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The Game of Life on the Hyperbolic Plane

Yuncong Gu
May 2020

Abstract

In this paper, we work on the Game of Life on the hyperbolic plane.
We are interested in different tessellations on the hyperbolic plane and
different Game of Life rules. First, we show the exponential growth of
polygons on the pentagon tessellation. Moreover, we find that the Group
of 3 can keep the boundary of a set not getting smaller. We generalize the
existence of still lifes by computer simulations. Also, we will prove some
propositions of still lifes and cycles. There exists a still life under rules
B1, B2, and S3.
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1 Introduction

The Game of Life is a famous cellular automaton devised by John Horton Con-
way in 1970. He initially wanted to design an interesting and unpredictable
cellular automation with some configurations that can go forever, but not a cy-
cle, and others can exist for a long time before dying. The universe of Conway’s
Game of Life was the tessellation of the Euclidean plane by squares. He chose
a specific rule to make sure the existence of still lives, cycles, and spaceships
(configurations can go forever but not a cycle). Game of Life can be used to
simulate the behavior of cells. However, cells in the real world are much more
complicated. Therefore it is not a helpful tool for biologists. Apart from the
simulation purpose, Conway’s Game of Life is still very interesting for people
who are interested in mathematics and cellular automation. Here comes a ques-
tion. Why are we interested in the hyperbolic plane? NP problems can be
solved in polynomial-time in the space of cellular automata in the hyperbolic
plane. (Margenstern, 2001)

1.1 Conway’s Game of Life

First, we start with the universe of Conway’s Game of Life. It is an orthogonal
grid of square cells and each cell has two states, alive or dead. See Figure 1 for
an example. The yellow cell in the center is alive or populated and others are

Figure 1: Universe of Conway’s Game of Life (Martin, n.d.)

dead or unpopulated. Conway also carefully chose the rules of Game of Life to
meet these criteria (Wolfram, 2002, page 877).

1. There should be no explosive growth.

2. There should exist small initial patterns with chaotic, unpredictable out-
comes.

3. There should be potential for von Neumann universal constructors.

4. The rules should be as simple as possible, whilst adhering to the above
constraints.



Then he chose the rules:

1. If an alive cell has 2 or 3 neighbors, it survives, otherwise it dies.

2. If an unpopulated cell has 3 neighbors it becomes populated.

The three most common patterns are still life, cycle, and spaceship. People are
interested in finding different variations of these three patterns, especially for
spaceships, which are configurations that can go forever but are not a cycle.
There are several examples of these three patterns. These three patterns are
essential for us to discuss on the hyperbolic plane. See Figure 2 for some exam-
ples. There are still some other cycles (oscillators) with different periods. Some
oscillators have the only period of 2; others have a period of 30. People also find
some huge patterns, and they combine these huge patterns to construct some
crazy things. For an example, Figure 3 looks like a rocket basement keeping
shooting spaceships. The thing in the middle is the spaceship. This kind of
configuration is called the gun. A gun is a stationary pattern that repeatedly
emits spaceships forever. If a gun can emit gliders, we call it a glider gun. (Gun,
n.d.) Figure 4 is a billboard. On the right, there is a gun that keeps emitting
the word “GOLLY”. Here the word “GOLLY” is a spaceship moving to the left.

1.2 Universal Computation

Turing machine is a hypothetical computing device capable of storing informa-
tion and responding to computational questions, used in mathematical studies
of computability (Turing machine, 2014). In computability theory, a system of
data-manipulation rules (such as a computer’s instruction set, a programming
language, or a cellular automaton) is said to be Turing-complete or computa-
tionally universal if it can be used to simulate any Turing machine. (Turing
completeness, n.d.) A logic gate is an idealized or physical electronic device im-
plementing a Boolean function, a logical operation performed on one or more
binary inputs that produce a single binary output. (Jaeger, 1997)

