Two Questions on Continuous Mappings

Xun Ge
Suzhou University, zhugexun@163.com

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation
Available at: https://scholar.rose-hulman.edu/rhumj/vol7/iss2/3
TWO QUESTIONS ON CONTINUOUS MAPPINGS

XUN GE

Abstract. In this paper, it is shown that a mapping from a sequential space is continuous iff it is sequentially continuous, which improves a result by relaxing first-countability of domains to sequentiality. An example is also given to show that open mappings do not imply Darboux-mappings, which answers a question posed by Wang and Yang.

A mapping $f : X \longrightarrow Y$ is continuous if $f^{-1}(U)$ is open in X for every open subset U of Y. In [5], Wang and Yang give some interesting generalizations of continuous mappings.

Definition 1. Let $f : X \longrightarrow Y$ be a mapping.

(1) f is called a sequentially continuous mapping if for every sequence \(\{x_n\} \) converging to x in X, \(\{f(x_n)\} \) is a sequence converging to $f(x)$ in Y.

(2) f is called a Darboux-mapping if $f(F)$ is connected in Y for every connected subset F of X.

It is a standard result that every continuous mapping is both a sequentially continuous mapping and a Darboux-mapping, but neither sequentially continuous mappings nor Darboux-mappings need to be continuous[5, 1]. However, the following result is well known (see [1], for example).

Theorem 2. Let $f : X \longrightarrow Y$ be a mapping, where X is first countable. If f is sequentially continuous, then f is continuous.

Take the above theorem into account, the following question naturally arises.

Question 3. Can first-countability of X in Theorem 2 be relaxed?

On the other hand, Wang and Yang posed the following question in [5].

Question 4. Does there exist an open mapping $f : X \longrightarrow Y$ such that f is not a Darboux-mapping?

In this paper, we investigate the above Questions. We show that we can relax first-countability of X in Theorem 2 to sequentiality, which gives an affirmative answer for Question 3. We also give an example to answer Question 4 affirmatively.

Throughout this paper, all spaces are assumed to be T_1. The set of all natural numbers is denoted by \mathbb{N}. A sequence is denoted by $\{x_n\}$, where the n-th term is x_n. Let X be a space and $P \subset X$.

Definition 5. Let X be a space.

(1) A sequence $\{x_n\}$ converging to x in X is eventually in P if \(\{x_n : n > k\} \cup \{x\} \subset P \) for some $k \in \mathbb{N}$.

2000 Mathematics Subject Classification. 54C05, 54C10, 54D55.

Key words and phrases. Continuous mapping, sequentially continuous mapping, Darboux-mapping, sequential space.
(2) Let \(x \in X \). A subset \(P \) of \(X \) is called a sequential neighborhood of \(x \) if every sequence \(\{x_n\} \) converging to \(x \) is eventually in \(P \), and a subset \(U \) of \(X \) is called sequentially open if \(U \) is a sequential neighborhood of each of its points.

(3) \(X \) is called a Fréchet-space if for every \(P \subset X \) and every \(x \in \overline{P} \), there exists a sequence \(\{x_n\} \) in \(P \) converging to the point \(x \).

(4) \(X \) is called a sequential space if for every \(A \subset X \), \(A \) is closed in \(X \) if and only if \(A \cap S \) is closed in \(S \) for every convergent sequence \(S \) (containing its limit point) in \(X \).

(5) \(X \) is called a k-space if for every \(A \subset X \), \(A \) is closed in \(X \) if and only if \(A \cap K \) is closed in \(K \) for every compact subset \(K \) of \(X \).

Remark 6. It is well known that first countable spaces \(\Rightarrow \) Fréchet-spaces \(\Rightarrow \) sequential spaces \(\Rightarrow \) k-spaces (see [4], for example).

Lemma 7. Let \(X \) be a space. The following are equivalent.

1. \(X \) is a sequential space.
2. For every non-closed subset \(F \) of \(X \), there exists a sequence \(\{x_n\} \) in \(F \) converging to \(x \) for some \(x \in X - F \).
3. Every sequentially open subset of \(X \) is open in \(X \).

