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REPEAT LENGTH OF PATTERNS ON WEAVING PRODUCTS

Zhuochen Liu

Rose-Hulman Institute of Technology
Email: liuz7@rose-hulman.edu

ABSTRACT
Interlacing strands have been used to create artistic weaving pat-
terns. Repeated patterns form aesthetically pleasing products.
This research is a mathematical modeling of weaving products
in the real world by using Cellular Automata. The research is
conducted by observing the evolution of the model to better un-
derstand products in the real world. Specifically, this research
focuses on the repeat length of a weaving pattern given the rule
of generating it and the configuration of the starting row. Previ-
ous studies have shown the range of the repeat length in specific
situations. This paper will generalize the precise repeat length
in one of those situations using mathematical proofs. In the
future, the goal is to further generalize the findings to more sit-
uations.

1. INTRODUCTION

People began to create aesthetic patterns of weaving products
(Fig. 1) in ancient times. A pattern is a region on a weaving
product that serves a decorative purpose. No matter how com-
plicated the patterns are, they are composed of strands interlac-
ing each other. To study the rules behind patterns, it is a good
idea to model strands that generate those patterns.

Fig. 1: An example of weaving products. (Pictured by USAID
Biodiversity and Forestry)

In weaving products, if we define the direction of one strand
as straightly upward, the direction of all strands will be either
straight or slanted. From aesthetic and practical perspectives,
there are only limited number of directions of strands. Usu-
ally, there are only two or three directions of strands in a weav-
ing product, so it is safe to simply classify a strand as straight,

slanted to left, or slanted to right. With this simplified classifi-
cation, the states of two strands can be straight or slanted, one
crossing with the other or not, and how they cross. There can
be two strands such that they cross each other but one is straight
and the other is slanted, but to make the problem easy, this sit-
uation is not covered in this paper. Therefore, it is reasonable
to divide the whole pattern into grids and use cellular automata
(Definition 1) to represent them. Normally, the strands are either
horizontal or vertical, but to better observe them, the weaving
product can be rotated by 45 degrees and then divided into cells,
as shown in Fig. 2.

Fig. 2: Rotate the weaving product and then divide it
into cells. (Picture by David C Todd, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=71461797)

Not all patterns on a weaving product are unique. In fact, a
weaving product usually contains patterns repeating across the
surface, as shown in Fig. 3. To better understand these patterns,
we want to know when they start to repeat. However, the num-
ber of ways to combine strands is large. To narrow the problem
down, this paper will only focus on slanted strands.
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Fig. 3: Patterns on a weaving product. (Picture by Alfred Bar-
low)

When talking about the row where the pattern starts to repeat,
the positions of cells can be either considered or not. In Fig. 4,
if positions are not considered, the pattern starts to repeat at row
9 counting from bottom because its configuration is the same as
row 1 and the repeat length is 8, but if positions are considered,
the pattern does not repeat here because the positions do not
match.

Fig. 4: Positions of cells affect if the pattern starts to repeat or
not.

Previous studies about slanted strands have already achieved
significant results. In all of these studies, positions of cells in
the model are considered. Let m represent the width of the
starting row and let 2k < m ≤ 2k+1, Dr. Joshua Holden
[1] proved that if all strands are slanted, the maximum repeat
length, wm, over all crossing rules and starting rows will be
lcm(2k+1,m) ≤ wm ≤ m2m − 2m. In addition, if m < 5,
then wm will be exactly lcm(2k+1,m), and if m = 23, then
wm > lcm(2k+1,m). Moreover, Hao Yang [2] showed that
under additive crossing rules (Definition 3), if there is no un-

paired strand in the starting row and m is a power of 2, then the
maximum repeat length is 2.

This research expands Dr. Holden’s work to get the exact
repeat length for starting rows with all slanted strands under
additive crossing rules or inverse additive crossing rules (Defi-
nition 2.4). In this paper, positions of cells are not considered
when talking about the repeat length. Repeat patterns are re-
lated to Pascals Triangle mod 2. The next section introduces
necessary definitions, and section 3 provides the repeat length
and the detailed proof.