Next, we focus on the connection between the Game of Life and universal com-
putation. There is a very special and interesting pattern in Conway’s Game of
Life, called a Gosper’s glider gun. See Figure 5 for an example. The glider gun
is on the top of Figure 5 and it can continuously shoot gliders. Gosper was the
first one to find an infinitely growing pattern and won a price. This pattern is
the key point of universal computation. We can use the glider gun and glider
to construct all three types of logic gates: NOT gate, AND gate and OR gate.
In logic, a functionally complete set of logical connectives or Boolean operators
is one that can be used to express all possible truth tables by combining mem-
bers of the set into a Boolean expression. (Enderton, 2001) After we construct
these three logic gates, we can use them to construct all the other types of logic
gates. First, we start with the NOT gate. See Figure 6. The glider gun can
keep shooting gliders and two gliders can cancel each other. We can use this
property to construct the NOT gate. Then the AND gate and OR gate can also
be constructed. See Figure 7 and Figure 8.
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Figure 2: Examples of still lifes, cycles and spaceships (Summers, 2013)

1.3 Hyperbolic Tessellation

The hyperbolic plane is not common in real life. It exists on the surface of
saddles. (Hyperbolic geometry, n.d.) We care about it because of some special
reasons. The cellular automaton on the hyperbolic plane can help us to solve NP
problems in polynomial time. The 3-SAT problem can be solved in quadratic
time by constructing a cellular automaton based on the pentagonal tessellation.
In this cellular automaton, the authors label each edge of the pentagon and
represent each cell by two types of nodes. Then they construct the Fibonacci
tree to represent the pentagonal tessellation by edges and nodes. For the rule of
this cellular automaton, there are more than twenty rules and four states. We
can check the propagation of signal by the transition table in their paper. This
cellular automaton is quite different from Conway’s Game of Life. After con-
structing the cellular automaton, they extend this result to solve NP problems
in polynomial time. (Margenstern, 2001)



Figure 3: Rocket basement (Boingo, 2011)

Definition 1. (Joyce, 1994) A regular tessellation, or tiling, is a covering of
the plane by regular polygons so that the same number of polygons meet at each
verter.

The hyperbolic geometry has a different parallel postulate. For a given line,
there are at least two lines through a given point that parallel to the given line.
This is the main difference between the Euclidean geometry and the hyperbolic
geometry. This difference also causes some different properties of triangles.

Proposition 1.1. (Stothers, n.d.) The sum of angles of a hyperbolic triangle
is less than .

For the proof of this proposition, see (Stothers, n.d., Section “Hyperbolic seg-
ments and triangles”).

There are three tessellations for the Euclidean Plane: Triangles meet six at each
vertex ({3,6}), squares meet four at each vertex ({4,4}) and hexagons meet three
at each vertex ({6,3}), where {3,6}, {4,4} and {6,3} are called Schlafli symbols.
There are infinitely many tessellations on the hyperbolic plane. For a tessella-
tion {n,m}, if L +-L < 1 then the tessellation is hyperbolic, if £ + L = 1 then
the tessellation is Euclidean, if % + % > % then the tessellation is elliptic. We
can proof these by the sum of angles in each polygons. There are m polygons
meet at a vertex for {n,m}. So each angle is % degrees and the sum of angles
is % degrees. We can also calculate the sum of angles by breaking polygons
into triangles. The angle sum is exact 180(n —2) degrees in the Euclidean plane,
less than this in the hyperbolic plane and more than this in the elliptic plane.
After solving the inequalities between % and 180(n — 2), we will get % + %
as our criteria.



Figure 4: Billboard (Boingo, 2011)

Figure 5: Gosper’s glider gun (Martin, n.d.)

In this paper, the pentagon tessellation is {5,4}. We prove the main results by
focusing on the geometry of tessellations. In section 2, there are many formal
definitions. In section 3, we will show the exponential growth of polygons in
the hyperbolic plane. In section 4, we prove by contradiction that the boundary
of any cycles can never change on {5,4} with the regular Conway’s Game of
Life rules. We also use the pentagrid-0.2 software (Shintyakov, 2014a) to find
that the group of 3 can keep the boundary of set A not getting smaller if A is
not a block. In section 5, we keep working on {5,4} but with different rules.
We connect 2 consecutive cells with Pascal’s triangle. We prove by induction
2t; =tgi; for 0 <j < 2¢ where t,, be the sum of 1’s in the ny, level of Pascal’s
triangle mod 2. In section 6, we vary the tessellations and rules in order to gen-
eralize the existence of the still life. We prove for m > 4 with rule Bi/S(m — 1)
where ¢ > 2, a block is a still life. For rule B1 we prove if mn—2n—3m+5>1
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Figure 7: AND gate (Bellos, 2014)

then there is no still life. When n = 3, we prove there exists a still life by
showing a case. For rule S3, we prove if n > 7, m = 3 then there is no still life
by analyzing the geometry of the tessellation. For rule B2, we have a conjecture
about cycles. We believe there are only two types of cycles with n = 8, m = 3,
and rule B2/53. We also provide several cases of still lifes with rule B2. In
the conclusion section, we discuss the future works including conjectures and

strobing rules.

