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Abstract

Data can be lost for different reasons, but sometimes the missingness is a part of the data
collection process. Unbiased and efficient estimation of the parameters governing the re-
sponse mean model requires the missing data to be appropriately addressed. This paper
compares and contrasts the Maximum Likelihood and Inverse Probability Weighting esti-
mators in an Outcome-Dependent Sampling design that deliberately generates incomplete
observations. We demonstrate the comparison through numerical simulations under varied
conditions: different coefficient of determination, and whether or not the mean model is
misspecified.
Keyword: Outcome-Dependent Sampling, Maximum Likelihood, Inverse Probability
Weighting, EM Algorithm

Rose-Hulman Institute of Technology
Spring, 2021

1



1 Introduction

Consider a hypothetical study about the association between oxygen levels and the age of
patients with COVID-19. Researchers may conduct it in two stages, sampling patients’
ages and oxygen levels in the first stage. Based on the information obtained from the first
stage, some elderly patients are identified to be critically ill. Then, in the second stage, the
researcher will collect detailed information such as medical history from these seriously ill
patients. This hypothetical study is an example of an Outcome-Dependent Sampling (ODS)
study, where data are collected in two stages. In the first stage, information is available
on the response and some of the covariates for all observations. However, in the second
stage, information is available on other covariates among only a subset of the sample (Zhao
& Lipsitz, 1992). Further, the likelihood of observing an individual in the second stage can
depend on data collected during the first stage. This sampling method allows researchers to
concentrate resources on places with the most valuable information according to their topic
(Weaver & Zhou, 2005). However, this unique design deliberately generates incomplete
observations in the final dataset. Therefore, estimation of the parameters governing the
model for the response requires the missing data to be appropriately addressed.
Among applied researchers, it is common only to retain complete cases when data is subject
to missingness. This approach is called complete-case (CC) analysis, also known as case
deletion and listwise deletion, and is usually the default in many software packages. It
is admittedly straightforward to understand but not always justified since it may exclude
potentially helpful information. In an ODS study, missingness has a systematic pattern and
is intrinsic to the data collection, where the likelihood of observing a complete case varies
among observations. Therefore, estimates directly obtained from the complete-case analysis
can be biased and inefficient (Schafer & Graham, 2002).
For general missing data problems, three primary methods have been developed as alter-
natives to the complete-case approach: Multiple Imputation, Maximum Likelihood (ML),
and Inverse Probability Weighting (IPW) (Schafer & Graham, 2002). Multiple Imputa-
tion solves the missingness by creating different plausible versions the data by imputing the
missing values for multiple times and aggregating the results. ML estimation obtains the
estimates directly by optimizing a likelihood function that incorporates the impact of the
missingness. In the IPW approach, the analysis model is fitted only to the complete obser-
vations, but different weights are assigned to adjust individual contribution to the analysis
based on the missingness structure.
In this paper, we only discuss ML and IPW; the Multiple Imputation method is outside the
scope of this paper. Earlier works have compared various ML estimators and IPW estimators,
with the ML methods tending to outperform the IPW methods in efficiency. However,
Seaman et al. (2011) discuss ways to improve IPW estimators’ efficiency by truncating the
weights before assigning them to the corresponding observation. The previous works did not
compare the ML estimators with estimators calculated by this improved version of the IPW
method. Moreover, while the earlier works theorized on the result, they did not thoroughly
compare the two methods when the mean response model is misspecified. Therefore, in
this article, we would like to compare the ML estimators with the weight-stabilized IPW
estimators in an Outcome-Dependent Sampling design under varied conditions. We will
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demonstrate the comparisons through numerical simulations.