2. DEFINITIONS

2.1. Stranded Cellular Automata

Definition 1. A cellular automaton (pl. cellular automata) is a
discrete model consisting of a regular grid of cells, each in one
of a finite number of states. For each cell, a set of cells called
its neighborhood is defined relative to the specified cell. In our
model, each cell has two neighbors, which are the two adjacent
cells that generate it, as Fig. 5 shows. The stranded cellular
automaton (SCA) is a cellular automaton whose cells represent
the state of strands. It has 8 states in total [1], as shown in the
Fig. 6.

Fig. 5: The two cells at the bottom are neighbors of the cell at
the top.

Fig. 6: Eight states of an SCA. (Picture based on J. Holden[1])

2.2. Crossing Rules

When two slanted strands cross, we need to determine which
strand is on top of the other. There are three possible states: left
strand on top, right strand on top, or strands do not cross. In the
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last state, if we do not consider the empty cell, there will be just
one strand in the cell and we call it an unpaired strand.

Definition 2. In the SCA, a new cell is generated from two
adjacent cells in the previous row, as shown in the right part of
Fig. 2, and the crossing rule is used to determine the crossing
state of the new cell based on states of the two adjacent cells.

Because there are 3 possible states for each cell, there are
3×3 = 9 possible combinations of adjacent cells, and we use 9
bits to represent them. 9 combinations together form a crossing
rule. As for bit representations, we use “1” to represent left
strand on top and “0” to represent right strand on top. The value
of an unpaired strand is undetermined, and is represented as
“N”. Fig. 7 shows how a crossing rule looks.

Since 9 bits are used to represent one crossing rule, there are
a total of 29 = 512 crossing rules.

Fig. 7: Bit representations of a crossing rule. The value of an
unpaired strand is undetermined and is represented by “N”.

Note that the outputs of crossing rules do not contain un-
paired strands. The reason is that there are only 8 specific sit-
uations that generate unpaired strands, as shown in Fig. 8, and
these situations can be applied to all crossing rules. Besides,
since the strand is unpaired, we don’t need to care about its
crossing state.

Fig. 8: How an unpaired strand can be generated.

2.3. Additivity

Definition 3. Among all crossing rules, the additive rules are
those whose values of generated cells are equal to the sum of
values in the two cells that generate them modulo 2. If one or
both of the two adjacent cells contain an unpaired strand and
thus the value is undetermined, then we will regard such situa-
tions as satisfying the condition of additivity. Let xi−1 and xi

be the two adjacent cells and let xi
′ be the generated cell. We

have xi
′ = xi−1 + xi mod 2. Note that the value of the un-

paired strand is undetermined, so the unpaired strand will not
affect the additivity.

Fig. 9 is an example of an additive crossing rule.

Fig. 9: An example of an additive rule.

Remark 1. Because unpaired strands will not affect the additiv-
ity, the additivity is determined by only the 4 situations at the 4
corners in the example shown above. Specifically, additive rules
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must have a configuration of 1 0 0 1 ordered the same as in
the example. Hence, there are a total of 25 = 32 additive rules.

2.4. Inverse Additivity

Definition 4. Inverse additive rules are similar to additive ones
but values of “0” and “1” are flipped. Therefore, in inverse addi-
tive rules, we have xi

′ = xi−1 + xi + 1 mod 2. Accordingly,
the configuration of inverse additive rules must be 0 1 1 0 and
the number of inverse additive rules is also 25 = 32.

Fig. 10 is an example of an inversely additive crossing rule.

Fig. 10: An example of inversely additive rule.

2.5. Rotation of a Row

In our modeling, a row of a pattern is regarded as a closed loop.
Therefore, the cell at one end of the row is adjacent to the cell
at the other end. If half of the cell exceeds the border of a row,
the other half of the cell will go to the other end of the row.

Definition 5. The row is rotated if we put cells from one end to
the other end without changing the order of moved cells.

