Cut-sets and Cut-vertices in the Zero-Divisor Graph of $\prod \mathbb{Z}_n$

Benjamin Coté
University of Idaho
Caroline Ewing
Colorado College

Michael Huhn
University of St. Thomas, mahuhn@stthomas.edu

Chelsea Plaut
University of Tennessee-Knoxville

Darrin Weber
Millikin University

Follow this and additional works at: https://scholar.rose-hulman.edu/rhumj

Recommended Citation
Coté, Benjamin; Ewing, Caroline; Huhn, Michael; Plaut, Chelsea; and Weber, Darrin (2010) "Cut-sets and Cut-vertices in the Zero-Divisor Graph of $\prod \mathbb{Z}_n$," *Rose-Hulman Undergraduate Mathematics Journal* Vol. 11 : Iss. 1 , Article 4.
Available at: https://scholar.rose-hulman.edu/rhumj/vol11/iss1/4
CUT-SETS AND CUT-VERTICES IN THE ZERO-DIVISOR GRAPH OF $\prod_{i=1}^{m} \mathbb{Z}_{n_{i}}$

B. COTÉ, C. EWING, M. HUHN, C. M. PLAUT, D. WEBER

Abstract. We examine minimal sets of vertices which, when removed from a zero-divisor graph, separate the graph into disconnected subgraphs. We classify these sets for all direct products of $\Gamma \left(\prod_{i=1}^{m} \mathbb{Z}_{n_{i}} \right)$.

1. Introduction and Definitions

All rings in the paper are commutative with unity. An element $a \in R$ is a zero-divisor if there exists a nonzero $r \in R$ such that $ar = 0$; we denote the set of all zero-divisors in R as $Z(R)$. For a graph G, define $V(G)$ as the set of vertices in G, and $E(G)$ as the set of edges in G. We define a path between two elements $a_1, a_m \in V(G)$ to be an ordered sequence of distinct vertices $\{a_1, a_2, \ldots, a_n\}$ of G such that there is an edge incident to a_{i-1} and a_i, denoted $a_{i-1} - a_i$ for each i. For $x, y \in V(G)$, the number of edges crossed to get from x to y in a path is called the length of the path; the length of the shortest path between x and y, if it exists, is called the distance between x and y and is denoted $d(x, y)$. If such a path does not exist then $d(x, y) = \infty$. The diameter of a graph is $\text{diam}(G) = \max\{d(x, y) \mid, y \in V(G)\}$. A graph is connected if a path exists between any two distinct vertices.

A zero-divisor graph, denoted $\Gamma(R)$, is a graph whose vertices are all the nonzero zero-divisors of R. Two vertices a and b are connected by an edge in $\Gamma(R)$ if and only if $ab = 0$. In R, we define the annihilator of a, $\text{ann}(a)$, by $\text{ann}(a) = \{b \in R \mid ba = 0\}$, so that the neighbors of a in $\Gamma(R)$ are the nonzero elements of $\text{ann}(a)$. A vertex a is looped if and only if $a^2 = 0$. By [1], we know that $\Gamma(R)$ is always connected and $\text{diam}(\Gamma(R)) \leq 3$ for any ring R.

Definition 1.1. A vertex, a, in a connected graph G is a cut-vertex if G can be expressed as a union of two subgraphs X and Y such that $E(X) \neq \emptyset$, $E(Y) \neq \emptyset$, $E(X) \cup E(Y) = E(G)$, $V(X) \cup V(Y) = V(G)$, $V(X) \cap V(Y) = \{a\}$, $X \setminus \{a\} \neq \emptyset$, and $Y \setminus \{a\} \neq \emptyset$.

Definition 1.2. A set $A \subseteq Z(R)^*$, where $Z(R)^* = Z(R) \setminus \{0\}$, is said to be a cut-set if there exist $c, d \in Z(R)^* \setminus A$ where $c \neq d$ such that every path in $\Gamma(R)$ from c to d involves at least one element of A, and no proper subset of A satisfies the same condition.

Another way to define a cut-set is as a set of vertices $\{a_1, a_2, a_3, \ldots\}$ in a connected graph G where G can be expressed as a union of two subgraphs X and Y.

