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IMPROVING ON THE RANGE RULE OF THUMB

Alfredo Ramirez Charles Cox

Abstract. In manufacturing it is useful to have a quick estimate of the standard
deviation. This is often done with the range rule of thumb:

sample range
1 .

o=

This rule works well when the data comes from a normal distribution and the
sample size is around 30, but fails miserably for other distributions and sample
sizes. Through the use of Monte Carlo simulations we suggest new rules of thumb

: : : ~ range : : : . ~ n+1  range
for the normal distribution (o ~ BVInnT5) ), uniform distribution (o ~ 4 NGb )

and exponential distribution (o =~ %) which are dependent on sample size.

We then seek to verify these empirical results theoretically.

Acknowledgements: Both authors would like to thank their research advisor, Dr. Chris
K. Caldwell, for help with this project.
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1 Introduction

To measure the control of an industrial process, it is often necessary to estimate the variance
in a measurement made on the parts being produced. To do this very quickly one can use a
rule of thumb that requires only the range (either because it only requires two measurements
if the parts are sorted or because it may be the only statistic available), as a simple and
speedy estimate of the standard deviation. One such rule found in many introduction to
statistics textbooks [0] is called simply the range rule of thumb:

sample range
o ———.
4

We will see below that this estimate works well only for a normal distribution and only when
the sample size is around 30. To address this, some engineering statistics texts suggest using
a different value (other than 4) for each of the smaller sample sizes n. For example, in [5] it
is suggested that for the normal curve we use

sample range

o~ )
¢(n)
where ((n) is as in Table . Our goal in this paper is to find a simple algebraic approximation
Table 1: Constants for a rule of thumb

sample size n 2 3 4 5
¢(n) 1.128379 1.692569 2.058751 2.325929

for such values ((n), and to do this not only for the normal distribution, but also the uniform
and the exponential distributions. This will give us several new rules of thumb, including
one for each of the most commonly used distributions in industry.

Our first approach to finding new rules of thumb is empirical—we use Monte Carlo
methods written in the statistical programming language R. We create simple functions
which we can call repeatedly to (1) generate random samples from our chosen distribution,
(2) calculate the statistic

sample range

~ population standard deviation

for each sample, and then (3) return the list of these statistics ¢ to the user. For example,
Table [2| shows the code used to generate a list of (’s with length trials from samples of size
sampleSize from the standard normal distribution.

The idea of this function is to allow the user to input the number of trials to be performed
and the sample size, and from this the function will return the statistics about the sample
((n)’s. In particular we calculate ¢ for each of the thousands of samples generated, and then
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Table 2: A generic R program to compute ¢ for the normal distribution

normalGenerator <- function(sampleSize,trials)
{
newList <- list()
populationSD = 1
for(i in 1:trials)
{
tempStat=rnorm(sampleSize)
tempRange=max (tempStat)-min(tempStat)
tempRatio=tempRange/populationSD
newList[i]=tempRatio
}
g<-sort(unlist(newList))
return(...)

for the resulting sets of ((n) values, we calculate the mean, the 2.5% and 97.5% quantiles.
These quantiles can be produced by various commands in R such as quantile(newList).
We manually export these data to Excel, and then visually develop empirical models.

It is important to notice that for most distributions for the original samples (even the
normal distribution), the resulting distribution for the ratios {(n) will not be normal. This is
most easily seen by glancing at the graphs which show the mean and middle 95% of each set
of zetas (the vertical lines in Figures 1, 3, 4 and 5). If the distribution of the {(n) values was
normal for any fixed n, the 2.5%, and 97.5% quantiles would be symmetric about the mean
in these graphs, and they clearly are not. So the intervals given are prediction intervals for
C.

In section 5 we will compare the results of the Monte Carlo method (described above)
with those from a theoretical approach.

2 The Normal Distribution

Many applications are adequately modeled by a normal distribution—these include weights
of babies, heights, grades, etc. For this reason, it is the first continuous distribution discussed
in introductory statistics courses. Note that it is sufficient to calculate a rule of thumb for
just the standard normal (mean 0, standard deviation 1) and this same rule (same values
of ¢(n)) will work for any normal distribution. To see this we prove the following. Similar
results hold for our other distributions.

Theorem 2.1. Let X ~ N(u,0?) be a normal random variable. Then for all constants a
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and b
((aX +b) = ¢(X).