For example, we can obtain the 9th row from bottom in Fig. 4
by rotating the first row. This is why we say the two rows are
the same if positions of cells are not considered.

Remark 2. If a starting row is rotated, the generated pattern will
be the same as before but also rotated by the same number of
cells.

2.6. Effective Width

Although the unpaired strand has an undetermined value, its be-
havior can still be represented by “1” or “0” based on the values
of its adjacent cell and the generated cell. In Fig. 11, for the ex-
ample at the top, a left unpaired strand and a crossing of value
0 generate a value of 1, so the unpaired strand behaves as a “1”
in this situation. For the example at the bottom, a left unpaired
strand and a “1” generate a “1”, so the unpaired strand behaves
as a “0”. Note that in starting rows with just one unpaired strand,

not all cells can change their values during the evolving of pat-
tern because the unpaired strand always exists. For example, if
the behavior of the unpaired strand is fixed, the value of this cell
will not change. Moreover, if the left unpaired strand behaves
as a “0”, then the value x of cell to the right of it will also not
change because 0 + x = x. For the right unpaired strand that
behaves as a “0”, the value of cell to its left will not change for
the same reason.

Definition 6. Given a starting row with width m, the effective
width, me, is the number of cells whose values will change dur-
ing the evolving of pattern, plus 1.

Fig. 11: The value of unpaired strands.

To be more specific, if there is only one unpaired strand, me

is determined as follows:

1. If the unpaired strand behaves as “1”, then me = m.

2. If the unpaired strand behaves as “0” and is a left strand,
then counting from the unpaired strand to right, me = the
number of cells from the first “1” to the last cell, which is
the cell to the left of the unpaired strand because the row
can be rotated.

3. If the unpaired strand behaves as “0” and is a right strand,
then counting from the unpaired strand to left, me = the
number of cells from the first “1” to the last cell, which
is the cell to the right of the unpaired strand because the
row can be rotated.

4. If the behavior of the unpaired strand can be both “1” and
“0” based on the neighboring cell, we treat it as “0”. The
reason is that if the unpaired strand behaves as “0” in the
starting row, then the value of the neighboring cell will
not change during the pattern evolving because for any
value x in the neighboring cell, 0 + x = x. Therefore,
the behavior of the unpaired strand will also not change.
If it behaves as “1” in the starting row, then the value
of the neighboring cell will be flipped in the next row.
Afterwards, the behavior of the unpaired strand will also
be flipped to “0” and then remain unchanged.
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Remark 3. In the latter situation, we need to calculate me

from the second row because the value change of the cell
next to the unpaired strand will affect me.

Fig. 12 and Fig. 13 show how the effective width is calcu-
lated. Cells whose values are changeable and the leading “1”
are represented in yellow-green in the starting row. In the first
example, the effective width is 3, and in the second example,
the effective width is 5.

Fig. 12: A starting row with an effective of 3.

Fig. 13: A starting row with an effective of 5.

Remark 4. The rotation of the row will not affect the effective
width. Therefore, in the following parts of this paper, I will put
the unpaired strand at the beginning or the end of the starting
row to make it easier for us to observe.

2.7. Width of a Row in Pascal’s Triangle

Definition 7. The width of row i in Pascal’s Triangle, wi, is the
number of entries in row i in Pascal’s Triangle.

Remark 5. In Pascal’s Triangle, the amount of entries in each
row is incremented by 1 from its previous row, and the first row
has 1 entry. Therefore, if we define the first row in Pascal’s
Triangle as row 0, then wi = i+ 1.

3. REPEAT LENGTH

Many factors can affect the length of repeat pattern given the
starting row. To narrow the problem down, we will focus on the
additive or inverse additive crossing rules and a single unpaired
strand in the starting row.

Proposition 1. Under additive crossing rules, if the starting row
contains one unpaired strand and one “1”, no matter if it is an
actual “1” or an unpaired strand equivalent to a “1”, and no
empty cell, then the generated pattern will be a partial upside
down Pascal’s Triangle modulo 2. If the width of corresponding
row in Pascal’s Triangle is bigger than the effective width, the
generated pattern will discard the exceeded parts and become a
partial Pascal’s Triangle modulo 2.

