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Counting Solutions to Discrete Non-Algebraic

Equations Modulo Prime Powers

Abigail Mann

May 20, 2016

Abstract

As society becomes more reliant on computers, cryptographic secu-
rity becomes increasingly important. Current encryption schemes include
the ElGamal signature scheme, which depends on the complexity of the
discrete logarithm problem. It is thought that the functions that such
schemes use have inverses that are computationally intractable. In rela-
tion to this, we are interested in counting the solutions to a generalization
of the discrete logarithm problem modulo a prime power. This is achieved
by interpolating to p-adic functions, and using Hensels lemma, or other
methods in the case of singular lifting, and the Chinese Remainder The-
orem.



1 Introduction

Society has become increasingly reliant on computers for storing information
and communicating securely. People expect that the cryptographic schemes
currently in use will keep their information confidential and will allow them to
verify the authenticity of any piece of information that they see. Public key
cryptography schemes involve functions that are easy to compute one way using
a publicly available key (to encrypt or verify signatures), but have inverses that
are difficult to compute without a private key, so that decryption or creating a
signature is only feasible for one user. Cryptographic schemes such as Diffie-
Hellman key exchange and ElGamal encryption and signature schemes often use
exponential modular mappings like the discrete exponentiation map f : Z →
Z/pZ, where x 7→ gx (mod p) and g ∈ Z, p a prime. These are used since they
are generally believed to be computationally infeasible to invert for large prime
p [10, Chapter 7].

However, the security of these schemes is still being analyzed, since any
insight into their structure may reveal a vulnerability. There has been previous
analysis of the maps x 7→ gx (mod p) and x 7→ gx
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(mod p) using functional
graphs in [8], [4], and [12]. Camenisch and Stadler look at the double discrete
logarithm of y, ga

x ≡ y (mod c) as well as the nth root of the discrete logarithm
of z, gx

n ≡ z (mod c), where x, a, n, c ∈ Z, and g, y are in a cyclic group G, for
use in cryptographic signature schemes where there are multiple keys that allow
for the revelation of partial information [3].

We study the nth roots of discrete logarithms in this paper by counting
integer solutions to gx

n ≡ xk (mod pe), where g, n, k, e ∈ Z, p is a prime, and
p - g. This may give us some insight into the structure of nth roots of discrete
logarithms. Although it is not directly used in any cryptographic schemes today,
one may be built off of this equation if its structure acts sufficiently random.
The idea for counting solutions to these types of congruences was inspired by
[6], which uses p-adic interpolation, Hensel’s lemma, and the Chinese remainder
theorem. This type of analysis can also be found in [9] and [11], which applies
these methods to the Welch Equation and the Discrete Lambert map.

In this paper we find that for x in a certain range, we can determine the
exact number of solutions to gx

n ≡ xk (mod pe) when p - k and when p = k
and n = 1.

1.1 Terminology and Background

For this paper, we count solutions to gx
n ≡ xk (mod pe), where g, n, k, and

e are fixed integers, p is a prime, and p - g. In order to count solutions to
our congruence modulo pe for all positive integers e, we will find p-adic integers
helpful, since each p-adic integer describes our solution modulo pe for all e. Thus
we will be using functions on the p-adics, or Qp, which are the completion of Q
under the p-adic metric. First, we note the definition of the p-adic valuation of
a rational number from [5, Section 2.1].
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Definition 1. Fix a prime number p ∈ Z. The p-adic valuation on Z is the
function

vp : Z− {0} → R

defined as follows: for each integer n ∈ Z, n 6= 0, let vp(n) be the unique positive
integer satisfying

n = pvp(n)n′ with p - n′.

We extend vp to the field of rational numbers as follows: if x = a/b ∈ Q×, then

vp(x) = vp(a)− vp(b),

which is well-defined.

We can now define the p-adic absolute value as follows:

Definition 2. For any x ∈ Q, we define the p-adic absolute value of x by

|x|p = p−vp(x)

if x 6= 0, and we set |0|p = 0.

The completion gives us all the rational p-adic numbers, while we need only
to use a subset of Qp. From [5, Section 3.3], we find that the p-adic integers
Zp are defined as

Zp = {x ∈ Qp : |x|p ≤ 1}.
Now that we have defined Zp, we let µp−1 be the set of all (p − 1)-st roots

of unity, where µp−1 ⊆ Z×p by [5, Cor. 4.5.10]. As stated in [5, Cor. 4.5.10], we
can write each element of Z×p uniquely as an element of µp−1 × (1 + pZp). So
for each x ∈ Z×p we write x = ω(x) 〈x〉 for some ω(x) ∈ µp−1 and 〈x〉 ∈ 1 + pZp.
For odd prime p, this decomposition defines a character of Z×p , which is the
surjective homomorphism

ω : Z×p → µp−1.

This character ω is called the Teichmüller character [5, Section 4.5]. We will
use the factorization of x into ω(x) 〈x〉 to aid in our analysis.