Proof. Tt is well known that if X ~ N(u,o?), then the random variable W = aX + b also
follows a normal distribution. The population standard deviation of the transformed data
W = aX + b is |a|] times as large as that for X. Also for any sample of X values, say
{X1, Xs,..., X, }, the range of the transformed values {aX; +b,aXs+0,...,aX, + b} is |a|
times as large. Since ((aX + b) is the ratio of these two values (the population standard
deviation and the sample range), the factors of |a| cancel and we have ((aX +0) = ((X). O

To develop our rule of thumb, for twenty-two sample sizes from 2 to 50,000, we used our
program to find thousands of samples and their associated ( values. These are summarized
in Table B

Table 3: Random sample data for ¢ for a normal distribution

sample percentiles
size  trials mean 2.5% 97.5% model
2 50000 1.1255 0.0446 3.1576 0.9977
3 50000 1.6913 0.3008 3.6944 1.6444
4 50000 2.0617 0.6035 3.9655 2.0322
5 50000 2.3271 0.8485 4.2073  2.3059
6 50000 2.5340 1.0746 4.3356 2.5157
10 50000 3.0749 1.6731 4.7882 3.0523
20 50000 3.7379 2.4567 5.2884  3.6925
30 50000 4.0851 2.8642 5.5691 4.0327
50 50000 4.4981 3.3539 5.9051 4.4337

30000 10000 8.2257 7.5538 9.1444 8.1323
50000 10000 8.4549 7.8036 9.3448 8.3680

These data were transferred to Microsoft Excel to produce the graph in Figure . (Due to
the wide range of sample sizes, we plotted the data on a logarithmic scale.) Each vertical bar
represents a 95% prediction interval for ((n) and the dot on that bar is the point estimate
of the ((n) values.

Looking at the data we decided to begin with a natural logarithmic model and build on
it. However, since this is a logarithmic scale, the data should appear “linear” if it is to fit a
logarithmic model. We noticed the curve is almost the same as a square root function, so the
next approach was to take the square root of the natural log of the sample size, and from that
we proceeded to find the appropriate transformations. (In other words, we considered lots
of things until we got a visual fit.) The end result was that ¢(n) ~ 3v/Inn — 1.5, which we
restate in the following rule of thumb. (This rule is plotted as the dashed line in Figure[])
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Figure 1: Mean, 2.5% and 97.5% percentiles of ¢ by the size of samples

which were taken from a normal distribution
10

z / —e—Mean

= = New Rule

1 10 100 1000 10000 100000

Sample Size n

Empirical Rule of Thumb 2.2. For samples of size n from a normal distribution:

range
o ——.
3vVInn —1.5

To further test this model empirically, we first compared it to the old rule (¢ = 4) by
applying them both to new random samples from a normal population with a mean of 20
and standard deviation of 15. As you can see in Figure [2] neither model fared very well
when the sample size was less than 10. For larger values the new rule of thumb appears to
work well, but the old rule of thumb becomes increasing less accurate.

Another way to test this model is to compare our model for ¢ to the values in Table
which are the correct theoretical values from [2, 3] and [5]. Our rule produces estimates of
o that are slightly too large; we decided to leave it like this for “safety” (it may be more
conservative to assume less control in the industrial process).

Table 4: Constants ¢ for the rule of thumb: o ~ range/(

sample size n 2 3 4 5 10 30 60 100

Theoretical 1.12838 1.69257 2.05875 2.32593 3.07751 4.08552 4.63856 5.01519
Our model 0.99766 1.64444 2.03223 2.30591 3.05228 4.03270 4.57035 4.93789

3 The Exponential Distribution

Classical examples that lead to the use of the exponential distribution (defined by the p.d.f
p(z) = s/ for > 0,p(z) = 0 otherwise) include the time it will take for radioactive
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Figure 2: Comparing two rules of thumb
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material to decay, and the lifetime of components like light bulbs. When determining the
rule of thumb for the exponential distribution the same process used to find the estimate
for the normal distribution was applied. We tried several values of # and the distribution
of ¢ appears independent of 6, so we used § = 3 in our calculations. Naturally, we had to
change the R code slightly to have it generate random data from the exponential distribution
(see Table |5)). From here we once again transferred the data into Excel and graphed the
data with the statistic {(n) dependent upon the sample size n (see Figure |3))—so the linear
appearance makes sense.

We were originally surprised by the linear appearance the data took and were expecting
something more unusual (as we saw with the normal distribution). We first tried to fit a
linear model to the data by using Excel’s Trendline command. The results it gave us did
not fit the data well enough. We next tried a model of the form ¢ = aln(n) + b. This gave
us a model (¢ = Inn + 3), that fit the data extremely well (see Empirical Rule of Thumb
3.1). We will later show this rule is asymptotically correct.