Proof.
In Pascal’s Triangle, each number is the sum of two neighbor-
ing numbers in the previous row. This is also true for numbers
on the borders of Pascal’s Triangle if we regard the numbers
outside the borders as “0”s. Let xi

′ denote a number in Pas-
cal’s Triangle and let xi−1 and xi denote the two neighboring
numbers in the previous row. Then we have xi

′ = xi−1 + xi.
Note that a+b mod 2 = ((a mod 2)+(b mod 2)) mod 2,
which will soon to be used.

In the starting row of the weaving pattern, there is only one
“1”. All other cells are filled with “0”. According to Defini-
tion 3, the value of generated cell in the next row is xi

′ =
xi−1 + xi mod 2. Therefore, the ways of generating Pascal’s
Triangle and the weaving pattern are the same, and a row in the
weaving pattern corresponds to a row in Pascal’s Triangle at the
same row index.

Because Pascal’s Triangle starts with one “1” and there is one
“1” in the starting row of the weaving pattern, the generated pat-
tern is an upside-down Pascal’s Triangle modulo 2 if the width
of corresponding row in Pascal’s Triangle is less than or equal
to the effective width, me.

When the width of corresponding row in Pascal’s Triangle
exceeds me, a crossing that is supposed to neighbor with an-
other crossing will neighbor with the unpaired strand. In this
case, an unpaired strand instead of a new crossing is generated
(Fig. 8). Therefore, the unpaired strand will remain and isolate
the entries of that row in Pascal’s Triangle within and outside
the effective width. Note that for each generated cell, xi

′, its
value is determined by xi−1 and xi, and i < me because all of
these cells are in the pattern. Hence, if the corresponding row
in Pascal’s Triangle exceeds me, extra cells will be discarded as
shown in Fig. 14, and these cells would not affect the value of
cells in the pattern. Consequently, the generated Pascal’s Trian-
gle is partial.
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Fig. 14: The generated pattern(top) with me = 5 and the corre-
sponding Pascal’s Triangle(bottom). The red part in the Pascal’s
Triangle is discarded because it exceeds me.

Note that the discarded part is on the left because the un-
paired strand is to the left. If the unpaired strand is to the right,
the discarded part will be on the right.

Proposition 2. The patterns described in Proposition 1 start to
repeat at the row “1 0 ... 0 1” in Pascal’s Triangle. The repeat
length is 2k+1, where 2k < me ≤ 2k+1.

Proof.
Because there is only one “1” in the starting row of weaving
pattern, the pattern will repeat when in the corresponding row in
Pascal’s Triangle, the total number of consecutive “0”s follow-
ing the “1” on the border, plus 1, exceeds me. Therefore, when
the pattern repeats, the first me numbers in the corresponding
row in Pascal’s Triangle are “1 0 ... 0”.

Claim: Patterns start to repeat at a row with all “0”s between
two “1”s on borders, which looks like “1 0 ... 0 1”.

Proof. If we shade the odd numbers in Pascal’s Triangle
and leave the even numbers blank, we will get a Sierpiński
Triangle[3]. Note that we also take the modulus by 2 of Pas-
cal’s Triangle so that odd numbers become 1 and even numbers
become 0. Therefore, the Sierpiński Triangle is equivalent to
Pascal’s Triangle modulo 2. Because the Sierpiński Triangle is
recursive, Pascal’s Triangle modulo 2 is also recursive in the
same way[4]. The recursion of Pascal’s Triangle modulo 2 is
defined as follows:

• Base case: the base case of Pascal’s Triangle modulo 2
contains only a single “1”.

• Recursive step: the next iteration of the recursion is
formed by arranging 3 copies of current iteration as an
equilateral triangle and fill all entries in the middle with
“0”s.

Fig. 15 and Fig. 16 shows the recursive structure.

Fig. 15: Base case and first few iterations of the recursive struc-
ture.