Additionally, we will need the p-adic exponential and logarithm functions.
As in R, we can define the p-adic exponential and logarithm functions on certain
subsets of the p-adic numbers as formal power series:

expp(x) =

∞∑
n=0

xn

n!
,

logp(1 + x) =

∞∑
n=1

(−1)n+1xn

n
.

These functions have radii of convergence |x|p < p−1/(p−1) and 1, respectively.
It is important to note that the identities expp(logp(1 + x)) = 1 + x and

logp(expp(x)) = x hold formally, and will also hold functionally when we have
convergence. For more on these functions, see [5, Section 4.5].
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Lastly, we will want to use a generalization of Hensel’s lemma, which allows
the lifting of solutions to congruences modulo p to solutions modulo pe, that
applies to the p-adics. First, we will need to define a restricted power series. A
formal power series is an object of the form

∑∞
i=0 aix

i, where the ai are unre-
stricted coefficients, and addition and multiplication are performed similarly to
polynomial operations. A restricted power series is a formal power series where
limi→∞ ai = 0. Now we can take this theorem from [6, Cor. 3.3].

Theorem 1. Let f(x) be a restricted power series in Zp[[x]] and a be in Zp such

that df
dx (a) is in Z×p and f(a) ≡ 0 (mod p). then there exists a unique x ∈ Zp

for which x ≡ a (mod p) and f(x) = 0 in Zp.

With this knowledge in mind, we can now start our analysis. For this paper,
we let n, k, and e be integers, p a prime, and g a unit modulo p (i.e. p - g, so
g has an inverse modulo p). We will be counting the integer solutions of the
congruence gx

n ≡ xk (mod pe), or equivalently, the zeros of f : Z → Z/peZ,
where f(x) = gx

n − xk (mod pe). We denote the multiplicative order of g
modulo p as m.

2 Periodicity

The first thing to note about our function f is that it is periodic, since it will
restrict the range of x to examine when counting solutions. The theorem in this
section describes its periodicity.

Lemma 2. gm·p
e−1 ≡ 1 (mod pe).

This lemma is obtained from the proof of [9, Theorem 1], and allows us to
conclude with the following theorem.

Theorem 3. Fixing all variables except x, we have that

g(x+mp
e)n − (x+mpe)k ≡ gx

n

− xk (mod pe).

In other words, f(x) = f(x+mpe).

Proof. First, consider g(x+mp
e)n (mod pe). We know

(x+mpe)n =

n∑
i=0

(
n

i

)
xi(mpe)n−i.

Since mpe−1|mpe and mpe divides all terms except xn, by Lemma 2 we have

g(x+mp
e)n ≡ gx

n

(mod pe).

Now consider (x+mpe)k. We can also expand this to

(x+mpe)k =

k∑
i=0

(
k

i

)
xi(mpe)k−i.
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Since pe|mpe and mpe divides all terms except xk, we have

(x+mpe)k ≡ xk (mod pe).

Thus g(x+mp
e)n − (x+mpe)k ≡ gxn − xk (mod pe).

3 Interpolation

Since we would like to analyze our equation p-adically, our first goal is to in-
terpolate our function f : Z→ Z/peZ, f(x) = gx

n − xk (mod pe) to a function
from Zp to Zp.

We find that although we cannot interpolate to a single continuous p-adic
function, we can interpolate to a finite number of p-adic functions that agree
with f(x) on certain values of x.

Theorem 4. For p 6= 2, let g ∈ Z×p and x0 ∈ Z/(p− 1)Z, and let

Ix0
= {x ∈ Z | x ≡ x0 (mod p− 1)} ⊆ Z.

Then
Fx0(x) = ω(g)x

n
0 〈g〉x

n

defines a uniformly continuous function on Zp such that Fx0
(x) = gx

n

whenever
x ∈ Ix0

.

Proof. By [5, Proposition 4.6.1], we need Ix0 to be dense in Zp and for each
Fx0

(x) be uniformly continuous and bounded. We know that if a function f :
Zp → Qp is continuous on Zp, then it is also uniformly continuous and bounded
[7, Theorem 4.1.4]. Thus, it suffices to show density of Ix0

, continuity of each
Fx0 as a function on Ix0 , and that Fx0(x) = gx

n

with the proper conditions on
x.

We first need to prove density of Ix0
in Zp. This is shown in the proof of

[9, Theorem 16] when we let c = 1.

Now we must show each Fx0
(x) = ω(g)x

n
0 〈g〉x

n

is uniformly continuous on
Ix0

. Given ε > 0, find N such that p−N < ε. Now if x, y ∈ Ix0
such that

|x− y|p ≤ p−N < p−(N−1) = δ,

then x = y + pNA for some A ∈ Z. Consider

|〈g〉x
n

− 〈g〉y
n

|p = |〈g〉(y+p
NA)n − 〈g〉y

n

|p = |〈g〉y
n

|p|〈g〉(y+p
NA)n−yn − 1|p

= |〈g〉(y+p
NA)n−yn − 1|p,

and using the binomial theorem, we get

〈g〉(y+p
NA)n−yn

= 〈g〉
∑n
i=1 (ni)y

n−i(pNA)i
.