2 Types of Missingness Mechanisms

Missingness, or incompleteness, is usually represented by a matrix of Bernoulli random
variables, R. Within the scope of this paper, R is reduced as follows:

Ri =

1, if the i-th subject is fully observed
0, otherwise

It is dictated by the missingness mechanism, which is a part of the data generation process.
The mechanism plays a crucial role in the study of missing-data analysis (Schafer & Graham,
2002). It helps to characterize the relationship between the missingness matrix and the
original data matrix. There exist three types of missingness mechanisms: Missing Completely
at Random (MCAR), Missing at Random (MAR), and Missing Not at Random (MNAR).
In this paper, we will only discuss MCAR and MAR.
Let the data matrix X = (xij), which consists of Xmis, the missing variables, and Xobs,
the observed variables. In a missing variable, some subjects are unobserved; however, in an
observed variable, the value is observed for all observations. Moreover, let the missingness
vector R = (R1, R2 . . . Ri . . .). Mathematically, the mechanism can be classified by the
conditional distribution f(R|X,Θ), where Θ is an unknown parameter vector.

2.1 Missing Completely at Random

If the likelihood of being observed is independent of any variables, the missingness mechanism
is MCAR. That is,

Pr(R|X,Θ) = Pr(R|Θ).
MCAR is a strong ideal assumption on the mechanism, which assumes the missingness is
unrelated to all variables. It indicates that the pattern is not affected by the studied subjects.
For instance, when we research blood samples, several samples can be contaminated during
the delivery process. Thus, we cannot collect information from these polluted specimens.
Nothing about the specimens made them more or less likely to be contaminated.

2.2 Missing at Random

If the likelihood of being observed depends only on those fully observed variables, the miss-
ingness mechanism is MAR. That is,

Pr(R|X,Θ) = Pr(R|Xobs,Θ).
Compared to MCAR, MAR is a less constrained statement. Based on this definition, MCAR
can be seen as an extreme, special case of MAR (Schafer & Graham, 2002). Due to the unique
design of ODS, the missingness follows the pattern of MAR. The likelihood an observation
is completely observed depends on data collected during the first stage, where all variables
are fully observed.
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3 ODS Design and Likelihood Function

In Section 1, we described the data collection of an ODS study in general. Now, we present a
specific sampling process with notation and detail. In the first stage, we sampleN individuals
from the population and obtain Y , a continuous outcome variable, and X, a continuous
predictor variable, from all of them. In the second stage, we obtain Z, a binary categorical
predictor variable, from a subset of the sample subjects. For each individual, the likelihood
Z is observed depends on the values for variables obtained in the first stage: Y , and X.
We define R to indicate the completeness of the observations in the data set. Under this
setting, R indicates if Z is obtained from the individuals. Thus, the missingness mechanism
is MAR as R depends only one the observed variables. Let S represent the index set of
all individuals of complete observation, and let S̄ represent the index set of all individuals
whose Zi is missing where i = 1, ..., N . That is, S = {i : Ri = 1} and S̄ = {i : Ri = 0}.
Zhao et al. (1992) discuss the likelihood function for two-stage case-control designs. In their
setting, the response variable is binary, and the first predictor variable is discrete. However,
the ODS design for continuous outcomes is comparable to the case-control design in terms
of the missingness mechanism. The general expression of the observed likelihood function is
invariant to variables’ types and distributions. Therefore, the observed likelihood for a data
set with this ODS design is

LObs(Θ) =
N∏
i=1

[
f(yi, xi; Θ)f(zi|yi, xi; Θ)

]Ri
[
f(yi, xi; Θ)

]1−Ri

The goal of interest is to modify and utilize the likelihood function to perform estimation
and inference for Θ, a vector of parameters that describe the variables.

4 Analysis Methods

4.1 Complete-Case Analysis

As we have introduced in Section 1, CC analysis is a common method in the presence of
data missingness. After we remove the incomplete observations from the data set, all the
remaining observations in the edited data set are complete. These remaining observations
are indexed by elements in S. For all i ∈ S, Ri = 1. As a result, the likelihood function is
modified to LCC(Θ).