Date: May 7, 2010.
such that $E(X) \neq \emptyset$, $E(Y) \neq \emptyset$, $E(X) \cup E(Y) = E(G)$, $V(X) \cup V(Y) = V(G)$, $V(X) \cap V(Y) = \{a_1, a_2, a_3, \ldots\}$, $X \setminus \{a_1, a_2, a_3, \ldots\} \neq \emptyset$, $Y \setminus \{a_1, a_2, a_3, \ldots\} \neq \emptyset$, and no proper subset of $\{a_1, a_2, a_3, \ldots\}$ also acts as a cut-set for any choice of X and Y. A cut-vertex can be thought of as a cut-set with only one element. For a cut-set A in $\Gamma(R)$, a vertex $a \notin A$ is said to be isolated, or an isolated point, if $\text{ann}(a) \setminus \{0\} \subseteq A$.

Example 1.3. Consider $\Gamma(Z_{12})$ shown in Figure 1. In this graph, 6 is a cut-vertex isolating 2 and 10. In addition, $\{4, 8\}$ is a cut-set isolating 3 and 9.

![Figure 1. $\Gamma(Z_{12})$ generated using [6].](image1)

Example 1.4. Consider $\Gamma(Z_{30})$ shown in Figure 2. In this graph, 15 is a cut-vertex isolating 2 among other vertices. Observe that the set $\{6, 12, 18, 24\}$ is a cut-set isolating 5 and 25. In addition, $\{10, 20\}$ is a cut-set isolating 3, 9, 21 and 27.

![Figure 2. $\Gamma(Z_{30})$ generated using [6].](image2)

The study of cut-vertices in a zero-divisor graph began in [3], where it was proven that if a vertex, a, is a cut-vertex of $\Gamma(R)$ for any commutative ring, R, then $\{0, a\}$
forms an ideal in R. We will generalize this notion and expand on many of the results from [3]. This paper will classify cut-vertices and cut-sets of zero-divisor graphs of finite commutative rings of the form \(\Pi(\mathbb{Z}_n) \). In section 2 we classify \(\Gamma(\mathbb{Z}_n) \), and apply our findings to cut-vertices of \(\Gamma(\Pi(\mathbb{Z}_n)) \). Section 3 classifies cut-sets of \(\Gamma(\Pi(\mathbb{Z}_n)) \) by examining cut-sets of \(\Gamma(\mathbb{Z}_n) \).

2. Cut-vertices in \(\Gamma \left(\prod_{i=1}^{m} \mathbb{Z}_{n_i} \right) \)

This section begins with an examination of cut-vertices in the ring \(\mathbb{Z}_n \) in preparation for generalizing to direct products. Recall that for a commutative ring \(R \), if \(a, b \in R^* \), where \(R^* \) is \(R \setminus \{0\} \), such that \(ab = 0 \), then \(a(-b) = 0 \). Also, in \(\mathbb{Z}_n \), let \(p \in \mathbb{Z} \) be a prime that divides \(n \). Then \(\text{ann}(p) \subseteq \text{ann}(ap) \) for any \(a \in \mathbb{Z} \).

Theorem 2.1. An element \(a \) is a cut-vertex of \(\Gamma(\mathbb{Z}_n) \) if and only if \(2a = n \) with \(n \geq 6 \).

Proof. (\(\Rightarrow \)) Observe that \(\Gamma(\mathbb{Z}_n) \) has no cut-vertex for \(n < 6 \) [5]. So let \(n \geq 6 \), and assume that \(a \) is a cut vertex of \(\Gamma(\mathbb{Z}_n) \). Then \(\Gamma(\mathbb{Z}_n) \) is split into two subgraphs \(X \) and \(Y \), which are distinct except for their common vertex \(a \). Let \(V(X) = \{a, x_1, x_2, \ldots, x_m\} \) and \(V(Y) = \{a, y_1, y_2, \ldots, y_l\} \). Since \(a \) is a cut vertex, there exists some \(x_i \in V(X) \) and some \(y_j \in V(Y) \) such that \(x_i = a - y_j \). Since \(x_i \) is a cut-vertex, \(a = -a \) or \(2a = 0 \) in \(\mathbb{Z}_n \). Thus, \(2a = n \).