Fig. 16: General recursive structure. (Picture based on Andrew
Granville[4])

Suppose, for contradiction, that the pattern starts to repeat at
row i with additional “1”s in between the two “1”s on borders.
Since Pascal’s Triangle is horizontally symmetric[5], we know
that row i is “1 0 ... 0 1 ### 1 0 ... 0 1”, where “...” is filled
with “0”s and “###” is undetermined.

Let l be the width of row i so that l = i+ 1 and let l′ be the
width of “1 0 ... 0 1”, so l′ ≤ l

2 . Because the starting row of
the pattern contains only one 1 and the pattern starts to repeat
at row i, the first me numbers of row i must contain only one 1,
which is the 1 on the border. Therefore, me < l′.

Let Tk+1 be the sub-triangle in Pascal’s Triangle modulo 2
such that row i is in Tk+1 but not in Tk. According to the recur-
sive structure shown in Fig. 16, row i is made of two copies of
a same row, say row j, in Tk, and the middle of the two copies
is filled with with “0”s. Note that the “1 0 ... 0 1” cannot be
split across the two copies of row j. The reason is that “...” is
filled with all 0’s, but if it is split across the two copies of row j,
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then there will be at least one 1 in the “...” part because a row
has at least two 1’s(except the first row). Therefore, row j con-
tains the first “1 0 ... 0 1” part that is in row i and some of the
“###” part if not all entries in “###’ are “0”. Let the width
of row j be lj so that lj = j + 1, so lj ≥ l′ > me. Therefore,
the weaving pattern also starts to repeat at row j, but row j is
before row i, which contradicts the assumption that the pattern
starts to repeat at row i.

Therefore, in the row that the pattern starts to repeat, there
must be no “1”s between the two “1”s on borders, which means
that the row is “1 0 ... 0 1”.

Claim: All rows of form “1 0 ... 0 1” are located at the 2nth
rows in Pascal’s Triangle where n is a positive integer, and for
every positive integer n, the 2nth row has the form “1 0 ... 0 1”.

Proof. Note that the row “1 0 ... 0 1” is generated from the
row “1 1 ... 1 1”. The reason is that consecutive “0”s must
be generated from either consecutive “0”s or consecutive “1”s.
Otherwise, adjacent 0 and 1 will generate additional “1”s. Since
the borders of Pascal’s Triangle are composed of “1”s, the row
“1 0 ... 0 1” must be generated from row “1 1 ... 1 1”.

Let row “1 0 ... 0 1” be in Tk such that row “1 0 ... 0 1” is in
Tk but not in Tk−1. Such row corresponds to the two triangles
at the bottom in Fig. 16. If we look at the bottom half of the
recursive structure, it is clear that there are at least four “1”s in
each row except the row at the beginning of the bottom half.
Therefore, row “1 0 ... 0 1” must correspond to this row in
Pascal’s Triangle. Note that the height of any Tk is a power of 2
because its height is twice as the height of Tk−1, and the height
of the smallest recursive structure, which contains a single “1”,
is 1. Because the index of the first row in Pascal’s Triangle is 0,
the index of row “1 0 ... 0 1” is 0 + 1× 2n = 2n. For the same
reason, for any positive integer n, the 2n rows starting from
top of Pascal’s Triangle modulo 2 form a complete recursive
iteration Tlog2 n, whose last row is of the form “1 1 ... 1 1” and
has an index of 2n − 1. Therefore, the next row is of the form
“1 0 ... 0 1” and has an index of 2n.

Note that the width of row i in Pascal’s Triangle is equal to
i + 1 (Remark 5), so the width of row “1 0 ... 0 1” where the
pattern starts to repeat and whose index is 2n for some positive
integer n, is 2n + 1. When the pattern starts to repeat, the row
width must be greater than the effective width me, so we get
me < 2n + 1. Hence, me ≤ 2n. Also note that because row
2n is the first row for the pattern to repeat, the pattern does
not repeat at row 2n−1, which is also “1 0 ... 0 1”. Since the
pattern does not repeat at row 2n−1, its width, 2n−1 + 1, must
be no longer than the effective width. Therefore, we get me ≥
2n−1 + 1, which means that me > 2n−1. Let k = n − 1, so
2k < me ≤ 2k+1. Because the pattern starts to repeat at the
2n th row, the repeat length = 2n − 0 = 2k+1.

