
Rose-Hulman Undergraduate Mathematics Journal
Volume 9
Issue 1 Article 8

On Involutions With Many Fixed Points in
Gassmann Triples
Jim Stark
University of Virginia, jstarx@gmail.com

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation
Stark, Jim (2008) "On Involutions With Many Fixed Points in Gassmann Triples," Rose-Hulman Undergraduate Mathematics Journal:
Vol. 9 : Iss. 1 , Article 8.
Available at: https://scholar.rose-hulman.edu/rhumj/vol9/iss1/8

https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol9%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol9?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol9%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol9/iss1?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol9%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol9/iss1/8?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol9%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol9%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/rhumj/vol9/iss1/8?utm_source=scholar.rose-hulman.edu%2Frhumj%2Fvol9%2Fiss1%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages


ON INVOLUTIONS WITH MANY FIXED POINTS IN
GASSMANN TRIPLES

JIM STARK

Abstract. We show that in a non-trivial Gassmann triple (G,H,H′) of index

n there does not exist an involution τ ∈ G such that the value of the permuta-
tion character on τ is n− 2. In addition we describe a GAP program designed

to search for examples of Gassmann triples and give a brief summary of the

results of this search.

Introduction

Adolf Hurwitz was a German mathematician, a student of Felix Klein and
a teacher of David Hilbert. When Frobenius left the Eidgenössische Technische
Hochschule Zürich it was Hurwitz who took his chair and he remained there until
his death in 1919. Fritz Gassmann, a student at the ETH Zürich under George
Pólya and Hermann Weyl, was asked to look at a notebook of Hurwitz’s contain-
ing unpublished work. In 1926 Gassmann published a section of this notebook
along with an article explaining what he believed to be the point of Hurwitz’s work
[Gas26].

In his article Gassmann introduced the following condition on two subgroups H
and H ′ of a group G: Each conjugacy class of G intersects H and H ′ in the same
number of elements, that is for every g ∈ G we have |gG∩H| = |gG∩H ′|. Today we
say two such subgroups are Gassmann equivalent and call (G,H,H ′) a Gassmann
triple.

The motivation for studying Gassmann triples comes from several fields of mathe-
matics. Most recently Terras and Stark showed in [TS00] that Gassmann equivalent
subgroups can be used to create non-isomorphic graphs whose Ihara zeta functions
are equal. In [Sun85] Sunada described how Gassmann equivalent subgroups of
a group G can be used to construct Riemannian manifolds that are isospectral
but not isometric. Lastly Perlis has shown in [Per77] that two algebraic number
fields F and F ′ share the same Dedekind zeta function precisely when the Galois
groups H = Gal(L/F ) and H ′ = Gal(L/F ′) are Gassmann equivalent subgroups of
G = Gal(L/Q) where L ⊆ C is a common normal extension. It is this last topic in
which we find the motivation for this paper.

Given an automorphism in G we can construct an embedding F ↪→ C by re-
stricting the domain of the automorphism to F . The automorphisms in the group
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2 JIM STARK

H = Gal(L/F ) fix elements of the field F ; therefore, given an x ∈ G, each au-
tomorphism in the coset xH gives the same embedding F ↪→ C. This is in fact
a one-to-one correspondence between embeddings F ↪→ C and cosets in the coset
space G/H. The group G = Gal(L/Q) of automorphisms of L acts on these em-
beddings by left multiplication G y G/H. If τ ∈ G is the restriction of complex
conjugation on C to the subfield L then a fixed point of τ under the actionG y G/H
corresponds to a real embedding F ↪→ R. We define χG/H(τ) to be the number of
fixed points of τ and call an element of order 2, such as τ , an involution. Then in
Section 3 we prove the following theorem.

Main Theorem. If (G,H,H ′) is a Gassmann triple of index n and if there exists
an involution τ ∈ G such that χG/H(τ) = n− 2 then the triple (G,H,H ′) is trivial.

We call (G,H,H ′) a trivial Gassmann triple when H and H ′ are conjugate in
G. The two fields F and F ′ are isomorphic if and only if their Galois groups H and
H ′ are conjugate in G. Thus this main theorem proves that an algebraic number
field F with only 2 non-real embeddings is uniquely determined up to isomorphism
by its Dedekind zeta function. We also give an example of a non-trivial Gassmann
triple (G,H,H ′) and an involution τ ∈ G such that χG/H(τ) = n − 4; thus the
number n− 2 of fixed points of an involution cannot be reduced in a linear fashion.
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1. Definitions

Let G be a group and H ≤ G a subgroup of index n. The group G acts on the
coset space G/H by left multiplication. The fixed point character of this action is
the function χG/H : G→ N0 defined by g 7→ |Fix(g)| where

Fix(g) = {xH ∈ G/H | gxH = xH}

is the set of cosets fixed under the action of the element g. The following propo-
sition gives us a formula for the fixed point character. We will need this to prove
Proposition 5 in Section 3.