2 Definitions

Definition 2. n is the number of sides of the polygons in the tessellation. m

is the number of the polygons that meet at each vertez.

Definition 3. If two cells share a common edge or vertex, we say one is the

neighbor of the other.
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Figure 8: OR gate (Bellos, 2014)

Definition 4. For polygon cells that are populated, each cell with i neighbors
survives, otherwise, it dies. We use the notation Si to denote it. For polygon
cells that are unpopulated, each cell with j neighbors becomes populated. We use
notation Bj to denote it.

See Figure 10 for an example.

Example 2.1. We show the first two generations of a set of cells. Note, S23
means each cell with 2 or 8 neighbors survives, otherwise it dies. See Figure 10.

Definition 5. If two cells share a common edge or verter, we say they are
connected. Moreover, if a and b are connected and b and ¢ are connected, then
a and c are also connected.

See Figure 11 for an example.

Definition 6. In a set of cells A such that any two cells in A are connected,
the distance of two cells is the minimum number of cells connect one cell to the
other.

See Figure 12 for an example. We can use d(a, b) to denote the distance between
a and b.

To pick a cell to be the center is important. We can use the center to define the
level and it is also the starting point of our proofs in the rest of the sections.

Definition 7. We can pick any cell on the plane to be the center i.e. level 0.
Level n is the set of cells with distance n to the center.

See Figure 13 for an example.



Figure 9: An example of a tessellation of hyperbolic plane with n = 5 and m = 4
(Joyce, 1994)
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Figure 10: First two generations of a set of cells under the rule B3/S23 (Figure
generated by pentagrid-0.2)

Definition 8. The boundary of level n is the set of edges between level n and
level n + 1.

Definition 9. For a set A, let a € A to be the center such that the mazximum
distance between b € A and a is k. Then the boundary of A with center a is set
of edges between level k and level k + 1.

Example 2.2. Suppose we have a set of cells A, such that the mazimum dis-
tance between any cells and center in A is 3, then the boundary of set A with a
given center is the set of edges between level 3 and level 4.

Definition 10. We start with a set of cells A and after k generations those
cells go back to set A. Set A is a cycle of k.

See Figure 14 for an example.

Definition 11. A cycle of 1 is also called a still life.

10
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(a) Connected cells (b) Not connected cells

Figure 11: Examples of connected and not connected cells (Figure generated by
pentagrid-0.2)

Figure 12: d(a,b) = 3 (Figure generated by pentagrid-0.2)

See Figure 15 for an example.

These are all the basic and most commonly used definitions of the Game of
Life on the hyperbolic plane. There are still some other definitions and we will
mention them when we need to use them. In section 3, we are going to explore

the difference between the Euclidean plane and the hyperbolic plane by counting
the number of cells.

11
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Figure 13: An example of level 1 (Figure generated by pentagrid-0.2)

P > A S

(a) Generation 1 of a beacon (b) Generation 2 of a beacon

Figure 14: An example of a Beacon (Figure generated by pentagrid-0.2)

3 Number of Sides and Cells

For the Euclidean plane, if we cover the plane with uniform squares, there are
(2n — 1)? total cells located within the ng, level. However, now we focus on
the hyperbolic plane and we cover the plane with regular polygons. The num-
ber of cells within the ny, level will increase exponentially. For example, the
total number of cells in the 100, level of the Euclidean plane is 39601. There are
1654532714419705795495081843249376928300045264805055678601 (Shintyakov,
2014b) cells in the hyperbolic plane. In next two subsections, we will count the
number of sides and cells for the pentagon tessellation.