4



If we factor out pN from the exponent, we get

〈g〉
∑n
i=1 (ni)y

n−i(pNA)i
= 〈g〉p

Nb
,

where b =
∑n
i=1

(
n
i

)
yn−i(pN )i−1Ai, which is an integer. So we have

|〈g〉x
n

− 〈g〉y
n

|p = |〈g〉(y+p
NA)n−yn − 1|p = |〈g〉p

Nb − 1|p

Using the binomial theorem again, and the fact that 〈g〉 = 1 + pM , we get

(1 + pM)p
Nb = 1 + pNbpM +

pNb(pNb− 1)

2
(pM)2 + . . .+ (pM)p

Nb.

Because all terms except for the first are in pN+1Zp, we see that

|〈g〉p
NA − 1|p ≤ p−(N+1) < p−N < ε.

So the function mapping x → 〈g〉x
n

is uniformly continuous on Ix0 and hence

on Zp by [7, Thm 4.15]. Since each Fx0(x) = ω(g)x
n
0 〈g〉x

n

for fixed x0, and g,
and ω(g)x

n
0 is a constant, we have that Fx0

(x) is a constant times a uniformly
continuous function. Hence, each Fx0

(x) is uniformly continuous on Zp [7,
Exercise 89].

Lastly, we show that Fx0(x) = gx
n

when x ∈ Ix0 . Since x ≡ x0 (mod p− 1),
we have that

gx
n

= ω(g)x
n

〈g〉x
n

= ω(g)x
n
0 〈g〉x

n

= Fx0(x).

We can extend this theorem to multiples of the order of g modulo p:

Theorem 5. For this theorem only, we let m be any multiple of the multiplica-
tive order of g modulo p, p 6= 2, so that m | p− 1. Let g ∈ Z×p and x0 ∈ Z/mZ,
and let

Jx0
= {x ∈ Z | x ≡ x0 (mod m)} ⊆ Z.

Then
Fx0

(x) = ω(g)x
n
0 〈g〉x

n

defines a uniformly continuous function on Zp such that Fx0
(x) = gx

n

whenever
x ∈ Jx0

.

Proof. Since gm ≡ 1 (mod p), ω(g)m
n

= ω(gm
n

) = ω(1) = 1. If x0, x
′
0 ∈

Z/(p− 1)Z and x0 ≡ x′0 (mod m), then the two functions Fx0 and Fx′0 given by

Theorem 4 are equal and are the same as gx
n

when x ∈ Ix0
∪ Ix′0 ⊆ Jx0

.
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4 Counting Solutions

Now that we have our p-adic functions, we can use those to begin counting
solutions. We begin by counting solutions to our modified congruences modulo p,
and then proceed by lifting these solutions to p-adic solutions modulo pe. Lastly,
we will refer back to our theorems on interpolation to find when the solutions
to our modified congruences will give us solutions to our original congruence
gx

n ≡ xk (mod pe).
The following lemma analyzes solutions modulo p.

Lemma 6. Consider the equation

gx
n
0 ≡ xk (mod p).

Define d = gcd(k,p−1)
gcd(k, p−1

m )
, and let qα1

1 qα2
2 · · · q

αi
i be the prime factorization of d.

Then there are N = m·gcd(k,p−1)

q
dα1
n
e

1 q
dα2
n
e

2 ···q
dαi
n
e

i

solution pairs (x0, x) to the above equa-

tion, where x0 ∈ {0, 1, . . . ,m− 1} and x ∈ {0, 1, . . . , p− 1}.

Proof. Let h be a primitive root modulo p, so we can express g ≡ ha (mod p)
and x ≡ hb (mod p). So gx

n
0 ≡ xk (mod p) becomes (ha)x

n
0 ≡ (hb)k (mod p).

Since h is a primitive root, we have that axn0 ≡ bk (mod p − 1). From [1,
Theorem 5.1], we have that there are gcd(k, p−1) mutually incongruent solutions
for b (which correspond to a distinct values of x) if gcd(k, p− 1) | axn0 , and no
solutions otherwise. So we must now count x0 where gcd(k, p− 1) | axn0 .

We have that gcd(k, p − 1) | axn0 if and only if gcd(k,p−1)
gcd(k,p−1,a) |

a
gcd(k,p−1,a)x

n
0 .

Note that gcd(k, p−1, a) = gcd(gcd(k, p−1), a) so gcd(k,p−1)
gcd(k,p−1,a) is relatively prime

to a
gcd(k,p−1,a) . Now we only need to count x0 that satisfy gcd(k,p−1)

gcd(k,p−1,a) | x
n
0 .

Because we defined h and a so that g ≡ ha (mod p), and g has order m,
we know that gcd(a, p− 1) = p−1

m . So gcd(k, p− 1, a) = gcd(k, gcd(a, p− 1)) =

gcd(k, p−1m ).