Proposition 1 (Proposition 1.6 in [Bea91]). Let H ≤ G be any subgroup. For all
g ∈ G we have χG/H(g) = |CG(g)|·|gG∩H|

|H| .

Here CG(g) is the centralizer of g in G given by CG(g) = {x ∈ G | xg = gx}. It
is the set of all elements in G that commute with g. The connection between the
permutation characters χG/H and χG/H′ and the Gassmann equivalence of H and
H ′ is given in the following proposition.

Proposition 2 (Lemma 1.9 in [Bea91]). Let H,H ′ ≤ G. The following conditions
are equivalent:

(i) χG/H = χG/H′ .
(ii) |gG ∩H| = |gG ∩H ′| ∀g ∈ G.
(iii) ∃φ ∈ Bij(H,H ′) satisfying φ(g) ∈ gG ∀g ∈ G.
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Note that we always have χG/H(1) = [G :H]. Thus if condition (i) holds then
χG/H(1) = χG/H′(1) which gives us [G :H] = [G :H ′]. So H and H ′ have the same
index in G. We now expand the definition of Gassmann triple that was given in
the introduction.

Definition 1. Let H and H ′ be subgroups of G. The triple (G,H,H ′) is called
a Gassmann triple provided that any of the three equivalent conditions given in
Proposition 2 hold. Alternatively we may say that H and H ′ are Gassmann equiv-
alent subgroups of the group G. As per the above note [G :H] = [G :H ′], we define
the index of the Gassmann triple (G,H,H ′) to be this common index.

Note that if H and H ′ are conjugate in G, then there is an inner automorphism
of G taking H to H ′. The restriction of this automorphism to H is a bijection
satisfying condition (iii). Thus given any subgroup H ≤ G, the triple (G,H,Hg) is
Gassmann for all g ∈ G.

Definition 2. Let (G,H,H ′) be a Gassmann triple. We call (G,H,H ′) a trivial
Gassmann triple if H and H ′ are conjugate in G. We call (G,H,H ′) a faithful
Gassmann triple if the left multiplication action G y G/H is a faithful action.

A faithful action is an action whose kernel is trivial. The kernel K of the left
multiplication action G y G/H is exactly the set of elements that fix all [G :H]
cosets; that is, the elements g ∈ G such that χG/H(g) = [G :H]. In a Gassmann
triple (G,H,H ′) we know that χG/H = χG/H′ thus the kernel K of G y G/H is
equal to the kernel of G y G/H ′. We call K the common kernel of these actions
and note that as elements in K fix both H and H ′ we have K ⊆ H ∩H ′.

Example 1. Consider the ring Z8. The group of units Z∗8 acts on the additive group
Z8 by multiplication. Thus we can form the semidirect product G = Z∗8 nZ8 whose
group operation is (a1, b1)(a2, b2) = (a1a2, a2b1 + b2). Let H and H ′ be the sub-
groups {(1, 0), (3, 0), (5, 0), (7, 0)} and {(1, 0), (3, 4), (5, 4), (7, 0)} respectively. We
claim that (G,H,H ′) is a non-trivial faithful Gassmann triple.

Proof of claim. Define the map φ : H → H ′ as follows.

(1, 0)
φ7−→ (1, 0)

(3, 0) 7−→ (3, 4) = (3, 0)(1,2)

(5, 0) 7−→ (5, 4) = (5, 0)(1,1)

(7, 0) 7−→ (7, 0)

The map φ satisfies (iii) of Theorem 2, thus (G,H,H ′) is Gassmann.
Assume that H and H ′ are conjugate, that is there is some element (a, b) ∈ G

such that H(a,b) = H ′. Conjugation in G fixes the first factor of any element,
thus we must have (3, 0)(a,b) = (3, 4) and (7, 0)(a,b) = (7, 0). Note that (a, b)−1 =
(a,−ab). First we compute (3, 4) = (a, b)(3, 0)(a,−ab) = (3, 2ab) which gives us
2ab ≡ 4 (mod 8). But then we see that (a, b)(7, 0)(a,−ab) = (7, 6ab) = (7, 4) 6=
(7, 0). Thus the assumption that H and H ′ are conjugate is false. The Gassmann
triple is non-trivial.