Proof. (1) \(\Rightarrow \) (2): Let \(F \) be a non-closed subset of \(X \). Since \(X \) is a sequential space, there exists a sequence \(S \) converging to a point \(x \in X \) such that \(F \cap S \) is not closed in \(S \). It is clear that \(F \cap S \) is infinite. So there exists a subsequence \(\{x_n\} \) of \(S \) such that \(x_n \in F \) for all \(n \in \mathbb{N} \) and \(\{x_n\} \) converges to \(x \). Put \(L = \{x_n : n \in \mathbb{N}\} \cup \{x\} \). If \(x \in F \), then \(x \in F \cap S \), thus \(F \cap S \) is closed in \(S \), a contradiction. So \(x \in X - F \).

(2) \(\Rightarrow \) (3): Let \(U \) be a sequentially open subset of \(X \). If \(U \) is not open in \(X \), that is, \(X - U \) is not closed in \(X \), then there exists a sequence \(\{x_n\} \) in \(X - U \) converging to \(x \) for some \(x \in U \). Thus \(U \) is not a sequentially open subset of \(X \), a contradiction.

(3) \(\Rightarrow \) (1): If \(X \) is not a sequential space, then there exists a non-closed subset \(F \) of \(X \) such that \(F \cap S \) is closed in \(S \) for every convergent sequence \(S \) in \(X \), where \(S \) containing its limit point. Since \(X - F \) is not open in \(X \), \(X - F \) is not a sequentially open subset of \(X \), so there exist a point \(x \in X - F \) and a sequence \(\{x_n\} \) converging to \(x \) such that \(\{x_n\} \) is not eventually in \(X - F \). Thus there exists a subsequence \(\{y_n\} \) of \(\{x_n\} \) such that \(y_n \notin X - F \) for all \(n \in \mathbb{N} \), that is, \(y_n \in F \) for all \(n \in \mathbb{N} \). Put \(S = \{y_n : n \in \mathbb{N}\} \cup \{x\} \), then \(x \notin F \cap S \). Note that \(x \) is a cluster point of \(F \cap S \), \(F \cap S \) is not closed in \(S \). This is a contradiction.

Theorem 8. Let \(f : X \rightarrow Y \) be a mapping, where \(X \) is sequential. If \(f \) is sequentially continuous, then \(f \) is continuous.

Proof. Let \(f : X \rightarrow Y \) be sequentially continuous and let \(U \) be an open subset of \(Y \). Since \(X \) is a sequential space, it suffices to prove that \(f^{-1}(U) \) is sequentially open subset of \(X \) from Lemma 7.

Let \(x \in f^{-1}(U) \) and \(\{x_n\} \) be a sequence converging to \(x \). Since \(f : X \rightarrow Y \) is sequentially continuous, \(\{f(x_n)\} \) is a sequence converging to \(f(x) \in U \). Note that \(U \) is an open neighborhood of \(f(x) \), there exists \(k \in \mathbb{N} \) such that \(f(x_n) \in U \) for all \(n > k \). So \(x_n \in f^{-1}(U) \) for all \(n > k \), thus \(\{x_n\} \) is eventually in \(f^{-1}(U) \). This proves that \(f^{-1}(U) \) is a sequentially open subset of \(X \).

The above theorem improves Theorem 2 and gives an affirmative answer for Question 3. However, the following question is still open.
Question 9. Let \(f : X \rightarrow Y \) be a mapping, where \(X \) is a \(k \)-space. If \(f \) is sequentially continuous, is \(f \) continuous?

The following example answers Question 4 affirmatively.

Example 10. There exists an open mapping \(f : X \rightarrow Y \) such that \(f \) is not a Darboux-mapping.

Proof. Let \(X = \mathbb{R} \) with the Euclidean topology and \(Y = \mathbb{R} \) with the discrete topology, where \(\mathbb{R} \) is the set of all real numbers. Let \(f : X \rightarrow Y \) be the identity mapping. Then \(f \) is an open mapping because every subset of discrete space \(Y \) is open in \(Y \). Notice that \(X \) is a connected space and \(Y = f(X) \) is a discrete space, thus \(Y \) is not connected. So \(f \) is not a Darboux-mapping.

References

Department of Mathematics, Suzhou University, Suzhou, 215006, P.R.China
E-mail address: zhugexun@163.com