Now we are left with counting x0 that satisfy gcd(k,p−1)
gcd(k, p−1

m )
| xn0 , which is the

same as d | xn0 . In order to count the number of solutions, we look at the prime
factorization of d. We have that

qα1
1 qα2

2 · · · q
αi
i | x

n
0 if and only if q

dα1
n e

1 q
dα2
n e

2 · · · qd
αi
n e

i | x0,

and thus we have m

q
dα1
n
e

1 q
dα2
n
e

2 ···q
dαi
n
e

i

distinct x0 ∈ {0, 1, . . . ,m} that satisfy our

conditions. Since there are gcd(k, p−1) solutions x ∈ {0, 1, . . . , p−1} for each x0,

we have a total of m·gcd(k,p−1)

q
dα1
n
e

1 q
dα2
n
e

2 ···q
dαi
n
e

i

solution pairs (x0, x) to gx
n
0 ≡ xk (mod p).

4.1 Counting solutions when p - k
When we lift the solutions we found modulo p to solutions modulo pe, we have
to use different methods for when p - k than when p | k. We will be able to use
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Hensel’s lemma to lift to solutions modulo pe when p - k. The following lemma
describes the result.

Lemma 7. For p 6= 2, p - k, let g ∈ Z×p be fixed, and x0 ∈ {0, 1, · · · ,m− 1}. If
a is a solution in {0, 1, . . . , p− 1} to

ω(g)x
n
0 ≡ gx

n
0 ≡ xk (mod p).

Then there is a unique solution in Zp to the equation

ω(g)x
n
0 〈g〉x

n

= xk

where x ≡ a (mod p).

Proof. Since 〈g〉 is in 1 + pZp, we get

〈g〉x
n

= (expp(x
n logp(〈g〉))

= (1 + xn logp(〈g〉) + x2n logp(〈g〉)2/2!

+higher order terms in powers of logp(〈g〉)),

where from [5, Proposition 4.5.9], we know that logp(〈g〉) ∈ pZp. Now that we

have a convergent power series since | logp(〈g〉)i/i!|p → 0 as i→∞ [2, Chapter
2, Theorem 3.1], we examine f(x) = Fx0

(x) − x and its derivative to see if we
can apply a generalization of Hensel’s lemma.

Consider

f(x) = ω(g)x
n
0 (1 + xn logp(〈g〉) + x2n logp(〈g〉)2/2!

+ higher order terms in powers of logp(〈g〉))− xk.

Since we know logp (〈g〉) ∈ pZp, so logp (〈g〉) ≡ 0 (mod p), we have that

f(a) ≡ ω(g)x
n
0 (1 + an(0) + a2n(0)

+ higher order terms congruent to 0 (mod p) )− ak (mod p)

≡ ω(g)x
n
0 − ak ≡ 0 (mod p).

Additionally, we have that

f ′(x) = ω(g)x
n
0 (nxn−1 logp (〈g〉) + (2n)x2n−1 logp (〈g〉)2/2!

+3nx3n−1 logp (〈g〉)3/3! + ...)− kak−1

so that

f ′(a) ≡ ω(g)x
n
0 (nan−1(0) + (2n)a2n−1(0)2/2! + 3na3n−1(0)3/3! + ...)− kak−1

≡ 0− kak−1 (mod p).

We know ak ≡ ω(g)x
n
0 (mod p) so then we know ak 6≡ 0 (mod p) and thus

ak−1 6≡ 0 (mod p). Also, we have p - k. So then −kak−1 6≡ 0 (mod p). Now we
know we can apply Theorem 1, which states that there is a unique x ∈ Zp for
which x ≡ a (mod p) and f(x) = 0 in Zp.
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Now that we have found solutions to our modified equations, we need to be
able to piece them together to give us solutions to our original equation. The
following theorem uses the results from our lemmas to give us the number of
solutions to gx

n ≡ xk (mod pe) when p - k.

Theorem 8. For p 6= 2, let g ∈ Z×p and n, k ∈ Z be fixed and p - k. Then there

are N = m·gcd(k,p−1)

q
dα1
n
e

1 q
dα2
n
e

2 ···q
dαi
n
e

i

solutions x to the equation

gx
n

≡ xk (mod pe)

for x ∈ {1, 2, · · · , pem}.

Proof. We begin by considering the number of solutions modulo p to a slightly

different equation. By Lemma 6, we have m·gcd(k,p−1)

q
dα1
n
e

1 q
dα2
n
e

2 ···q
dαi
n
e

i

solution pairs

(x0, x1) to gx
n
0 ≡ xk1 (mod p) where the x0 are distinct (mod m) and x1 are dis-

tinct (mod p). For each x1 that appears in a solution pair to gx
n
0 ≡ xk1 (mod p),

then by Lemma 7 we have a unique solution x′ in Zp to ω(g)x
n
0 〈g〉(x

′)n
= (x′)k

where x′ ≡ x (mod p). By the Chinese Remainder Theorem, we have that
there is exactly one x ∈ Z/mpeZ where x ≡ x0 (mod m) and x ≡ x′ (mod pe).
Thus by Theorem 5 we have exactly one solution to gx

n ≡ xk (mod pe) in
Z/mpeZ for every solution pair to gx

n
0 ≡ xk (mod p), and therefore there are

m·gcd(k,p−1)

q
dα1
n
e

1 q
dα2
n
e

2 ···q
dαi
n
e

i

solutions in Z/mpeZ to the equation gx
n ≡ xk (mod pe).