LCC(Θ) =
∏
i∈S

[
f(yi, xi; Θ)f(zi|yi, xi; Θ)

]Ri
[
f(yi, xi; Θ)

]1−Ri

=
∏
i∈S

[
f(yi, xi; Θ)f(zi|yi, xi; Θ)

]

Then, the CC analysis obtains Θ̂ by maximizing LCC(Θ). There are a few circumstances
where the CC analysis can yield valid estimators. When the missingness mechanism is
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MCAR, the estimator is generally unbiased and consistent because the completeness is inde-
pendent of all variables in the data set. The complete cases can be viewed as random sample
from a imagined full data set (Schafer & Graham, 2002; Seaman & White, 2011). In our
specific ODS design notations, Pr(R = 1|X, Y ; Θ) = Pr(R = 1). Second, the CC analysis
estimator can have negligible bias under a weaker condition: the missingness mechanism is
MAR, but it is independent of the response variable given the observed predictor variables.
This assumes the mean model is correctly specified (White & Carlin, 2010; Seaman & White,
2011). In our notations, Pr(R = 1|X, Y ; Θ) = Pr(R = 1|X; Θ).
In situations other than the two mentioned above, the CC analysis generally gives biased
estimators. The ODS study design does not belong to the two scenarios since the missingness
mechanism of MAR and the case completeness variable, Ri, depends on the outcome variable,
Yi, for all observations by definition. Therefore, the CC analysis will not be a preferable
approach to address the data missingness for data sets generated using the ODS scheme.

4.2 Maximum Likelihood

The ML approach does not edit the original data set. The analysis model is fitted to all
the observations in the data set. The essential step in the ML method is to construct an
appropriate likelihood function that captures all the available information from it. In this
paper, the ML estimator we discuss is fully parametric, obtained by maximizing the observed
likelihood function LObs(Θ). To perform maximum likelihood estimation, we have to posit
models on the distributions of the response variable, f(Y |X,Z), and the predictor variables,
f(X,Z).
The EM algorithm, an iterative computation algorithm, is a common approach to calculate
the maximum likelihood estimator since it is difficult to derive the expression of the estimator
in a closed-form. A detailed computing procedure for our ODS design is included in the
Appendix. The observed information matrix of the estimate is estimated by

In(Θ̂) = n · Cov(y,x, z, Θ̂)

The standard error of Θ̂i is calculated by the square root of the i-th diagonal element of
In(Θ̂)−1.
However, the limitation of this parametric method is that it heavily relies on assumptions.
If correct assumptions are provided, the ML estimators are efficient and fully utilizing the
information from both stages (Zhao & Lipsitz, 1992). However, if some assumptions are
incorrect (for instance, the response model is misspecified), this method has poor perfor-
mance estimation and inference. Moreover, the EM algorithm is case-sensitive since it is
closely related to the specific data set and its likelihood function. Thus, we have to develop
a different corresponding EM algorithm for a data set with a dissimilar design and likelihood
function.
Weaver et al. (2005) discuss semiparametric ML estimators, such as the Maximum Semipara-
metric Empirical Likelihood Estimator and the Maximum Estimated Likelihood Estimator,
for ODS studies. The predictors’ probability density functions are replaced by nonparamet-
ric estimated density functions in the observed likelihood functions in these methods. With
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fewer assumptions, the new likelihood functions can solve problems from a broader class of
designs, where the predictor variables can be from any distribution.

4.3 Inverse Probability Weighting

The IPW approach, unlike the parametric ML method, requires fewer assumptions: it only
posits models for the mean of the response variable and the missingness mechanism. Different
from the complete case analysis, the IPW method weights each individual in the complete
sample by the inverse probability of being fully observed (Seaman & White, 2011). Instead
of calculating Θ̂ by optimizing the log-likelihood lObs(Θ), we obtain it by optimizing a
weighted log-likelihood function (Weaver & Zhou, 2005). In our ODS design, the weighted
log-likelihood function is

lIPW (Θ) =
N∑
i=1

1
pi
Ri · log f(Yi|Xi, Zi; Θ)