Finally observe that the only non-identity element in the intersection H ∩H ′ is
(7, 0) so the kernel of G y G/H is either {1} or {1, (7, 0)}. But (7, 0)(1, 1)H =
(7, 1)H and we see that (1, 1)H 6= (7, 1)H because (7, 1)−1(1, 1) = (7, 2) /∈ H. Thus



4 JIM STARK

(7, 0) moves (1, 1)H and so is not in the kernel. Hence the kernel is {1}; the triple
is faithful. �

We are interested in the involutions of G, that is the elements of order 2.

Example 2. Note that conjugation in a group G is an automorphism of G there-
fore every conjugate of an involution is also an involution. Hence when listing all
involutions in a particular group it suffices to list them up to conjugation. Let G,
H, and H ′ be as in example 1. The involutions in G up to conjugation are (1, 4),
(3, 0), (5, 0), (7, 0), and (7, 1). The index is n = 8 and the reader can easily compute
that χG/H(5, 0) = 4.

Consider a group G containing an involution τ ∈ G and a subgroup H ≤ G of
index n. By associating the cosets in G/H with the integers {1, 2, . . . , n} we obtain
a permutation representation of τ . This permutation sends i to j if τ sends the
coset associated with i to the coset associated with j. As τ is an involution its
permutation representation will either be the identity or a product of some number
of disjoint 2-cycles and some number of 1-cycles. The number of fixed points of
τ , that is the number of 1-cycles, will be the index n minus the number of moved
points of those 2-cycles. Thus the possible values of χG/H(τ) are n, n − 2, n − 4,
and so on. If χG/H(τ) = n then τ is in the kernel of the action thus (G,H,H ′) is a
non-faithful triple. We have just seen in Example 2 an involution τ in a non-trivial
faithful triple satisfying χG/H(τ) = n − 4. We will investigate the consequences
when χG/H(τ) = n− 2.

2. A structure theorem for 〈τG〉

In this section we will show that strict conditions are put on the structure of the
group generated by the conjugacy class of an involution with n − 2 fixed points.
For the remainder of the section we make the following definitions. Let G be a
group, H ≤ G a subgroup of index n, and let τ ∈ G be an involution such that
χG/H(τ) = n− 2. Define N = 〈τG〉.

For the remainder of this paper there will only be one type of action. This action
is G acting on the coset space G/H by left multiplication. We will however consider
the orbits and stabilizers of this action when it is restricted to various subgroups
of G. Given a subgroup J ≤ G we will refer to the orbits of the restricted action
J y G/H as J-orbits and will use StabJ(gH) to denote the stabilizer of a coset
gH under the action of J .

We define k to be the number of distinct N -orbits and will denote these orbitsO1,
O2, . . ., Ok. Finally define K to be the kernel of the restricted action N y G/H.
We begin with a lemma.

Lemma 1. Let J ≤ G be any subgroup. Given any two distinct cosets xH, yH ∈
G/H, if there exists an element a ∈ 〈τG∩J〉 such that axH = yH then there exists
an element a′ ∈ τG ∩ J such that a′xH = yH.

Proof. We will prove that if w1, w2 ∈ τG∩J and (w1w2)xH = zH where zH 6= xH
then there exists a w3 ∈ τG ∩ J such that w3xH = zH. This suffices to prove the
lemma because the element a ∈ 〈τG ∩ J〉 can be written as a word a = w1w2 · · ·ws
with letters wi ∈ τG ∩ J . We will have shown that we can reduce the length of this
word without altering where the coset xH is sent. This reduction can be continued
inductively until the word consists of a single letter a′ ∈ τG ∩ J .
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Thus let w1, w2 ∈ τG ∩ J with (w1w2)xH = zH. Define uH = w2xH so that
w1uH = zH. If uH = zH then set w3 = w2. Similarly if uH = xH then set
w3 = w1. All that is left is the case when uH, xH, and zH are 3 distinct cosets.

We have w1, w2 ∈ τG so these elements are involutions that move exactly two
cosets. As w1uH = zH we know that w1 moves uH and zH thus fixes xH. Set
w3 = ww1

2 ; this element is in the conjugacy class of τ and is a product of elements in
J thus w3 ∈ τG∩J . As desired we have w3xH = w1w2w1xH = w1w2xH = zH. �

We now focus our attention on the restricted action N y G/H with orbits O1,
O2, . . ., Ok in order to determine the structure of N .

Proposition 3. Given any two N -orbits Oi and Oj we have |Oi| = |Oj |.

Proof. Choose two elements x, y ∈ G such that xH ∈ Oi and yH ∈ Oj . Every
coset in Oi can be written in the form axH for some a ∈ N . Define the map
φ : Oi → Oj in terms of the chosen representatives x and y by axH

φ7→ ayx
−1
yH.