We find that this theorem is consistent with our results. For example, looking
at gx

n ≡ xk (mod 7e) for 0 ≤ x ≤ m·7e, we get the following number of solutions
for all n and e.

Table 1: gx
n ≡ xk (mod 7e) for 0 ≤ x < m · 7e

g m # solns: k=1 # solns: k=2 # solns: k=3 # solns: k=4
1 1 1 2 3 2
2 3 3 6 3 6
3 6 6 6 6 6
4 3 3 6 3 6
5 6 6 6 6 6
6 2 2 2 6 2

So if we look at the case when k = 4, we find that

d =
gcd(k, p− 1)

gcd(k, p−1m )
=

gcd(4, 7− 1)

gcd(2, 7−1m )
=

2

gcd(4, 6
m )

=

{
1 if 2 - m
2 if 2 | m

,

and

N =

{
m gcd(4,7−1)

1 = 2m if 2 - m
m gcd(4,7−1)

2 = m if 2 | m
,
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which matches the findings in Table 4.1.

4.2 Counting solutions when p = k and n = 1

Our findings for when p = k differs from our results when p - k. For example,
when p = 11, we find the number of solutions detailed in Table 4.2. We see that
our N solutions modulo p lift to different numbers of solutions modulo pe than
in the p - k case. This suggests that we must lift solutions modulo p to solutions
modulo pe differently: we will end up using induction on e. So, we will count
solutions modulo p2 and use that as the base case in our induction.

g m # solns:
e=1

# solns:
e=2

# solns:
e=3

# solns:
e=4

1 1 1 11 11 11
2 10 10 0 0 0
3 5 5 55 55 55
4 5 5 0 0 0
5 5 5 0 0 0
6 10 10 0 0 0
7 10 10 0 0 0
8 10 10 0 0 0
9 5 5 55 55 55
10 2 2 0 0 0

Table 2: gx ≡ x11 (mod 11e) for 0 ≤ x < m · 11e

As we lift, we find that the value of gp−1 modulo p2 is important. By
Fermat’s Little Theorem, we have for prime p and p - g, that gp−1 ≡ 1 (mod p).
Looking at this equivalence modulo p2 gives the following definition.

Definition 3. An integer g is called a Wieferich base modulo p if gp−1 ≡ 1
(mod p2).

Now we are able to count solutions to gx ≡ xp (mod p2), seeing that the
result depends heavily on whether g is a Wieferich base modulo p.

Lemma 9. Let p 6= 2, let a0 be a solution to gx ≡ xp (mod p), and let x0 ≡ a0
(mod m). Then the following are equivalent:

1. g = ω(g) 〈g〉, where 〈g〉 ≡ 1 (mod p2).

2. g is a Wieferich base modulo p

3. a0 lifts to at least one solution a ∈ Z/p2Z to gx ≡ xp (mod p2) where
a ≡ a0 (mod p) and a ≡ x0 (mod m).

Furthermore, in 3, we also have that if a0 lifts to a solution in Z/p2Z, it lifts to
p distinct solutions in Z/p2Z.
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Proof. For this proof, we begin by finding a congruence that holds exactly when
we have a solution a to gx ≡ xp (mod p2) that satisfies the conditions that a ≡
x0 (mod m) and a ≡ a0 (mod p). We will then use the equivalent statement to
prove 3 =⇒ 2 and 1 =⇒ 3, and then finish by showing 2 =⇒ 1.

Let a ≡ x0 (mod m) and a ≡ a0 (mod p), and consider when 0 ≡ ga − ap
(mod p2).

Recall from Theorem 5 that ga = ω(g)x0 〈g〉a when a ≡ x0 (mod m). So
since a ≡ x0 (mod m), we have

0 ≡ ga − ap ≡ ω(g)x0 〈g〉a − ap

≡ ω(g)x0

∞∑
i=0

(ai(logp 〈g〉)i

i!

)
− ap (mod p2). (1)

We have a ≡ a0 (mod p), so we get a ≡ a0 + a1p (mod p2), and thus equation
(1) holds exactly when we get

ω(g)x0

∞∑
i=0

( (a0 + a1p)
i(logp 〈g〉)i

i!

)
− (a0 + a1p)

p ≡ 0 (mod p2).

Since logp 〈g〉 ∈ pZp, this reduces to

ω(g)x0(1 + a0 logp 〈g〉)− (a0 + a1p)
p ≡ 0 (mod p2). (2)

When we expand the term (a0 + a1p)
p modulo p2, we find that it is congruent

to ap0, and we obtain

ω(g)x0(1 + a0 logp 〈g〉)− a
p
0 ≡ 0 (mod p2). (3)

Note that

logp 〈g〉 =

∞∑
i=0

(
(−1)i+1 (〈g〉 − 1)i

i

)
,

and since 〈g〉 − 1 ∈ pZp, we have

logp 〈g〉 ≡ 〈g〉 − 1 (mod p2).