where pi is the probability to have the i-th observation be fully observed.
The probability pi is estimated by using logistic regression. The logistic regression models
the probability of complete observation given all the observed variables, Pr(Ri|Xi, Yi) in
our case. Weaver et al. (2005) prove that using the observed or estimated probability for
weighting can generate more efficient estimators than using the known probability.
IPW, as a semiparametric method, is less constrained by assumptions for the predictor
variables so that we can apply it to a broader range of problems. However, the estimator
can be less efficient than the ML estimator when the model is well-specified (Schafer &
Graham, 2002). The inefficiency is reflected by the IPW estimates’ large standard errors.
These large standard errors are generated as the complete cases can be assigned with large
weights. Some people argue that the IPW estimates’ high variability reflects the “genuine
uncertainty” about the data (Seaman & White, 2011).
There are several ways to handle the large weights and thus stabilize the estimator. In this
paper, we only discuss the weight truncation method. In weight truncation, a maximum
bound is selected. Then, all the weights beyond this value will be set equal to it. As a result,
we ensure a few individual observations do not excessively influence the analysis model.

5 Simulation Studies

5.1 Data Generation

We designed a series of numerical simulations to compare and contrast different estimators’
performances under varied conditions. Each instance of the simulated data set is generated
in two steps according to the ODS study design. In the first step, we generate the full data
sets from a response model as follows:

Yi = β0 + β1Xi + β2Zi + εi
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where i = 1, ..., N , Xi
IID∼ N(0, φ2), Zi IID∼ Bernoulli(θ), and εi IID∼ N(0, σ2). In the second

step, based on the data collection design in Section 3, Zi will not be observed ∀i ∈ S̄.
The completeness variable Ri, which indicates the observation of Zi, is generated for each
individual as follows:

Y ∗i = γ0 + γ1Xi + γ2Yi + ui

Ri = I(Y ∗i > 0)
where ui’s are independent and identically distributed random errors that follow
Logistic(0, s) and s is the scale parameter of the distribution. For each individual,
Y ∗i is an auxiliary latent variable that controls the observation of Zi. It can be shown that
logit Pr(Ri = 1|Xi, Yi) is a linear combination of Xi, Yi, and an intercept constant. The
conditional distributions of the completeness variables, Ri’s, are Bernoulli distributions
with varied success rates that depend on observed variables’ values. Based on Ri’s value,
we decide whether or not to include the individual’s Zi in the final simulated data based on
the ODS design.
The parameter that defines the full data set is Θ = (θ, φ2, σ2, β0, β1, β2). β = (β0, β1, β2) is
parameter of interest, and (θ, φ2, σ2) are the nuisance parameters that assist to define the
predictor variables’ distributions. s and γ = (γ0, γ1, γ2) are the parameters that define the
missingness mechanism. We use R2

theory and R2
latent to represent the response model’s and

the latent model’s coefficients of determination, respectively. We use R2
theory and R2

latent to
determine σ2 and s, respectively, while holding the other parameters fixed. Thus, we are
able to show the estimators’ performance under varied levels of the signal-to-noise ratio in
the data. For each replication of simulated data set, the estimate for β is computed using
the full data set, the CC analysis, the IPW approach, and the ML approach.

5.2 Simulation Result

We generate 5,000 replications. We set N = 100, (θ, φ, β0, β1, β2) = (0.5, 5, 0, 0.5, 2),
(γ1, γ2, γ3) = (1, 1, 1), and R2

latent = 0.60. We choose two values for R2
theory: 0.30 and 0.90.