Note that φ maps into Oj because N is normal so ayx
−1 ∈ N . Also φ is well defined;

it does not depend on the choice of element a ∈ N . For assume axH = bxH for
some a, b ∈ N ; then axy−1yH = bxy−1yH ⇒ yx−1axy−1yH = yx−1bxy−1yH

⇒ ayx
−1
yH = byx

−1
yH ⇒ φ(axH) = φ(bxH).

I claim that φ is onto. Every coset in Oj can be written in the form ayH for some
a ∈ N . Then axy

−1
xH ∈ Oi and φ(axy

−1
xH) = (axy

−1
)yx
−1
yH = ayH. Thus φ is

onto giving |Oi| ≥ |Oj |. By symmetry we have |Oj | ≥ |Oi| thus |Oi| = |Oj |. �

We now define m = |O1|. By the previous proposition m is the order of any
N -orbit. There are k such orbits thus n = km. Note that τ is an element in N
that moves two cosets in some N -orbit so m > 1.

We’ve just seen that G/H is the union of k orbits under N . For i ∈ {1, 2, . . . , k}
the action of N on the N -orbit Oi is transitive on m points. By associating the
cosets in Oi to the integers {1, 2, . . . ,m} we obtain a homomorphism πi : N → Sm
called the permutation representation of N acting on the ith N -orbit.

Example 3. To see how this representation is constructed consider the Gassmann
triple (G,H,H ′) from Example 1. The quotient group G/H contains the cosets

(1, 0)H = {(1, 0), (3, 0), (5, 0), (7, 0)}
(1, 1)H = {(1, 1), (3, 3), (5, 5), (7, 7)}
(1, 2)H = {(1, 2), (3, 6), (5, 2), (7, 6)}
(1, 3)H = {(1, 3), (3, 1), (5, 7), (7, 5)}
(1, 4)H = {(1, 4), (3, 4), (5, 4), (7, 4)}
(1, 5)H = {(1, 5), (3, 7), (5, 1), (7, 3)}
(1, 6)H = {(1, 6), (3, 2), (5, 6), (7, 2)}
(1, 7)H = {(1, 7), (3, 5), (5, 3), (7, 1)}.

We will associate the coset (1, i)H with the integer i+ 1 and let πG/H : G→ S8 be
the map that sends an element in G to the permutation representation of G acting
on G/H.

Now take any element g ∈ G, for instance g = (3, 4). It is easy to check that
(3, 4)(1, 0)H = (3, 4)H = (1, 4)H. The cosets (1, 0)H and (1, 4)H are associated
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with the integers 1 and 5 respectively, thus the permutation representation of g
sends 1 to 5. In fact we find that πG/H(g) = (1 5)(2 8)(4 6).

Note that each element of τG moves exactly two cosets in G/H. Thus if t ∈ τG
transposes two cosets in Oi then it fixes the cosets in every other N -orbit giving
t ∈ kerπj for all j 6= i. That is, each element of τG is in the support of πi for
exactly one i ∈ {1, 2, . . . , k} (the support of a homomorphism is the set of elements
in the domain that are not in the kernel).

Proposition 4. Let I = {1, 2, . . . , k}, then we have the following.

(i) Each t ∈ τG is in the support of πi for exactly one i ∈ I.
(ii) For each t ∈ τG and each i ∈ I, the permutation πi(t) is either the identity

or a 2-cycle.
(iii) For each i ∈ I every 2-cycle in Sm is contained in the set πi(τG).
(iv) πi maps N onto Sm.

Proof.

(i) This is given in the paragraph above.
(ii) Let t ∈ τG and i ∈ I. If πi(t) is not the identity then t moves cosets in the

ith N -orbit. As t ∈ τG we know that t is an involution that moves exactly
2 cosets in G/H. Thus πi(t) is a permutation that moves exactly 2 points
so πi(t) is a 2-cycle.

(iii) Let i ∈ I and let σ ∈ Sm be any 2-cycle, σ = (a b). The points a and b
correspond to two cosets in the ith N -orbit, call them xH and yH. Because
they are in the same N -orbit there exists an element g ∈ N such that
gxH = yH. Lemma 1 with J = N states that there exists a t ∈ τG such
that txH = yH. Then πi(t) is a two cycle that moves the points associated
to xH and yH, that is πi(t) = σ.

(iv) A standard generating set for Sm is the set of all 2-cycles that move the
point 1. By (iii) these 2 cycles are all contained in πi(τG) ⊂ πi(N) ≤ Sm
thus πi(N) = Sm.

�

Now we are in a position to say something about the structure of N .

Theorem 1. There exists an epimorphism ψ : N → (Sm)k and the kernel of this
epimorphism is K, the kernel of N y G/H.