3.1 Sides of the ny, Level

Definition 12. On the boundary of the ny, level, the edge of a pentagon is
named as a short side of the level. A line that is made up of two edges is named
as a long side of the level. The vertex intersected by two sides of a level is named

12



Figure 15: An example of a still life (Figure generated by pentagrid-0.2)

as a corner.

See Figure 16 for an example.
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Figure 16: An example of a short side, a long side and a corner. (Figure

generated by pentagrid-0.2)

Let a, be the number of sides of the ny, level. First we focus on the (n — 1),
level, there are a,_1 corners and a,,_o short sides. It follows there are a,,_1 —
an—2 long sides in the (n — 1), level. For each corner in the (n — 1), level, it
follows one side is in the ng, level. For each short side in the (n — 1), level, it
follows two sides are in the nyy, level. For each long side in the (n — 1), level,
it follows three sides are in the ny, level. Thus, we have a recursive relation,

ap = Qp-1 + 2an—2 + 3(ap—1 — ap_2), i.e. ap =4a,-1 — Gp_2.
So we have the second-order recursive relation.

ap =4an_1 —ap_2,n > 3,a1 =5,a2 =15

13



The characteristic equation 22 — 4z = 1 = 0 has roots 2 + v/3 and 2 — /3.
Consequently, a,, = ¢1(2+v/3)" +c2(2—+/3)", n > 1. By the initial conditions,
5=2c1(24+V3) +c2(2 —3) and 15 = ¢1(2 + v3)? + 2(2 — V3)?, we have

c = % - % 3 and ¢cg = % + %\/3 Consequently we have

i — (5_5\/5) C+VE 4o+ VB VB ezl ()

3.2 Cells of the n,, Level

Let b,, be the number of cells on the n;, level. We can use the number of sides
to help us to represent the number of cells on the ng, level. For each corner
in the (n — 1)y, level, it follows one cell is in the nyy, level. For each short side
in the (n — 1)y, level, it follows one cell is in the ny, level. For each long side
in the (n — 1)z, level, it follows two cells are in the nyy, level. Thus, we have a
recursive relation, b, = an—1 + ap—2 + 2(an_1 — ap_2), i.e. by, = 3an_1 — ap_o.
Then we can plug in the solution of a,, to find b, and sum b,, to find the total
number of cells.

15+ 10v/3 —-15+10v/3
= (2 V) —————— (2 V3)" 2
21+12\/§( ) —21+12\/§( ) ®
Then we find the total number of cells by the summation of two geometric
sequences.

o [15410V3)\ 243 — (2+V3)" !
;bi_<21+12\/§> 1-V3 *

—15+10v3)\ 2— V3 — (2 —/3)"*!
—21 +12V/3 -14+v3

The cells on the hyperbolic plane grow exponentially. The Game of Life will
have more fun on the hyperbolic plane than on the Euclidean plane. In the next
section, we work on the cycles for the pentagon. We try to find some general
properties of the cycles.

(3)

4 Group of 3

We found that for each cycle, there must be at least two groups of 3. See
Figure 15 for an example. There are two groups of 3 inside those two circles.
One is on the left and the other is on the right. We find one conjecture and two
propositions for groups of 3.

Definition 13. In the pentagon tessellation, 4 pentagons meet in each vertez.
If 3 of them are alive, we call this configuration the Group of 3.

14



Proposition 4.1. The boundary of any set of cells can never become larger
under rule B3/523.

Proof. For all cells located on the (n+ 1)y, or greater level of the patterns, they
can only have at most two neighbors in the ny, level. Thus, no cell will become
alive and the boundary can never become larger. O

Proposition 4.2. The boundary of any cycles can never change under the rule
B3/523.

Proof. Suppose, for contradiction, we have a cycle of n such that k; be the level
of boundary of the 4;, generation. If there exists a k; such that k; < k; for
J <1, then k,, <k;, for m > 4. It follows k;,, < k; < k;. Contradiction!

O

Conjecture 4.1. If the boundary of set A does not get smaller and it is not a
block, there is a group of 3 under the rule B3/523.

We think that the group of 3 just likes a fix point of a set of cells. It can keep
the boundary of a cycle. However, we still cannot find a proper way to prove it.

5 B2/S3

Under rule B2/S3, cells can be born in the outer levels, i.e. the boundary of the
cells can become larger. The cells are more unstable than the cells in B3/S3.