We assume that the variables follow the same linear response model defined in Section
5.1. All the estimators rely on this assumption. In Tables 1 and 2, the first column lists
the results of estimating β0, β1, and β2 using the least-squares estimator with all the
observations in the full data set. The other three columns list the results of estimating the
parameter using different analysis methods with the ODS-designed data set. The second
column lists the results of the CC analysis, the third column lists the results of the IPW
method, and the fourth column lists the results of the ML method using the EM algorithm.
We also examined the coverage rate of each estimator’s 95 percent confidence interval (CI).
It’s defined as the proportion of CI capturing the true parameter over the 5,000 iterations.
For a 95 percent CI, ideally, we should expect the coverage rate falls in [0.936, 0.964] (Zhao
& Lipsitz, 1992).
The results in Tables 1 allow a discussion about how the signal-to-noise ratio in the response
model influences the various estimators’ performance. The ML estimator performs well for
both R2

theory values. Its results are the closest to the results from the least-squares estimator
using the full data set, which is the “best” estimator. On the other hand, IPW estimator is
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the least stable among the three. When R2
theory = 0.30, it tends to outperform CC estimator

as it is less biased and has higher coverage for β0 and β1. However, When R2
theory = 0.90,

the CC estimator outperforms the IPW estimator since both methods are unbiased and
the CC estimator has higher coverage rates for all three parameters. In this scenario, it
has an outstanding performance even in an ODS design, seemingly contradicting our prior
knowledge in Section 4.1. Nevertheless, In fact, the high R2

theory conceals the impact of the
missingness because, in this case, Y has an extremely strong relationship with X and Z.
With a high R2

theory, even a few data records can generate valid estimates.
We can obtain the same observations from the estimates’ density plots in Figure 1. For
both R2

theory values, the ML estimates’ distributions mix well with the full data least-squares
estimates’. CC analysis tends to be the most biased method since the estimates’ distributions
deviate the most from the full data least-squares estimates’. IPW tends to be the most
unstable method since the estimates’ distributions are the most heavy-tailed.
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Figure 1: Density plots of the simulation results for estimating the parameters in the linear
model Yi = β0 + β1Xi + β2Zi + εi, where i = 1, ..., 100, Xi

IID∼ N(0, φ2), Zi IID∼ Bernoulli(θ),
and εi

IID∼ N(0, σ2). The true parameters values are (θ, φ, β0, β1, β2) = (0.4, 5, 0, 0.5, 2),
(γ0, γ1, γ2) = (1, 1, 1), R2

latent = 0.60 and R2
theory = 0.30 or 0.90. The vertical lines represent

the sample mean of the estimates over 5,000 replications.
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Table 1: Simulation results of estimating the parameters in the linear model Yi = β0 +β1Xi+
β2Zi + εi, where i = 1, ..., 100, Xi

IID∼ N(0, φ2), Zi IID∼ Bernoulli(θ), and εi
IID∼ N(0, σ2).

The true parameters values are (θ, φ, β0, β1, β2) = (0.4, 5, 0, 0.5, 2), (γ0, γ1, γ2) = (1, 1, 1),
R2

latent = 0.60 and R2
theory = 0.30 or 0.90. Results in the first column are calculated using

the full data set. Results in the last three columns are based on the ODS data set. They
are from the complete case analysis, from IPW with 20 as the truncation bound, and from
the maximum likelihood method using the EM algorithm. In each row group, the first row
contains the sample means of the estimates over 5,000 replications, the second row contains
the sample standard deviation, and the third row contains the coverage rate, the proportion
of the 95 percent CI capturing the true parameter

Analysis Methods
R2

theory Full Data CC IPW ML (EM)
β0 = 0
0.3 0.000 1.615 0.368 0.021

0.526 0.753 0.929 0.595
0.951 0.430 0.823 0.951

0.9 0.003 0.093 0.015 0.000
0.115 0.181 0.206 0.128
0.949 0.913 0.855 0.948

β1 = 0.5
0.3 0.499 0.314 0.420 0.499

0.084 0.133 0.167 0.085
0.948 0.673 0.781 0.950

0.9 0.500 0.488 0.497 0.500
0.018 0.031 0.039 0.022
0.948 0.925 0.810 0.948

β2 = 2
0.3 1.980 1.732 1.911 1.970

0.831 1.034 1.523 1.126
0.953 0.943 0.845 0.950

0.9 2.000 1.985 2.001 2.004
0.186 0.240 0.296 0.199
0.945 0.947 0.887 0.948

5.3 Model Misspecification’s Influence on Estimators

We augmented the above simulations to assess response model misspecification’s impact on
the estimators. The same linear analysis model is used for each estimator. However, to test
estimators’ performance under the circumstance of mean model misspecification, we altered
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the response model in data generation:

Yi = β0 + β1X
•
i + β2Zi + εi

where X•i is a nonlinear function of Xi. Thus, we misspecify the model if we assume Y has a
linear relationship with X. The goal is to test whether the estimators yield reliable estimates
for β2 even if we make an incorrect assumption about the relationship between Y and X.
We have to notice that the only thing that changes in this setting is the relation between X
and Y in data generation. Both variables are collected in the final simulated data set. X•
is a latent auxiliary variable. It implies we will have a model misspecification issue if we use
the original response mean model. To control the degree of misspecification, we define X•i
as follows.

X•i = κ ·Xi(Xi − φ)(Xi + φ) +Xi

where φ is the population standard deviation of Xi and κ is the misspecification level. We
can use any value in the place of φ, but using φ ensures the simulated data are scattered
within a reasonable range. Here, κ is used to quantify the level of misspecification. If κ
is a small value, the nonlinear portion in X•i is negligible. Then, the simulated data set
in the model misspecification setting will be similar to the one generated using the original
setting, and the analysis results will generally be the same. However, if κ is a large value,
the simulated data and analysis result will be significantly different. Therefore, we compare
the estimators’ performance under varied κ.
When the analysis model is misspecified, all estimators tend to be unstable and yield esti-
mates with high standard error. The high variability leads to a high coverage rate for β̂2 in
all three methods, but the value is meaningless. The estimates can have an enormous bias,
but the even larger standard error helps to construct wide CI to cover the true value. There-
fore, we utilize mean squared error (MSE) as the metric to compare estimators’ efficiency.
MSE captures both the bias and variance of the estimate. A lower MSE indicates better
efficiency.
We generate 5,000 replications of random full data sets and their corresponding
ODS-designed data sets for the model misspecification scenario. We set N = 100,
(θ, φ, β0, β1, β2) = (0.5, 5, 0, 0.5, 2), (γ1, γ2, γ3) = (1, 1, 1), and R2

latent = 0.60. We choose two
values for R2

theory: 0.30 and 0.90, and three values for κ: 0.01, 0.1, and 1. For each pair of
R2

theory and κ, we perform a simulation study with the above setting. The goal of interest
is to study if the incorrect assumption of the relationship between X and Y can affect the
estimation of β2. Thus, we compare the estimators only with respect to β̂2. In Tables 3
and 4, the first column lists the results of estimating β2 using the least-squares estimator
with all the observations in the full data set. The other three columns list the results of
estimating the parameter using different analysis methods with the ODS-designed data set.
The second column lists the results of the CC analysis, the third column lists the results of
the IPW method, and the fourth column lists the results of the ML method using the EM
algorithm. We calculate the sample mean of MSE(β̂2) over the 5,000 iteration. It can easily
proven that MSE(β̂2) = Bias2(β̂2) + Var(β̂2).
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Table 2: Simulation results of estimating only β2 when R2
theory = 0.30 or 0.90, where both

model well-specified scenario and model misspecified scenarios are included. The value of the
parameter is 2. The four columns list the results from different analysis methods. Results in
the first column are calculated using the full data set. Results in the last three columns are
based on the ODS data set. They are from the complete case analysis, from IPW with 20 as
the truncation bound, and from the maximum likelihood method using the EM algorithm.
In each row group, the first row contains the sample means of β̂2 over 5,000 replications, the
second row contains the of MSE(β̂2).