Proof. Define ψ : N → (Sm)k by g 7→ (π1(g), π2(g), . . . , πk(g)). Each πi is a ho-
momorphism thus ψ is a homomorphism. By (iv) in Proposition 4 every σi ∈ Sm
has a πi pre-image, g′i ∈ N . As N = 〈τG〉, we can express g′i as a word in the
letters τG. Then define gi by taking the expression for g′i and throwing out any
letters in the kernel of πi. As gi and g′i only differ by elements in the kernel of πi
we have πi(gi) = πi(g′i) = σi. By (i) in Proposition 4 we have chosen a gi such that
πj(gi) = 1 for all j 6= i.

Now given any element σ = (σ1, σ2, . . . , σk) ∈ (Sm)k we choose a pre-image
gi ∈ N for each σi ∈ Sm as described above and form the product g =

∏
i gi. Then
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we have

ψ(g) = (π1(g), π2(g), . . . , πk(g))

=

(
π1

(∏
i

gi

)
, π2

(∏
i

gi

)
, . . . , πk

(∏
i

gi

))

=

(∏
i

π1(gi),
∏
i

π2(gi), . . . ,
∏
i

πk(gi)

)
= (π1(g1), π2(g2), . . . , πk(gk))
= (σ1, σ2, . . . , σk)
= σ

Thus ψ is onto. Finally K, the kernel of N y G/H, consists of exactly those
elements that are in the kernel of the action N y Oi for every i. Thus K =⋂
i kerπi = kerψ. �

The previous theorem along with the first isomorphism theorem gives thatN/K ∼=
(Sm)k. If G y G/H is faithful we have that N ∼= (Sm)k.

3. The structure of Gassmann triples

In this section we will continue the analysis of the previous section and so will
retain the definitions of the group G, subgroup H, and involution τ . We add the
condition that there is a subgroup H ′ ≤ G and the triple (G,H,H ′) is faithful
Gassmann.

We also wish to define the subgroup NH′ = 〈τG ∩ H ′〉. The NH′ -orbits of
the left multiplication action of NH′ on G/H will be essential in investigating the
relationship between H and H ′. We begin this investigation by determining the
cardinality of some of the sets that interest us.

Proposition 5. The number of elements in G conjugate to τ is |τG| = 1
2n(m− 1).

The number of conjugates of τ in H ′ is |τG ∩H ′| = 1
2 (m− 1)(n− 2).

Proof. As the action is faithful, ψ of Theorem 1 is an isomorphism. So to determine
|τG| we count its image under ψ. By (i)-(iii) of Proposition 4, ψ(τG) is the set of all
2-cycles in all factors of (Sm)k. There are 1

2m(m− 1) 2-cycles in Sm and k factors
of Sm, thus |τG| = k · 1

2m(m− 1) = 1
2n(m− 1).

To determine |τG ∩ H ′| note that χG/H′(τ) = n − 2. Proposition 1 then gives
|τG∩H ′| = (n−2)|H′|

|CG(τ)| . The orbit-stabilizer relation can be applied to the conjugation
action of G on itself to obtain the formula |τG| · |CG(τ)| = |G|. Using this we have
|τG ∩H ′| = (n−2)|H′|·|τG|

|G| = (n−2)
n |τG| = 1

2 (m− 1)(n− 2). �

What will be of particular interest to us are the number of elements in τG

that are not in H ′. This can easily be computed from Proposition 5. We have
|τG −H ′| = |τG| − |τG ∩H ′| = 1

2n(m− 1)− 1
2 (m− 1)(n− 2) = m− 1.

Now consider the subgroup NH′ = 〈τG ∩ H ′〉. The generating set τG ∩ H ′ of
NH′ is contained in the generating set τG of N thus NH′ ≤ N . This implies that
N -orbits are disjoint unions of one or more NH′ -orbits. The question we now ask
is when moving from the action N y G/H to the action NH′ y G/H how do the
N -orbits decompose into the NH′ -orbits?
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It cannot be the case that the NH′ -orbits are exactly the N -orbits. As noted
below Proposition 3 we have m − 1 > 0, thus there are elements in τG that are
not in H ′. If t ∈ τG − H ′ moves xH and yH then those two cosets must be in
different NH′ -orbits. For suppose there exists an a ∈ NH′ such that axH = yH.
Then Lemma 1, with J = H ′, states that there exists an a′ ∈ τG ∩ H ′ such that
a′xH = yH. In this section we have assumed that the Gassmann triple (G,H,H ′)
is faithful; that is, the action on the coset space G/H is faithful. In a faithful action
no two distinct elements act identically. As a′ and t act identically we must have
a′ = t. But t /∈ H ′ so this is a contradiction.

