = G.  By Lemma 2.4, G is isomorphic to P×Q.  

Lastly, we claim p ≠ q.  Suppose p = q.  Let P = <x> and Q = <y>.   Since x and y 
have order p, the subgroups <(x,e)>, <(e,y)>, and <(x,y)> of P×Q  have order p.  But G 
only has two subgroups of prime order, namely P and Q, and G is isomorphic to P×Q.  
This is a contradiction, and so p ≠ q.  Therefore, G is isomorphic to qp ZZ ×  , which is 
isomorphic to pqZ , completing the proof. 

 
The reader should observe that we may adjust Definition 1.4 to define a group 

whose subgroup lattice is formed by n chains for any positive integer n.  For example, for 
any prime p, pp ZZ ×  would be a group whose subgroup lattice is formed by p+1 chains. 
  



The reason for this is that by Lagrange’s Theorem, all nontrivial subgroups of    
Zp x Zp have order p. There are p+1 such subgroups of Zp x Zp. If Zp = <{0,1,2,…, p-1},  
+ mod p>, then the p+1 subgroups are <(1,0)> and {<(x,1)> | x ranges over {0,1,…,p-1}}.  
Example 3.5 demonstrates what happens in the case that p=2. 

 
Example 3.5.  The subgroup lattice of  22 ZZ ×  is formed by three chains. 
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