So then we can replace logp 〈g〉 in equation (3) to obtain

ω(g)x0(1 + a0(〈g〉 − 1))− ap0
≡ ω(g)x0a0(〈g〉 − 1) + ω(g)x0 − ap0 ≡ 0 (mod p2). (4)

We have that 〈g〉 − 1 ≡ 0 (mod p). We also know

ga0 − ap0 ≡ ω(g)a0 〈g〉a0 − ap0 ≡ ω(g)x0 − ap0 ≡ 0 (mod p), (5)

so we can write equation (4) as

ω(g)x0a0(〈g〉 − 1)

p
+
ω(g)x0 − ap0

p
≡ 0 (mod p). (6)
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Now consider the following: by (4.2) and Fermat’s Little Theorem we have

ω(g)x0 − ap0 ≡ ω(g)x0 − a0 ≡ 0 (mod p).

By definition, this is true exactly when

ω(g)x0 − ap0 = rp, for some r ∈ Zp.

Now this is true if and only if

(ω(g)x0)p−1 = (ap0 + rp)p−1.

Since ω(g) is a (p− 1)th root of unity, we find that (ω(g)x0)p−1 = 1. By using
this fact and expanding (ap0 + rp)p−1, we find that the above is equivalent to

1 =

p−1∑
i=1

((p− 1

i

)
(rp)i(ap0)p−1−i

)
.

Examining this equation modulo p2, we find that

1 ≡ ap(p−1)0 + p(p− 1)ra
p(p−2)
0 (mod p2),

and since the order of the group Z/p2Z is p(p−1), we get a
p(p−1)
0 ≡ 0 (mod p2),

so
1 ≡ ap(p−1)0 + p(p− 1)ra

p(p−2)
0 (mod p2),

and thus
0 ≡ (p− 1)ra

p(p−2)
0 (mod p).

Since p−1, a0 6≡ 0 (mod p) (if a0 ≡ 0 (mod p), then 1 ≡ g0 ≡ 0p ≡ 0 (mod p)),
we must have r ≡ 0 (mod p). So then ω(g)x0 − ap0 = (kp)p ≡ 0 (mod p2) for
some k ∈ Z.

Thus we always have that p | ω(g)
x0−ap0
p , and we can reduce equation (6)

further:

ω(g)x0a0(〈g〉 − 1)

p
+
ω(g)x0 − ap0

p
≡ ω(g)x0a0(〈g〉 − 1)

p
≡ 0 (mod p). (7)

Now we have that a solves ga ≡ ap (mod p2) if and only if the above equiv-
alence holds, and we continue with our proof.

1 =⇒ 3:
Assuming 1, we have that 〈g〉 ≡ 1 (mod p2). So then p2 | (〈g〉 − 1), and so

we get

ω(g)x0a0(〈g〉 − 1)

p
≡ 0 (mod p).

Thus all p choices for a1 ∈ {0, 1, . . . , p − 1} give a solution a ≡ a0 + a1p
(mod p2) to gx ≡ xp (mod p2) whenever a ≡ a0 (mod p) and a ≡ x0 (mod m).
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By the Chinese Remainder Theorem, we have exactly one a ∈ {0, 1, . . . ,mp2}
where both a ≡ a0 + a1p (mod p2) and a ≡ x0 (mod m) are satisfied. Since
there are p distinct choices for a1, we have p solutions to gx ≡ xp (mod p2) in
{0, 1, . . . ,mp2}.

3 =⇒ 2:
Assuming 3, we know there is at least one a solving ω(g)x0a0(〈g〉−1)

p ≡ 0

(mod p). We know by equation (4.2) and Fermat’s Little Theorem that
ω(g)x0 ≡ ap0 ≡ a0 (mod p), and since ω(g) 6≡ 0 (mod p), then p - a0.

Thus we must have p2 | (〈g〉 − 1), so then

gp−1 ≡ ω(g)p−1 〈g〉p−1 ≡ ω(g)p−11p−1 ≡ 1 (mod p2),

which means g is a Wieferich base modulo p.
2 =⇒ 1:
Assuming 2, we have that gp−1 ≡ 1 (mod p2). Write 〈g〉 = 1 + g1p. Then

we have

1 ≡ gp−1 ≡ ω(g)p−1 〈g〉p−1 ≡ 〈g〉p−1 ≡ (1 + g1p)
p−1 (mod p2).

Expanding (1 + g1p)
p−1 we get

1 ≡
i=p−1∑
i=0

(
p− 1

i

)
(g1p)

i ≡ 1 + (p− 1)g1p (mod p2).

So then we have 0 ≡ (p−1)g1p (mod p2), and dividing through by p, we obtain

(p− 1)g1 ≡ 0 (mod p).

Since p− 1 6≡ 0 (mod p), we must have g1 ≡ 0 (mod p). Thus

〈g〉 ≡ 1 + g1p ≡ 1 (mod p2).

The last theorem we give uses our previous lemma as a base case to count
solutions to gx ≡ xp (mod pe) for e > 1.

