Two Questions on Continuous Mappings

Xun Ge

Suzhou University, zhugexun@163.com

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation
Ge, Xun (2006) “Two Questions on Continuous Mappings,” Rose-Hulman Undergraduate Mathematics Journal: Vol. 7 : Iss. 2 , Article 3. Available at: https://scholar.rose-hulman.edu/rhumj/vol7/iss2/3
TWO QUESTIONS ON CONTINUOUS MAPPINGS

XUN GE

Abstract. In this paper, it is shown that a mapping from a sequential space is continuous iff it is sequentially continuous, which improves a result by relaxing first-countability of domains to sequentiality. An example is also given to show that open mappings do not imply Darboux-mappings, which answers a question posed by Wang and Yang.

A mapping \(f : X \rightarrow Y \) is continuous if \(f^{-1}(U) \) is open in \(X \) for every open subset \(U \) of \(Y \). In [5], Wang and Yang give some interesting generalizations of continuous mappings.

Definition 1. Let \(f : X \rightarrow Y \) be a mapping.

1. \(f \) is called a sequentially continuous mapping if for every sequence \(\{x_n\} \) converging to \(x \) in \(X \), \(\{f(x_n)\} \) is a sequence converging to \(f(x) \) in \(Y \).
2. \(f \) is called a Darboux-mapping if \(f(F) \) is connected in \(Y \) for every connected subset \(F \) of \(X \).

It is a standard result that every continuous mapping is both a sequentially continuous mapping and a Darboux-mapping, but neither sequentially continuous mappings nor Darboux-mappings need to be continuous[5, 1]. However, the following result is well known (see [1], for example).

Theorem 2. Let \(f : X \rightarrow Y \) be a mapping, where \(X \) is first countable. If \(f \) is sequentially continuous, then \(f \) is continuous.

Take the above theorem into account, the following question naturally arises.

Question 3. Can first-countability of \(X \) in Theorem 2 be relaxed?

On the other hand, Wang and Yang posed the following question in [5].

Question 4. Does there exist an open mapping \(f : X \rightarrow Y \) such that \(f \) is not a Darboux-mapping?

In this paper, we investigate the above Questions. We show that we can relax first-countability of \(X \) in Theorem 2 to sequentiality, which gives an affirmative answer for Question 3. We also give an example to answer Question 4 affirmatively.

Throughout this paper, all spaces are assumed to be \(T_1 \). The set of all natural numbers is denoted by \(\mathbb{N} \). A sequence is denoted by \(\{x_n\} \), where the \(n \)-th term is \(x_n \). Let \(X \) be a space and \(P \subset X \).

Definition 5. Let \(X \) be a space.

1. A sequence \(\{x_n\} \) converging to \(x \) in \(X \) is eventually in \(P \) if \(\{x_n : n > k\} \cup \{x\} \subset P \) for some \(k \in \mathbb{N} \).

2000 Mathematics Subject Classification. 54C05, 54C10, 54D55.

Key words and phrases. Continuous mapping, sequentially continuous mapping, Darboux-mapping, sequential space.
(2) Let $x \in X$. A subset P of X is called a sequential neighborhood of x if every sequence $\{x_n\}$ converging to x is eventually in P, and a subset U of X is called sequentially open if U is a sequential neighborhood of each of its points.

(3) X is called a Fréchet-space if for every $P \subset X$ and for every $x \in \overline{P}$, there exists a sequence $\{x_n\}$ in P converging to the point x.

(4) X is called a sequential space if for every $A \subset X$, A is closed in X if and only if $A \cap S$ is closed in S for every convergent sequence S (containing its limit point) in X.

(5) X is called a k-space if for every $A \subset X$, A is closed in X if $A \cap K$ is closed in K for every compact subset K of X.

Remark 6. It is well known that first countable spaces \implies Fréchet-spaces \implies sequential spaces \implies k-spaces (see [4], for example).

Lemma 7. Let X be a space. The following are equivalent.