Thus at least one N -orbit must decompose into two or more NH′ -orbits. We
will see that exactly one of the N -orbits decomposes into exactly two NH′ -orbits
of length 1 and m− 1.

Theorem 2. The NH′-orbits consist of k − 1 orbits of length m, 1 orbit of length
m− 1, and 1 orbit of length 1.

Proof. For A = N or NH′ define the undirected graph Γ(A) as follows. The vertex
set of Γ(A) is the coset space G/H. We associate τG ∩ A with the edge set, that
is we join two vertices if there is a conjugate of τ in A that transposes the cosets
associated with those vertices. Note that because the action on G/H is faithful no
two distinct elements of τG transpose the same two cosets, thus the association of
τG ∩A with the edge set is a one-to-one correspondence.

Lemma 1 with J = N shows that if two cosets are in the same N -orbit then
they are connected by an edge in Γ(N). Similarly Lemma 1 with J = H ′ shows
that if two cosets are in the same NH′-orbit then they are connected by an edge
in Γ(NH′). Thus the graph Γ(A) represents the A-orbits of the action on the coset
space G/H. An edge connects two vertices in Γ(N) if and only if the cosets that
those vertices represent are in the same N -orbit and an edge connects two vertices
in Γ(NH′) if and only if the cosets that those vertices represent are in the same
NH′ -orbit.

There are k N -orbits thus Γ(N) is a disconnected graph with k components.
Each component has m vertices and is complete (every vertex in the component
is connected to every other vertex in that component). As N -orbits decompose
into NH′ -orbits the graph Γ(NH′) is obtained from the graph Γ(N) by removing a
number of edges. As discussed above, elements in τG − H ′ transpose cosets that
are in the same N -orbit but not in the same NH′ -orbit. Thus the edges removed
from Γ(N) to obtain Γ(NH′) are precisely the m−1 edges associated with elements
in τG −H ′.

As stated above at least one of the N -orbits O1,O2, . . . ,Ok decomposes into two
or more NH′ -orbits. Let Oi be such an N -orbit and let A be one of the NH′ -orbits
that Oi decomposes into. We have Oi 6= A because Oi decomposes thus define
B = Oi −A to be the complement of A in Oi.

We determined in paragraph 3 of this proof that the component of Γ(N) corre-
sponding to Oi is the complete graph on m vertices. Let a = |A| and b = |B| so
that the component of Γ(NH′) corresponding to A is the complete graph on a ver-
tices and a+ b = m. Now when passing from Γ(N) to Γ(NH′) we must disconnect
the component of Γ(N) corresponding to A from the vertices in B. Each of the
a vertices in A is connected to each of the b vertices in B, thus we must remove
e = ab edges. Given e = ab, a+ b = m, and 1 ≤ a, b ≤ m− 1 it is a simple calculus
problem to find the minimum possible value of e when considered as a function of
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a and b. This value is e = m − 1 and occurs when a and b take the values 1 and
m− 1.

Thus the minimal case of disconnecting only a single component of Γ(NH′) re-
quires the removal of m−1 edges. As only m−1 edges are to be removed it cannot
be the case that the component of Γ(N) that corresponds to Oi decomposes into
more than two Γ(NH′) components for that would require the removal of additional
edges. It must decompose into exactly 2 components of sizes 1 and m− 1. It also
cannot be the case that any component of Γ(N) other than the one that corre-
sponds to Oi decomposes because that would again involve removing more than
m − 1 edges. Thus exactly one of the N -orbits decomposes into two NH′ -orbits
of length 1 and m − 1. The other k − 1 N -orbits do not decompose. Hence the
NH′ -orbits consist of k − 1 orbits of length m, 1 orbit of length m− 1, and 1 orbit
of length 1. �

Now that we know something about the NH′ -orbits we ask how these orbits
behave under the action of H ′. It turns out that H ′ takes NH′ -orbits to NH′ -
orbits.

Proposition 6. If xH and yH are in the same NH′-orbit, then for every h ∈ H ′
the cosets hxH and hyH are also in the same NH′-orbit.

Proof. Let xH and yH be two cosets in the same NH′-orbit and let h be an arbitrary
element of H ′. There exists an a ∈ NH′ such that axH = yH. Note that NH′ E H ′;
thus we may define b = ah and we have b ∈ NH′ . Then bhxH = hah−1hxH =
haxH = hyH. This proves that hxH and hyH are in the same NH′ -orbit. �

We now must consider 2 cases, when m = 2 and when m > 2. When m > 2 we
have m − 1 > 1 so Theorem 2 gives us that there is a unique NH′ -orbit of length
1. As H ′ sends NH′ -orbits to NH′ -orbits it must send this orbit to itself, that is
it must stabilize the coset in this orbit. On the other hand when m = 2 we have
m− 1 = 1 so Theorem 2 gives us that there are 2 NH′ -orbits of length 1. Thus in
this case it is not immediately obvious that some coset of H is stabilized.