β2 = 2
Analysis Methods

R2
theory Full Data CC IPW ML (EM)

Correctly Specified
0.3 1.980 1.732 1.911 1.970

0.691 1.141 2.326 1.269
0.9 2.000 1.984 2.001 2.003

0.034 0.058 0.087 0.040
Misspecified, κ = 0.01
0.3 1.984 1.802 1.972 1.964

0.805 1.360 2.306 1.440
0.9 1.996 2.021 1.999 1.902

0.131 0.208 0.179 0.178
Misspecified, κ = 0.1
0.3 1.968 1.885 1.991 1.713

10.006 17.213 10.407 14.950
0.9 2.014 2.036 2.073 1.888

9.542 16.733 8.796 14.386
Misspecified, κ = 1
0.3 2.413 2.816 2.853 0.760

959.492 1832.761 932.155 1521.635
0.9 2.261 2.706 2.585 0.513

972.835 1946.229 985.904 1594.518

The results in Tables 2 allow a discussion about how the misspecification influences various
estimators from two aspects: bias, efficiency. When R2

theory = 0.30 and κ = 0.01, the
misspecification has negligible effect on three estimators’ performance. The CC estimator
gives the most biased estimate, but it tends to be more efficient than the other estimators
under the MSE criterion. IPW estimator is less biased, but it is more unstable and inefficient
than other estimators. ML estimator is less biased than the CC estimator, and it is more
stable and efficient than the IPW estimator. However, when the degree of misspecification
becomes more significant, κ = 0.1, all three estimators receive different levels of influence.
The IPW estimator becomes the most unbiased, stable, and efficient estimator among the
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three. On the contrary, the CC estimator becomes more unstable than IPW, and the ML
estimator becomes the most biased and inefficient. When κ = 1, all three estimators become
highly biased and inefficient, but the IPW estimator remains the most unbiased and efficient
among them. When R2

theory = 0.90 and κ = 0.01, all three estimators are unbiased and
efficient. Similarly, all estimators receive varied levels of impact as the response model
becomes more misspecified. The IPW estimator receives the least effect, while the ML
estimator is the most vulnerable to model misspecification.

6 Discussion

Our simulation results corroborate the results from the previous work. In an ODS study, CC
analysis can be reliable only when the response variable has a strong relationship with the
predictor variables. The ML method achieves its ideal performance when our assumption
about the response model is valid. Once the assumption is incorrect, the estimator can be
highly biased and inefficient since the EM algorithm is sensitive. Moreover, no software pack-
age supports the EM algorithm by default, and the development of the algorithm requires
a considerable amount of time and effort. On the other hand, the IPW approach, although
not ideally unbiased and efficient as the ML method, is easy to implement in many software
packages. Therefore, from our limited experience, we make the following recommendations.
Unless there is evidence that the response variable has a perfect relationship with the pre-
dictor variables, CC analysis does not correctly address the missingness. Instead, IPW can
be used as an improvised method. After thoroughly learning the data set, we can use the
ML method and develop an EM algorithm to calculate the estimates.
Several extensions of the design and methods are worth mentioning. The first extension
is to compare and contrast IPW and EM estimators’ efficiency using bootstrapping. The
case resampling process must be stratified to maintain the degree of missingness in each
bootstrapped data set. Another extension is to explore the poor coverage rate of the IPW
estimator. In our simulation results, the 95 percent CI coverage rates of the IPW estimates
do not fall into [0.936, 0.964]. However, Weaver et al. (2005) have the IPW estimators achieve
reasonable coverage rates in their ODS design. The reason for the difference is that the IPW
estimates standard errors we use are directly from the software package by default, which is
commonly used in practice. However, these values are not theoretically correct. Therefore,
we need to develop our own functions to compute the theoretical standard errors.

Appendix

In our ODS design, we have the following setup

yi|xi, zi
Ind∼ N(β0 + β1xi + β2zi, σ

2)

xi
IID∼ N(0, φ2)

zi
IID∼ Bernoulli(θ)

Ri = I(zi is observed)
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The observed likelihood is

LObs(Θ) =
N∏
i=1

[
f(yi, xi; Θ)f(zi|yi, xi; Θ)

]Ri
[
f(yi, xi; Θ)

]1−Ri

We also know the complete likelihood is

L(Θ) = f(y,x, zS, zS̄; Θ)

=
N∏
i=1

f(zi|yi, xi; Θ)f(yi, xi; Θ)

Then, the conditional likelihood of zS̄ given all the observed data is

f(zS̄|y,x, zS; Θ) = f(y,x, zS, zS̄; Θ)
f(y,x, zS; Θ)

= L(Θ)
LObs(Θ)

=
N∏
i=1

[
f(zi|yi, xi)

]1−Ri

Note that L(Θ) can also be expressed as f(y|x, z)f(x)f(z).