Theorem 10. For p 6= 2, let g ∈ Z×p be fixed. Let N be the same as in
Theorem 8. Then there are N solutions x to the equation gx ≡ xp (mod p).
Furthermore, for e > 1, the equation gx ≡ xp (mod pe) has Np solutions x
if gp−1 ≡ 1 (mod p2) (i.e. g is a Wieferich base modulo p), and no solutions
otherwise.

Proof. First consider when e = 1. We have by Lemma 6 that there are N
solution pairs (x0, x1) ∈ Z/mZ × Z/pZ to gx0 ≡ xp1 (mod p). By the Chinese
Remainder Theorem, there is exactly one x ∈ Z/mpZ where x ≡ x0 (mod m)
and x ≡ x1 (mod p), so there is exactly one solution x ∈ Z/mpZ where gx ≡
gx0 ≡ xp1 ≡ xp (mod p). Since there are N solution pairs, then there are N
solutions to gx ≡ xp (mod p).
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Now consider when e = 2. If g is a Wieferich base modulo p, then for each of
the N solutions above, we let a0 be a solution and find that we have p solutions
to gx ≡ xp (mod p2) by Lemma 9. Since this holds for all our N solutions
modulo p, we have Np total solutions to gx ≡ xp (mod p2).

If g is not a Wieferich base modulo p, then by Lemma 9, none of the N
solutions we found modulo p lift to a solution to gx ≡ xp (mod p2), so there
cannot be any solutions modulo p2. Furthermore, there cannot be any solutions
to gx ≡ xp (mod pe) for e ≥ 3.

When g is a Wieferich base modulo p and e > 1, we use induction. The base
case (e = 2) is given above, and note that the solutions modulo p2 take the form
a0 + a1p (mod p2), where a1 takes any value in Z/pZ. Let

fx0
(x) = Fx0

(x)− gp = ω(g)x0 〈g〉x − xp = ω(g)x0

( ∞∑
i=0

xi(logp 〈g〉)i

i!

)
− xp.

For the induction assumption, we assume that we have Np solutions a ∈
Z/mpe−1Z s.t. gx−xk ≡ 0 (mod pe−1), written a ≡ a0+a1p+ · · ·+ae−2p

e−2 ≡
a′ + ae−2p

e−2 (mod pe−1), where ae−2 can take any value modulo p.
Note that we have 〈g〉 ≡ 1 (mod p2) by Lemma 9.
We want to find a solution x that solves gx ≡ xp (mod pe), so it must also

solve gx ≡ xp (mod pe−1). So we must have x ≡ a (mod pe−1) for one of
our solutions a. Thus we have that x ≡ a + ae−1p

e−1 (mod pe) for some a.
Set x0 ≡ a (mod m). Note that fx0(x) = gx − xp when x ≡ x0 (mod m) by
Theorem 5, so fx0(a) ≡ 0 (mod pe−1).

So we have

fx0(x) ≡ fx0(a+ ae−1p
e−1)

≡ ω(g)x0

( ∞∑
i=0

(a+ ae−1p
e−1)i(logp 〈g〉)i

i!

)
− (a+ ae−1p

e−1)p (mod pe)

Since for all k ∈ Z+, p | (logp 〈g〉)
k

k! (by [5, Lemma 4.5.4]), and because
a ≡ a′ + ae−2p

e−2 (mod pe−1), we can simplify to get

fx0
(x) ≡ ω(g)x0

( ∞∑
i=0

(a′ + ae−2p
e−2)i(logp 〈g〉)i

i!

)
− (a′ + ae−2p

e−2 + ae−1p
e−1)p

≡ ω(g)x0

(
1 + (a′ + ae−2p

e−2) logp 〈g〉+

e−1∑
i=2

(a′)i(logp 〈g〉)i

i!

)
−(a′ + ae−2p

e−2 + ae−1p
e−1)p (mod pe)
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Note that

(a′ + ae−2p
e−2 + ae−1p

e−1)p

≡
p∑
i=0

(
p

i

)
(a′ + ae−2p

e−2)p−i(ae−1p
e−1)i

≡ (a′ + ae−2p
e−2)p

≡
p∑
i=0

(
p

i

)
(a′)p−i(ae−2p

e−2)i

≡ (a′)p + (a′)p−1ae−2p
e−1 (mod pe).

So now we have that, given a solution x ≡ a (mod pe−1), if it lifts to a
solution modulo pe, then it lifts to any x ≡ a+ae−1p

e−1. When we set fx0
(x) ≡ 0

(mod pe) to solve for x, we get

0 ≡ ω(g)x0

(
1 + (a′ + ae−2p

e−2) logp 〈g〉+

e−1∑
i=2

(a′)i(logp 〈g〉)i

i!

)
−((a′)p + (a′)p−1ae−2p

e−1) (mod pe),

so collecting all the ae−2 terms, we find that

−ae−2(ω(g)x0pe−2 logp 〈g〉 − (a′)p−1pe−1)

≡ ω(g)x0

(
1 + a′ logp 〈g〉+

e−2∑
i=2

(a′)i(logp 〈g〉)i

i!