Definition 14. For a set A with the center a € A such that the boundary of
set A is level n, the outer levels are the levels k such that k > n.

5.1 Two Consecutive Cells

First, we begin with the two consecutive cells in the hyperbolic plane. In order
to make sure the cells will grow along a line, we need to avoid S1 and any
combination of S1, such as S12 and S123, since only S1 will keep the cells alive
in the previous generation and we can not make sure the cells only live along
the line between the beginning two cells.

Proposition 5.1. We denote two consecutive cells to be 1 and a two by three
group of dead cells to be 0. For any positive integer i, the iy, generation of 2
consecutive cells can be represented by the iy, level of Pascal’s triangle mod 2.

Proof. In the beginning, there are only two cells just like the first level of Pascal’s
triangle mod 2. At the end of each pattern, a group of two cells can be born
freely. This process is the same as how there is a 1 at the beginning and the
end of each level of Pascal’s triangle mod 2. For every two consecutive pairs
of cells, they will die in the next generation because they get too close. In the
next generation, we will have a two by three group of dead cells. For each pair
of cells that have at least 3 dead cells away from others, this pair will make

15



cells born just next to it. This process is the same as the 7;;, number in the j
level equals the sum of the iz, and the (i — 1), numbers in the (j — 1)z, level
of Pascal’s triangle mod 2.

O

Lemma 5.1. Suppose t,, is the number of odd numbers on the ny, row of Pas-
cal’s triangle. Then we have ta, = t, and ton+1 = 2to,.

Proof (Scholes, 1999). Firstly, we consider the numbers at odd indexes of row

2n.
2n - 2n 2n —1 (4)
2m+1) 2m+1 2m

We can conclude that the numbers at odd indexes of row 2n are always even.
Then we consider the numbers at even indexes of row 2n.

(om) = Grayion =3y

_ [[i-, (2i = 1) ' n! -
1", (20 — DI (2i — 1) mi(n —m)! (5)
_ [T, (2i = 1) . <n>
[TZ, (2i = D[S (20 —-1) \m

So the numbers at even indexes of row 2n have the same parity as the numbers
in row n. By the previous two equations, we can conclude that row 2n has the
same amount of odd numbers as row n, i.e. ts, = t,. For the next part of
the lemma, we consider the numbers at even and odd indexes at row 2n + 1

respectively.
2n +1 2n+1 2n
= 6
< 2m > (2m—1>+<2m> (6)

(o= (2 )+ (2) o

Notice that (2n)C(2m — 1) and (2n)C(2m + 1) are even, then (2n + 1)C(2m)
and (2n 4+ 1)C(2m + 1) have the same parity as (2n)C(2m). It means numbers
at odd and even indexes of row 2n + 1 have the same party as the number at
even indexes of row 2n, i.e. ton 41 = 2t9,. O

Proposition 5.2. Ift, be the sum of 1’s in the ny, level of Pascal’s triangle
mod 2 then 2t; = tgiy; for 0 <j < 27,

Proof. Prove it by induction. Base cases: When ¢ = 0, j = 0 then 2ty =2 = ¢;.
Assumption: Suppose 2t; = tgi; for i = n, 0 < j < 2¢. Then we consider
tont1yj. j = 2k is even. Then ton14,; = toganyr) = tonyr = 2t = 2t = 1
by ton = tn. j = 2k +1is odd. Then tynt14; = toan k)41 = 2lonig = 2t =
2t2k+1 = tj by t2n+1 = tn. O

16



Proposition 5.3. If S(n) be the number of 1’s in the binary representation of
n then t, = 25,

Proof. Let n = Zle 2% where x; represents the indexes of 1’s of the binary
representation. Then we consider 1, = txk 9o, = 252k 9oy = o0 = 2k, O

5.2 Three Cells with “L” Shape

This type of cell in B2/S3 is quite similar to the 2 consecutive cells. For the
most generations of 3 cells, the configuration of cells is just like two separate
Pascal’s triangles. However, for some generations, 3 cells have some special
configuration of cells. For the (2" — 1), level, the population of cells is an odd
number. For the (2")y, level, the population of cells is always 5.