We wish to show that it must always be the case that H ′ stabilizes some coset
of H and that this implies that the Gassmann triple (G,H,H ′) is trivial. The fact
that a non-trivial faithful Gassmann triple of index n cannot contain in involution
with n− 2 fixed points is a key result of this paper. The main theorem given in the
introduction will follow easily from this.

Theorem 3. If (G,H,H ′) is a faithful Gassmann triple of index n and if there
exists an involution τ ∈ G such that χG/H(τ) = n− 2 then the triple (G,H,H ′) is
trivial.

Proof. We begin by showing that if H ′ stabilizes any coset of H, then the triple
is trivial. The stabilizer of a coset xH ∈ G/H is simply the H-conjugate xHx−1.
Assume xH is a coset stabilized by H ′. Then we have H ′ ≤ StabG(xH) = xHx−1.
But |H ′| = |H| = |xHx−1| thusH ′ = xHx−1. This proves that the triple (G,H,H ′)
is trivial.

Now we wish to show that H ′ always stabilizes some coset in G/H. We have
already shown above that if m > 2 then H ′ stabilizes the unique NH′ -orbit of length
1. What remains is only the case when m = 2.

Thus assume that m = 2 and no coset in G/H is stabilized by H ′. We intend
to derive a contradiction from this assumption by constructing an element h′ ∈ H ′
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such that χG/H(h′) = 0. By condition (iii) in Proposition 2 the element h′ is
conjugate to some element h ∈ H. Since χG/H is a character of G it is constant on
conjugacy classes. This gives χG/H(h) = 0, but we know h fixes the coset H. This
is a contradiction.

Recall that n = mk = 2k; Proposition 5 then gives |τG| = k. Each N -orbit
contains cosets that are transposed by some conjugate of τ and there are k N -
orbits, thus there is exactly one such conjugate of τ for each N -orbit. Let τG =
{t1, t2, . . . , tk} where tj is the conjugate of τ that transposes the two cosets in the
jth N -orbit Oj .

By Theorem 2 exactly 1 N -orbit decomposes into 2 NH′ -orbits of length 1. Let
Oi be this N -orbit. The element ti transposes the two cosets in Oi; since these
cosets are not in the same NH′ -orbit we have ti /∈ NH′ . The set τG ∩H ′ generates
NH′ and ti ∈ τG so ti /∈ H ′. Proposition 5 gives |τG ∩H ′| = k − 1; thus ti is the
only element of τG that does not lie in H ′.

Let xH, yH ∈ Oi be the two cosets that are transposed by ti. These two cosets
form the two length 1 NH′ -orbits. By hypothesis H ′ does not stabilize any coset;
therefore there exists some g ∈ H ′ such that g moves xH. We must have gxH = yH
because H ′ takes NH′ -orbits to NH′ -orbits and yH is the only other orbit of length
1. So the coset yH is also moved by g.

For j ∈ {1, 2, . . . , k} note that g either fixes both cosets in Oj or moves both
cosets. This is because g moves both cosets in Oi and for j 6= i if g moves the orbit
Oj then it obviously must move both cosets in the orbit. If g does not move the
orbit Oj then it can only move one coset in the orbit by sending it to the other
coset in that same orbit, thus g either transposes the two cosets or fixes the two
cosets.

Define the set F = {j ∈ {1, 2, . . . , k} | g fixes both cosets in Oj} and let

η =
∏
j∈F

tj .

Note that i /∈ F so η is a product of conjugates of τ and none of these conjugates
are equal to ti, thus η ∈ H ′. Finally we define h′ = ηg.

Observe that a coset is moved by η if and only if the coset belongs to an orbit Oj
whose index j is in F . Also a coset is moved by g if and only if the coset belongs to
an orbit Oj whose index j is not in F . Thus every coset is moved by h′ = ηg ∈ H ′
as desired. �

We end the theoretical section of this paper by using two lemmas of Beaulieu
to prove our final result, that the previous theorem can be lifted to the case when
(G,H,H ′) is not faithful.

Main Theorem. If (G,H,H ′) is a Gassmann triple of index n and if there exists
an involution τ ∈ G such that χG/H(τ) = n− 2 then the triple (G,H,H ′) is trivial.

Lemma 2 (Lemma 1.13 in [Bea91]). Let H ≤ G be a subgroup and let K ≤ H be
normal in G. Then χG/H(g) = χ(G/K)/(H/K)(gK) for all g ∈ G.