Empirical Rule of Thumb 3.1. For samples of size n from an exponential distribution:

range

lnn+‘§1'

4 The Uniform Distribution

Programming languages today such as C++ have built in pseudo-random number generators.
These generators will follow closely a uniform distribution. That is, given an interval from
which a number may be chosen at “random”, each number in that interval is equally likely
to be picked. To find the rule of thumb for the uniform distribution we began by looking at
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Table 5: Random sample data for  for an exponential distribution

sample percentiles
size  trials mean 2.5% 97.5% model
2 50000 0.9985 0.0254 3.6844  1.1376
3 50000 1.4980 0.1706 4.3976  1.5431
4 50000 1.8379 0.3473 4.7698  1.8307
5 50000 2.0723 0.5051 5.0492  2.0539
6 50000 2.2810 0.6548 5.2813  2.2362
10 50000 2.8209 1.0793 5.9044  2.7470
20 50000 3.5472 1.7315 6.5945  3.4402
30 50000 3.9685 2.1297 7.0401  3.8456
50 50000 4.4806 2.6352 7.5609  4.3565

30000 10000 10.8960 9.0045 13.9092 10.7534
50000 10000 11.4186 9.5015 14.4478 11.2642

Ul0,1]. Now it should be noted that for any uniform distribution Ula, b, the endpoints a
and b can be linearly transformed into 0 and 1, and so we know the result of Theorem 1.1
also applies to the uniform distribution as well. The results of the data we generated are
located in Table [6] The graph in Figure [ clearly has an asymptote as n — oo, because the
expected range will approach 1, so we have { — % = v/12. We tried models which were a

rational function times v/12 and settled on ((n) ~ Z—ﬂ\/ 12. (We will prove this is the correct

expected value of ((n) in section 5.1.) This is expressed as Empirical Rule of Thumb 4.1.

Empirical Rule of Thumb 4.1. For samples of size n from a uniform distribution:

n+1 range

n—1 12

(o~

5 A Theoretical Approach

In this section we will attempt to verify our empirical models using theoretical methods.
Suppose the random variables X, X, ..., X, are a sample of size n from a distribution with
cumulative distribution function P(z) (and p.d.f. p(x) = P'(z)). When we arrange the
sample in ascending order

Xy, X@)s -5 X(n)s

we call X(;) the ith order statistic (¢ = 1,2,...,n). The difference W; = X(,_y) — X(i41) is
called the ith quasi-range and of course wy is just the range. In his text “Order Statistics”
[2, p. 10], H. A. David gives the following joint distribution for the quasi-ranges.



PAGE 8 RHIT UNDERGRAD. MATH. J., VoL. 13, No. 2

Figure 3: Mean, 2.5% and 97.5% percentiles of ¢ by the size of samples

which were taken from an exponential distribution
10
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Sample Size n

n! e
Fuw,) = [ Pe) - P@PE v (5.1

ri2(n—2r—=2)! J_
(P(o+w) — P())"™* p(a)p(s + w)da.

In the following subsections we integrate wqf(wp) to find the expected value E(wg) of
the the range, use this to compute a theoretical expected value for {(n), and then compare
it to our Monte Carlo estimates.

5.1 Uniform Distribution

First, recall that it is sufficient to consider a uniform distribution on the interval [0, 1], so
we begin with the following probability density function:

(2) = 1 0<z<1
P = 0 otherwise.

The cumulative density function, P(z), is the anti-derivative of p(z):

0 <0
Pz)=¢ =z 0<z<1
1 r<l1.

For r = 0, the probability density function for the range w = wy can be computed from
Equation (5.1)) as follows. Note that p(z)p(x + w) =0 if x < 0 or x +w > 1, so our limits
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Table 6: Random sample data for ¢ for an uniform distribution

sample percentiles
size  trials mean 2.5% 97.5% model
2 50000 1.1532 0.0446 2.9100 1.1547
3 50000 1.7364 0.3344 3.1353 1.7321
4 50000 2.0772 0.6812 3.2280 2.0785
5 50000 2.3107 0.9873 3.2789 2.3094
6 50000 2.4736 1.2402 3.3174 2.4744
10 50000 2.8342 1.9713 3.3802 2.8343
20 50000 3.1331 2.6032 3.4219 3.1342
30 50000 3.2415 2.8711 3.4357 3.2406
50 50000 3.3284 3.0953 3.4472 3.3283

30000 10000 3.4639 3.4635 3.4641 3.4639
50000 10000 3.4640 3.4637 3.4641 3.4640

of integration run from 0 to 1 — w:

(w) = n /1w(a: —z(z +w)°((z +w) — x)"’2(0)’2(1)(1)dx
b o 012(n—2(0) - 2)! J,
nl e n—2
- M/O wh e

= n(n—1) xw"_2|(1)_w

= nn—1(1—wuw" 2

Now we use this to calculate the expected value of the range w = wy as follows:
1
E(w) = / xp(x)dx
0
1
= n(n— 1)/ r(z" 2 — 2" N)da
0