6 Existence of Still Lives in Different Tessella-
tions and Rules

On the Euclidean plane, we only have three types of tessellations: square, trian-
gle, and hexagon. However, on the hyperbolic plane, we have many more types
of tessellations. We can also change the rules of the Game of Life. Thus, there
is much more interesting work we can do on the hyperbolic plane.

6.1 A Block is a Still Life

Definition 15. A block is a set of cells populated around a vertez.

See Figure 17 for an example.

(a) (b)

Figure 17: Examples of blocks (Figure generated by hyperbolic-ca-simulator
(Shintyakov, n.d.))

Proposition 6.1. For m > 4 with rule Bi/S(m — 1) where i > 2, a block is a
still life.

17



Proof. For each cell around a vertex, it has exactly m — 1 neighbors alive.
Under the rule S(m — 1), all the cells will stay alive in the future. Note the
edges between the two cells, one end of the edge is the center of the block, the
other end is surrounded by two populated cells and m — 2 unpopulated cells.
Thus, for all unpopulated cells around the block, they can have at most two
alive neighbors. The rule Bi with ¢ > 2 can make sure no cells will be born. [

6.2 Existence of Still Lives with Rule B1

Proposition 6.2. In the tessellation {n,m}, each polygon has n(m — 2) neigh-
bors.

Proof. Suppose in the tessellation {n,m}, cell a has n vertexes and each vertex
corresponds to m—3 polygons which are connected to a by a vertex. There are n
polygons which are connected by a by edges. Therefore, n(m—3)4+n = n(m—2)
is the total number of neighbors of a. O

Proposition 6.3. Suppose we have a tessellation {n,m}. If mn—2n—3m+5 > 1
then there is no still life for B1.

Proof. For a set of cells A, we can pick a € A to be the center of the set A such
that the maximum distance between any b € A and a by k. Then we only focus
on the cells on the kyy, level. There are two types of cells on the k;j, level. One
is connected to the vertex of the (k — 1), level, the other is connected to the
edge of it. For the cell ¢ which is connected by the vertex, we will prove that the
minimum number of neighbors have a chance to be populated in next generation
isn(m—2)—2(m—1)—(m—3) =mn—2n—3m+5. We want to consider the
minimum number. So we should assume that neighbors of ¢ are in the ky, level
is populated. By proposition 6.2, n(m — 2) is the total number of neighbors.
For the two vertexes on the boundary which are connected to the neighbors on
the kip, level, there are m — 2 cells on the (k+ 1), level that have two neighbors
alive. For the vertexes which are connected to the (k — 1), level, all the cells
are populated. So we need to eliminate m — 3 cells. Then for the cells which are
connected to the cell in the (k — 1), level by the edge, with the similar reasons,
the minimum number of neighbors that have the chance to be populated in next
generation is n(m —2) —2(m —1) —2(m —2) +1 = mn — 2n — 4m + 7. We can
make the difference between these two quantities and it equals to m — 2. By
%—I—% < %, we know that m > 3, thus mn —2n—3m+5>mn—2n—4m+7.
See section 1.3. So if mn — 2n — 3m + 5 > 1, then there is no still life. O

Proposition 6.4. For n = 3, there exists a still life for rule B1.

Proof. When n = 3 then mn —2m —3m +5=3m —6 —3m + 5 = —1. This
means for a set of cells populated all the places in the ky, level, there is no cell
that will be born in the next generation. So we only need to set ‘S’ to be as
sufficient as possible to make sure all the populated cells will not die in the next
generation. Then we can have a still life. O

In Figure 18, with rule B1/55,6, 10 this is a still life.
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Figure 18: An example of a still life with n = 3 and rule B1 (Figure generated
by hyperbolic-ca-simulator)

6.3 Still Lives with Rule S3
Proposition 6.5. If n > 7, m = 3 and with rule S3, there is no still life.

Proof. Suppose there is a still life for n > 7, m = 3 and with rule 53, called
set A. Note, all cells in A are connected and have exactly 3 neighbors. Then
we pick a cell a € A to be the center such that the maximum distance between
any b € A and a by k. Now we consider the cells on the kyy, level of set A. In
Figure 19, a is the center of set A and b is on the outermost level. In order
to have 3 neighbors, there are two conditions of the outermost level cell with 3
neighbors. Cell ¢ also needs to satisfy the rule S3, so cell d must be alive. Then
the cell surrounded by b, ¢, and d will have 4 neighbors. This contradicts rule
S53. Thus there is no still life. O

(a) (b)

Figure 19: Two conditions of outermost level cells with 3 neighbors. (Figure
generated by hyperbolic-ca-simulator)
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6.4 Still Lives with Rule B2

Conjecture 6.1. Suppose n = 8 m = 3, with the rule B2/S3, then there are
only two different kinds of cycles, which are called blinkers and spinners. (The
names are from (Summers, 2013)).