Lemma 3 (Lemma 1.14 in [Bea91]). Let (G,H,H ′) be a non-trivial Gassmann
triple. Let K be the common kernel of the actions G y G/H and G y G/H ′.
Then (G/K,H/K,H ′/K) is a non-trivial faithful Gassmann triple.

Proof of Main Theorem. Let (G,H,H ′) be a Gassmann triple of index n and let
τ ∈ G be an involution satisfying χG/H(τ) = n − 2. Let K be the common
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kernel of the coset actions. Assume that (G,H,H ′) is non-trivial. By Lemma
3 (G/K,H/K,H ′/K) is a non-trivial faithful Gassmann triple and by the Third
Isomorphism Theorem the index remains n. As τ moves two cosets τ /∈ K but
τ2 = 1 ∈ K. We conclude that τK ∈ G/K is an involution and by Lemma 2 we
have χ(G/K)/(H/K)(τK) = n − 2. This contradicts Theorem 3, thus the original
assumption that the triple (G,H,H ′) is non-trivial is false. �

4. Searching for Gassmann triples

In order to further study Gassmann triples we wish to generate a large number
of non-trivial faithful examples. The computer algebra system GAP was chosen
to perform a brute force search for Gassmann triples. Some of the computations
involved in this search are time consuming so we have written a collection of GAP
functions that perform the search and save the resulting triples to file for future
study.

These functions look for non-trivial faithful Gassmann triples up to isomorphism.
Given two Gassmann triples (G1, H1, H

′
1) and (G2, H2, H

′
2) we say the two triples

are isomorphic when there exists an isomorphism φ : G1 → G2 that satisfies either
φ(H1) = H2 and φ(H ′1) = H ′2 or φ(H1) = H ′2 and φ(H ′1) = H2. We allow the
second condition because given two Gassmann equivalent subgroups H and H ′ of
a group G we wish to consider (G,H,H ′) and (G,H ′, H) to be equivalent triples.

There are two methods implemented to search for Gassmann triples. The first
method uses GAP’s library of transitive subgroups of the symmetric groups. This
method was intended to be able to find all Gassmann triples of a given index n but
memory overflow problems occurred when attempting a complete search of S10.
The symmetric groups of degree 9 and less have 90 transitive subgroups [GAP06].
A total of 143 Gassmann triples were found.

The second method uses GAP’s small groups library. This method searches for
all Gassmann triples (G,H,H ′) in which the group G has a given order. Due to
time constraints we have only searched all groups of order 200 and less. We have
encountered no memory problems and believe that searching through larger orders
is quite feasible. There are 6065 groups of order less than or equal to 200 [GAP06].
A total of 531 Gassmann triples were found.

Accounting for the overlap between the two methods 6088 groups were searched.
In total 657 non-trivial faithful non-isomorphic Gassmann triples were found. The
source code for the GAP functions is fully commented and is available online at
http://www.math.lsu.edu/~jstarx/gassmann.g. The data file containing the results
of the search described above is at http://www.math.lsu.edu/~jstarx/gassmann.dat.

5. Further Questions

Here we give two questions that may motivate further research on the topic of
Gassmann triples and involutions in Gassmann triples.

5.1. What is the minimum number of prime factors in the order of a
group containing a non-trivial faithful Gassmann triple? Let G be a group
whose order has the prime factorization |G| = pa1

1 p
a2
2 · · · p

ak

k . Define P (G) =∑k
i=1 ai, the number of primes in |G| counting duplicates. In each of the 657

examples of non-trivial faithful Gassmann triples that we have found it is always
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the case that P (G) ≥ 5. Does a non-trivial faithful Gassmann triple (G,H,H ′)
with P (G) < 5 exist?

5.2. Can we search for Gassmann triples by index efficiently? Currently
the program can only search for Gassmann triples within a given group. To system-
atically search for Gassmann triples we rely on a comprehensive library of groups. If
(G,H,H ′) is a faithful Gassmann triple of index n then using the action G y G/H,
we can see that G is a transitive subgroup of Sn; thus we use the GAP library of
transitive permutation groups.

Theoretically an algorithm such as the one used in the first method for finding
Gassmann triples could search through Sn to find all such triples of index n. Un-
fortunately our implementation fails due to memory problems at n = 10. With
more resources we may be able to achieve a full search of S10; but, given any finite
amount of memory we can easily imagine a large enough n for the current method
to exhaust it. Additionally this method is slow to execute and the complexity is
very high. Larger values of n will quickly run into problems with processing time.

Thus the current algorithm is simply not practical. Given an arbitrary index n
it is not known if there is a practical method of constructing a list of all non-trivial
faithful Gassmann triples of index n.
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