— a(n—1) [x—n— "’“"nH] 1

n  n+lf|,
1) —
— n(n_l)w
n(n+1)
~on—1
Con4 1

Finally, recall the standard deviation of the uniform distribution on [0, 1] is 1/4/12, so the
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Figure 4: Mean, 2.5% and 97.5% percentiles of ¢ by the size of samples
which were takeg from a uniform distribution
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expected value of ((n) is Z—Jr}\/ 12; this is exactly what we computed empirically (Empirical
Rule of Thumb 4.1).
Looking at the other quasi-ranges (r values greater than zero) we found

—(2r+1
E(w) = n—(@r+1)
n+1
This gives an additional (proven, not just empirical) rule of thumb:
Rule of Thumb 5.1. For samples of size n from a uniform distribution:

n+1 (rth quasi-range)

n—2r—1 V12

o (r>0, n>2r+2).

5.2 Exponential Distribution
For the exponential distribution (with 6 > 0) we started with the probability density function
1 —z/0 > ()
e x>
ple) =4 7 :
0 otherwise

SO
{1—6‘”/9 x>0

0 otherwise.
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Table 7: Expected values of ( = Y (; = 0, 1) for the Exponential Distribution

g
Wo wy Wo w
n E(5) E(H) | n E(Y) E(5)
3 761 223
3 2 - 9 280 140
11 1 7129 481
4 6 2 10 2520 280
50 5 7381 4609
5 24 6 11 2520 2520
6 274 26 12 83711 4861
120 24 27720 2520
7 1764 154 15 1171733 785633
720 120 360360 360360
] 13068 1044 90 275295799 10190221
5040 720 77597520 4084080

Because of the complexity of computing the integrals in Equation 5.1}, and then integrat-
ing the result to find the expected value, we used the computational software package Maple
[8]. We computed E(w,) with r = 0 and 1 to find the results in Table 7]

Our advisor helped us discover that for r = 0, these values are H(n—1), where H(n)
is the nth harmonic number H(n) = 1 + % + % + - %; and for r = 1, these values are
H(n—2)—1. The harmonic numbers have the asymptotic expansion

11 1 1
H =1 - — o=
() =lnty+ o0 =90+ o (n6> ’

where 7 is the Euler-Mascheroni constant 0.5772156649. .. (see [7, p. 971, 1307]). It seems
reasonable to conjecture

EW,)
. ~ ln(n—1)+’y+2n_2
E(W) N 1
M)~ w2+ o)+ 5

We tested these against the values in Table [7] and with many other sample sizes n up to
n = 10,000.

Recall that Empirical Rule of Thumb 3.1 is equivalent to E(Wy)/o ~ Inn+ 5 which does
match the above asymptotically. But a better model might be the following.

Empirical Rule of Thumb 5.2. For samples of size n from an exponential distribution:

range

o~
In(n—1) +~v + 2n1_2

The term T1—2 could be left off for all but the smallest values of n (say n < 10). We had
been very pleased with the fit of our previous rule of thumb (see Figure [3)) until we graphed
this one (see Figure [5)).

Finally, using the first quasi-range could be more resistant to outliers (which is especially
important for distributions with infinite support like the exponential), so we suggest:
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Figure 5: Mean, 2.5% and 97.5% percentiles of ¢ by the size of samples
which were taken from an exponential distribution
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Empirical Rule of Thumb 5.3. For samples of size n from an exponential distribution:

first quasi-range
o~ :
In(n—2) + (y—1)

5.3 Normal Distribution

The standard normal distribution is defined by:
()= e (1)
x) = ex :
P R TP 2

|
P(x) = / me_uﬂ/zdw.

To analyze the normal distribution as we did the other distributions above we would need
to integrate wf(w) using the p.d.f. f(w) from Equation [5.1] Finding f(w) alone requires
us to integrate powers of the integral for P(x) above. At the time of writing this paper we
are still working with Maple to try and approximate these values of F(W,) using Maple’s
built-in error function.

SO

6 Conclusion

In this research project we sought to understand the naive rule of thumb o = range/4. It is
now clear that a useful rule of thumb must include information from both the sample size
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and the underlying distribution.

In the future it would be interesting to study rules based on the quasi-ranges (such
as our rules of thumb and and especially those made from linear combinations of
quasi-ranges. These should be less sensitive to outliers. We also would like to prove the
conjectured results of section 5.2 and succeed in theoretically approximating expected values
for the quasi-ranges of the normal distribution.

We also considered exploring rules of thumb for the Gamma and Beta distributions, but
will leave these to the reader.
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