1. X is a sequential space.
2. For every non-closed subset F of X, there exists a sequence $\{x_n\}$ in F converging to x for some $x \in X - F$.
3. Every sequentially open subset of X is open in X.

Proof. (1) \implies (2): Let F be a non-closed subset of X. Since X is a sequential space, there exists a sequence S converging to a point $x \in X$ such that $F \cap S$ is not closed in S. It is clear that $F \cap S$ is infinite. So there exists a subsequence $\{x_n\}$ of S such that $x_n \in F$ for all $n \in \mathbb{N}$ and $\{x_n\}$ converges to x. Put $L = \{x_n : n \in \mathbb{N}\} \cup \{x\}$. If $x \in F$, then $x \in F \cap S$, thus $F \cap S$ is closed in S, a contradiction. So $x \in X - F$.

(2) \implies (3): Let U be a sequentially open subset of X. If U is not open in X, that is, $X - U$ is not closed in X, then there exists a sequence $\{x_n\}$ in $X - U$ converging to x for some $x \in U$. Thus U is not a sequentially open subset of X, a contradiction.

(3) \implies (1): If X is not a sequential space, then there exists a non-closed subset F of X such that $F \cap S$ is closed in S for every convergent sequence S in X, where S containing its limit point. Since $X - F$ is not open in X, $X - F$ is not a sequentially open subset of X, so there exist a point $x \in X - F$ and a sequence $\{x_n\}$ converging to x such that $\{x_n\}$ is not eventually in $X - F$. Thus there exists a subsequence $\{y_n\}$ of $\{x_n\}$ such that $y_n \notin X - F$ for all $n \in \mathbb{N}$, that is, $y_n \in F$ for all $n \in \mathbb{N}$. Put $S = \{y_n : n \in \mathbb{N}\} \cup \{x\}$, then $x \notin F \cap S$. Note that x is a cluster point of $F \cap S$, $F \cap S$ is not closed in S. This is a contradiction. \square

Theorem 8. Let $f : X \rightarrow Y$ be a mapping, where X is sequential. If f is sequentially continuous, then f is continuous.

Proof. Let $f : X \rightarrow Y$ be sequentially continuous and let U be an open subset of Y. Since X is a sequential space, it suffices to prove that $f^{-1}(U)$ is a sequentially open subset of X from Lemma 7.

Let $x \in f^{-1}(U)$ and $\{x_n\}$ be a sequence converging to x. Since $f : X \rightarrow Y$ is sequentially continuous, $\{f(x_n)\}$ is a sequence converging to $f(x) \in U$. Note that U is an open neighborhood of $f(x)$, there exists $k \in \mathbb{N}$ such that $f(x_n) \in U$ for all $n > k$. So $x_n \in f^{-1}(U)$ for all $n > k$, thus $\{x_n\}$ is eventually in $f^{-1}(U)$. This proves that $f^{-1}(U)$ is a sequentially open subset of X. \square

The above theorem improves Theorem 2 and gives an affirmative answer for Question 3. However, the following question is still open.
Question 9. Let \(f : X \rightarrow Y \) be a mapping, where \(X \) is a \(k \)-space. If \(f \) is sequentially continuous, is \(f \) continuous?

The following example answers Question 4 affirmatively.

Example 10. There exists an open mapping \(f : X \rightarrow Y \) such that \(f \) is not a Darboux-mapping.

Proof. Let \(X = \mathbb{R} \) with the Euclidean topology and \(Y = \mathbb{R} \) with the discrete topology, where \(\mathbb{R} \) is the set of all real numbers. Let \(f : X \rightarrow Y \) be the identity mapping. Then \(f \) is an open mapping because every subset of discrete space \(Y \) is open in \(Y \). Notice that \(X \) is a connected space and \(Y = f(X) \) is a discrete space, thus \(Y \) is not connected. So \(f \) is not a Darboux-mapping. \(\square \)

References

Department of Mathematics, Suzhou University, Suzhou, 215006, P.R.China
E-mail address: zhugexun@163.com