Proposition 3. When in the starting row, there are multiple un-
paired strands that are in the same direction, we divide the start-
ing row into sub-rows by unpaired strands and calculate the ef-

fective width of each sub-row. The effective width, me, of the
starting row is equal to the largest effective width among all
sub-rows.

Proof. Each unpaired strand has two adjacent cells. It will gen-
erate a new crossing with one of the two cells and transfer the
unpaired strand to the next row with the other, according to
Fig. 8.

Claim: If all unpaired strands are in the same direction,
then the number of cells between two unpaired strands will not
change in the generated rows.

Proof. If the unpaired strands are in the left direction, we count
from left to right; if the unpaired strands are in the right direc-
tion, we count from right to left. In this way, if we denote the
cell of an unpaired strand as ci, then ci and ci−1 will generate
an unpaired strand and ci and ci+1 will generate a new crossing
if ci+1 is not an unpaired strand.

Suppose there are k crossings between the two unpaired
strand in a given row. Let the first unpaired strand be c0, the
second unpaired strand be c0

′, and crossings be c1, c2, ... , ck.
Let the cell prior to the first unpaired strand be c−1. Therefore,
c−1 and c0, and ck and c′0, will generate an unpaired strand. For
1 ≤ i ≤ k, ci−1 and ci will generate a crossing. Accordingly,
the number of cells between two unpaired strands does not
change in the generated cell.

Because of the claim we just proved, we can divide the
starting row into sub-rows by unpaired strands. Each unpaired
strand ci will be assigned to the sub-row that contains cell ci+1.
Crossings in different sub-rows will not affect the value of each
other. Hence, we can treat the generated patterns of sub-rows
separately.

Each sub-row contains 1 unpaired strand so that we can cal-
culate the repeat length of its generated pattern according to
Proposition 2. The generated pattern of the entire starting row
is to simply combine patterns of all sub-rows. Therefore, the
repeat length of the entire starting row is determined by the sub-
row with the largest effective width. In other words, the effec-
tive width of the starting row is equal to the largest effective
width among all sub-rows.

4. CONCLUSION

4.1. Results

We have proved the exact repeat length of the generated pat-
tern under additive or inversely additive crossing rules with at
least one unpaired strand in the starting row and all unpaired
strands in the same direction. To get the repeat length under
such situations, we first calculate the effective width, me, of
the starting row, and the repeat length is equal to 2k+1, where
2k < me ≤ 2k+1. Note that positions of cells are not consid-
ered in this paper.
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4.2. Future Work

Currently, this paper only covers situations with one unpaired
strand or multiple unpaired strands with the same direction. The
next thing to do is to generalize the repeat length to starting
rows with no unpaired strands or multiple unpaired strands in
different directions.

4.3. Conjectures

The following conjectures are for starting rows with one “1”,
no unpaired strands, its width even and not a power of 2, under
additive or inversely additive crossing rules.

• When the pattern starts to repeat, there are two “1”s in
that row. Note that the starting row is not contained in the
repeat pattern in this case.

• For a row with two “1”s, if it is a row where the pattern
starts to repeat, the number of “0”s between the two “1”s
is equal to 2n−1 counting from both inner and outer side,
n ∈ N, not necessarily the same for both.

• For a row with two “1”s, if it is not the row where the
pattern starts to repeat, the number of “0”s between the
two “1”s is equal to 2n − 1 counting from either inner or
outer side, but not for both, n ∈ N.

5. CODE FOR SIMULATION

The code for generating a simulated weaving pattern
is available at: https://github.com/kevin1zc/
Weaving-Pattern-Simulation. Instructions of how to
use it is in the README.md file.
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