Expectation Step

By definition,
Q(Θ|Θ̂(m)) = E[logL(Θ)]

where the expectation is over f(zS̄|y,x, zS; Θ). Thus, due to the independence among all
observations, the Q function can be expressed as follows:

Q(Θ|Θ̂(m)) =
N∑
i=1

(
Ri log f(yi|xi, zi) + (1−Ri) · E[log f(yi|xi, zi)]

+ log f(xi) +Ri log f(zi) + (1−Ri) · E[log f(zi)]
)

where xi’s distribution parameters does not affect the estimation for β so that log f(xi) can
be ignored in the future calculation.
We can prove that

f(yi, xi) = f(yi|xi, zi = 0)f(xi)(1− θ) + f(yi|xi, zi = 1)f(xi)θ

and
zi|yi, xi

Ind∼ Bernoulli(φ′i),∀i ∈ S̄

where φ′i = f(yi|xi, zi = 1)θ
f(yi|xi, zi = 1)θ + f(yi|xi, zi = 0)(1− θ)
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Therefore, we can express the Q function as follows:

Q(Θ|Θ̂(m)) =
N∑
i=1

[
Ri log f(yi|xi, zi) +Ri log f(zi)

+ (1−Ri) log f(yi|xi, zi = 1)φ′i + (1−Ri) log f(yi|xi, zi = 0)(1− φ′i)

+ (1−Ri)
(
φ′i log(θ) + (1− φ′i) log(1− θ)

)]
which is iteratively maximized during the maximization step.

Maximization Step

In this step, we iteratively maximize the Q function by letting

Θ̂
(m+1) = arg maxQ(Θ|Θ̂(m))

Q(Θ|Θ̂(m)) can be decomposed as follows:

Q(Θ|Θ̂(m)) = Qθ +Qβ,σ2

Qθ =
N∑
i=1

Ri log f(zi) +
N∑
i=1

(1−Ri)
(
φ′i log(θ) + (1− φ′i) log(1− θ)

)

Qβ,σ2 =
N∑
i=1

Ri log f(yi|xi, zi) +
N∑
i=1

log f(yi|xi, zi = 0)(1− φ′i)

+
N∑
i=1

(1−Ri) log f(yi|xi, zi = 1)φ′i

Then, we can maximize the estimates element-wisely.
For θ, we can directly calculate the updated estimate by setting d

dθ
Qθ = 0. For β and σ2,

we can use the default weighted least-squares estimation in many software packages. It can
be derived that

Qβ,σ2 = −n2 log(2πσ2)− S(β)
2σ2

where

S(β) =
N∑
i=1

(
Ri(yi − β0 − β1xi − β2zi)2 + (1−Ri)

(
(yi − β0 − β1xi − β2)2φ′i

+ (yi − β0 − β1xi)2(1− φ′i)
))

The updated estimate for β is calculated by

arg max
β

Qβ,σ2 = arg min
β

S(β)
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which is essentially the weighted least-square estimator of an auxiliary data set. The auxiliary
data set consists of three components: the complete cases, the incomplete cases with zi’s
imputed as 1, and the incomplete cases with zi’s imputed as 0. After obtaining the updated
estimate for β, we can calculate the updated estimate of σ2 by setting d

dθ
Qβ,σ2 = 0. It is

noteworthy that we also need to update φ′i’s during each iteration.
The algorithm terminates when the minimum change in the estimates, min(dΘ̂), is less than
a tolerance value.
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