See Figure 20 and Figure 21 for pictures.

o9 )

(a) Generation 1 (b) Generation 2

Figure 20: Cycle of 2, blinker. (Figure generated by hyperbolic-ca-simulator)

®

(a) Generation 1 (b) Generation 2

Figure 21: Cycle of 2, spinner. (Figure generated by hyperbolic-ca-simulator)

Definition 16. When n is even, a star is a set of 1 + 4 cells with a cell on the
center and every second edge connects others.

Definition 17. When m = 4, a firework is a set of 1 +n cells with a cell on
the center and vertexes connect others.

Proposition 6.6. Suppose n is even and m = 3 with rule B2/S1k where k =
then a star is a still life.

n
2
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(a) Generation 1 (b) Generation 2

Figure 22: Cycle of 2. (Figure generated by hyperbolic-ca-simulator)

See Figure 23 for an example.

Proof. Suppose n = 2k, m = 3, and with rule B2/S1k, k is an integer, a star is
a still life. Note there are 2k(3 — 2) = 2k neighbors for each cell. For the cell
in the center, it has k neighbors alive. For others, they have 1 neighbor alive.
The rule S1k can make sure all the cells will stay alive in the future. Then we
consider the cells on the second level. They can have at most 1 neighbor alive.
Under the rule B2, no cell will be born. Thus a star is a still life. U

() N=38 (b) N =12

Figure 23: Examples of stars. (Figure generated by hyperbolic-ca-simulator)
Proposition 6.7. For any n, m = 4 and with rule B2/S1n, then a firework is

a still life.

See Figure 24 for an example.
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Proof. Suppose there is a tessellation n,m = 4, and with the rule B2/S1n. Now
we consider the fireworks. Note there are n(4 — 2) = 2n neighbors for each cell.
For the cell in the center, it has n neighbors alive. For others, they have 1
neighbor alive. The rule S1n can make sure all the cells will stay alive in the
future. Then we consider the cells on the second level. They can have at most
1 neighbor alive. Under the rule B2, no cell will be born. Thus a firework is a
still life. O

(a) n=5 (b)yn=9

Figure 24: Examples of fireworks. (Figure generated by hyperbolic-ca-
simulator)
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7 Conclusion

In this paper, we mainly discuss still lifes on the hyperbolic plane with different
tessellations and different rules. We find several different still lifes on the hy-
perbolic plane.

In the pentagon tessellation, we first prove the exponential growth of cells. Then
we work on the cycles and make a conjecture of the group of 3. We also con-
nect a special configuration to the Pascal’s triangle. Apart from the pentagon
tessellation, we also work on the other tessellations in order to generalize the
existence of still lifes.

Still lifes are easier to analyze than the other configurations. We only need to
focus on one generation. However, cycles and spaceships required us to ana-
lyze several generations. In the future, we can work on the conjectures in this
paper. For example, there are only two cycles with n = 8, m = 3 under the
rule B2/53. These cycles have a period of 2 and they are the easiest cycles.
So these cycles are good starting points for analyzing cycles. We can also find
a tessellation under a special rule such that there exists still lifes, cycles, and
spaceships. Then we can construct logic gates on that tessellation by the same
method of constructing logic gates on the Euclidean plane.

We can work on the strobing rules, where empty field becomes completely filled
in the next generation, and then it completely dies out one generation later. We
can try to prove the following conjectures based on D. Shintyakov (Shintyakov,
2014a).

Conjecture 7.1. There are some other spaceships in these rules.

Conjecture 7.2. There exists a pattern that causes very slow but infinite growth
in some of the rules.

Conjecture 7.3. There are some significantly different rules with spaceships.
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