)
− (a′)p

+
ω(g)x0(a′)e−1(logp 〈g〉)e−1

(e− 1)!
(mod pe).

Note that fx0
(x) ≡ fx0

(a) ≡ 0 (mod pe−1) and so since pe−1 divides the left
hand side, pe−1 must also divide the right hand side, and we also know pe−1 |
(logp 〈g〉)e−1). So we can write

ae−2
−(ω(g)x0pe−2 logp 〈g〉 − (a′)p−1pe−1)

pe−1

≡
ω(g)x0(1 + a′ logp 〈g〉+

∑e−2
i=2

(a′)i(logp 〈g〉)
i

i! )− (a′)p

pe−1

+
ω(g)x0(a′)e−1(logp 〈g〉)e−1

(e− 1)!pe−1
(mod p)

It suffices to show that
−(ω(g)x0pe−2 logp 〈g〉−(a

′)p−1pe−1)

pe−1 6≡ 0 (mod p), since
doing so would mean it has an inverse modulo p and we can solve uniquely
for ae−2. Then we would know that exactly one out of every p solutions a ≡
a′ + ae−2p

e−2 (mod pe−1) lifts to a solution modulo pe.
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If we assume it is congruent to 0 modulo p, we have

−(ω(g)x0pe−2 logp 〈g〉 − (a′)p−1pe−1)

pe−1
≡ 0 (mod p)

so

−(ω(g)x0pe−2 logp 〈g〉)
pe−1

≡ (a′)p−1 ≡ 1 (mod p)

by Fermat’s Little Theorem. But

−(ω(g)x0pe−2 logp 〈g〉)
pe−1

≡
−ω(g)x0 logp 〈g〉

p
≡
ω(g)x0(

∑∞
i=1

(−1)i+1(〈g〉−1)i
i )

p
(mod p)

and 〈g〉 ≡ 1 (mod p2) so we get

ω(g)x0(
∑∞
i=1

(−1)i+1(〈g〉−1)i
i )

p
≡ 0 (mod p).

This is a contradiction since 1 6≡ 0 (mod p). Thus we can solve uniquely for
ae−2, and for such an ae−2, any ae−1 ∈ Z/pZ solves fx0(a + ae−1p

e−1) ≡ 0
(mod pe).

By our induction assumption, there areNp solutions to fx0
(a) ≡ 0 (mod pe−1),

a ≡ a′ + ae−2p
e−2 (mod pe−1). Since for each solution a′ to fx0

(a′) ≡ 0
(mod pe−2), a′+ae−2p

e−2 is a solution modulo pe for a unique ae−2 ∈ Z/pZ, we
have exactly N distinct a that lift to p solutions to fx0(x) ≡ fx0(a+ae−1p

e−1) ≡
0 (mod pe). This gives a total of Np solutions modulo pe.

Again, we see that this is consistent with our results. For an example, we
return to our results when p = 11 detailed in Table 4.2. If we look at just g = 3
and g = 4, we have that N = 5 and so Np = 55. We find that 310 ≡ 1 (mod 112)
and 410 - 1 (mod 112), so g = 3 is a Wieferich base and has 55 solutions modulo
11e for e > 1, which g = 4 is not a Wieferich base modulo 11 and thus has no
solutions modulo pe for e > 1. Both of these match our findings in Table 4.2.

5 Conclusions and Future Work

In this paper, we have applied the methods found in [6], [9], and [11] to count
solutions to the equation gx

n ≡ xk (mod pe). When analyzing the equation
for x ∈ {1, 2, . . . ,mpe}, p an odd prime, we have found an exact number of

solutions for the case when p - k, specifically N = m·gcd(k,p−1)

q
dα1
n
e

1 q
dα2
n
e

2 ···q
dαi
n
e

i

solutions.

In addition, we found that when p odd, k = p and n = 1, that there are N
solutions when e = 1, and either Np or 0 solutions when e > 1, depending on
whether g is a Wieferich base modulo p.
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It remains to be shown whether the same number of solutions is obtained
for general n in the k = p case. We suspect that similarly to the p - k case, n
will only affect the value of N , and not the results of lifting solutions modulo p
to solutions modulo pe, but this has not been confirmed. Additionally, the case
where p | k but k 6= p has not been analyzed yet. Based on a few test results,
we suspect that k will affect the value of N , but that the number of solutions
modulo pe for e > 1 will be the same as in the p = k case. Lastly, due to the fact
that we need x ∈ 1 + 4Z2 rather than x ∈ 1 + 2Z2 for log2(exp2(x)) to converge,
the case where p = 2 must be analyzed differently. We have done some testing
that confirms that p = 2 yields different results than for odd prime p, leaving
another avenue of analysis.

Besides counting solutions, further analysis can be done by exploring the
distribution of solutions for x among intervals of length pe rather than focusing
on only the longer interval of length mpe, since that range is generally more
applicable to cryptographic schemes. There has been some analysis of the map
x 7→ gx

n

(mod c) when n = 2 by Wood [12], and some statistical analysis of the
map when n = 1 from [8] and [4], but more work remains to be done.
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