(\(\Leftarrow \)) It suffices to show \(\text{ann}(2) = \{0, a\} \) in \(\mathbb{Z}_{2a} \) with \(a \geq 3 \). Assume \(2m = 0 \). This implies \(m = 0 \) or \(m = a \). Since \(a \neq 2, 2 \) is a vertex isolated by the cut-vertex \(a \).

Theorem 2.2. Let \(\mathbb{Z}_n \times \mathbb{Z}_m \neq \mathbb{Z}_2 \times \mathbb{Z}_2 \). Then \((a, 0) \) is a cut-vertex of \(\Gamma(\mathbb{Z}_n \times \mathbb{Z}_m) \) if and only if \(2a = n \).

Proof. (\(\Rightarrow \)) Assume \((a, 0) \) is a cut-vertex of \(\Gamma(\mathbb{Z}_n \times \mathbb{Z}_m) \) separating subgraphs \(X \) and \(Y \). There exists some \((x_{i_1}, x_{i_2}) \in V(X) \) and some \((y_{j_1}, y_{j_2}) \in V(Y) \) such that \((x_{i_1}, x_{i_2}) = (a, 0) = (y_{j_1}, y_{j_2}) \). But then, \((x_{i_1}, x_{i_2}) = (-a, 0) = (y_{j_1}, y_{j_2}) \). Since \((a, 0) \) is a cut-vertex, \((-a, 0) \), which means \(a = -a \). This implies \(2a = 0 \), in \(\mathbb{Z}_m \), so \(2a = n \).

(\(\Leftarrow \)) Assume \(2a = n \). In the case that \(n = 2 \), there is a cut-vertex at \((1, 0) \) since it is the only element adjacent to \((0, 1) \) and it is also adjacent to \((0, 2) \) since \(\mathbb{Z}_n \times \mathbb{Z}_m \neq \mathbb{Z}_2 \times \mathbb{Z}_2 \). For the last case assume that \(n > 2 \) and consider \(\text{ann}((2, 1)) \). Clearly, \(\text{ann}((2, 1)) = \{0, (a, 0)\} \). Therefore, \((a, 0) \) isolates \((2, 1) \) and is a cut-vertex by definition.

Theorem 2.3. Consider \(R = \prod_{i=1}^{m} \mathbb{Z}_{n_i} \) for \(m \geq 3 \). Then \((0, 0, \ldots, a_i, \ldots, 0) \) is a cut-vertex of \(\Gamma(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_i} \times \cdots \times \mathbb{Z}_{n_m}) \) if and only if \(2a_i = n_i \).

Proof. (\(\Rightarrow \)) Assume \((0, 0, \ldots, a_i, \ldots, 0) \) is a cut-vertex of \(\Gamma(R) \). Then \(\Gamma(\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_i} \times \cdots \times \mathbb{Z}_{n_m}) \) is split into two subgraphs \(X \) and \(Y \), which are distinct except for their common vertex \((0, 0, \ldots, a_i, \ldots, 0) \). There exists some
Theorem 3.1. Let \(\Gamma(\{x_1, x_2, \ldots, x_n\}) \) be a graph such that \((x_1, x_2, \ldots, x_n) \in V(X) \) and \((y_1, y_2, \ldots, y_m) \in V(Y) \) such that \((x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_m) \in (0, 0, \ldots, a_i, 0, \ldots, 0) \). Hence the following path must also exist: \((x_1, x_2, \ldots, x_n) \in (0, 0, \ldots, -a_i, 0, \ldots, 0) \). Since \((0, 0, \ldots, a_i, 0, \ldots, 0) \) is a cut-vertex, \((0, 0, \ldots, a_i, 0, \ldots, 0) = (0, 0, \ldots, -a_i, 0, \ldots, 0) \), which implies \(a_i = -a_i \), or \(2a_i = 0 \) in \(\mathbb{Z} \). Therefore \(2a_i = n_i \).

Corollary 2.5. Let \(R = \prod_{i=1}^{m} \mathbb{Z}_{n_i} \) for \(m \geq 3 \). Then \(a = (a_1, a_2, \ldots, a_m) \) is a cut-vertex if and only if \(2a_i = n_i \) for some \(i \), \(1 \leq i \leq m \).

Proof. Let \(a \) be a cut-vertex of \(R \) with \(a = (a_1, a_2, \ldots, a_m) \). Assume \(a_i, a_j \neq 0 \) with \(i \neq j \). Since \(a \) is a cut-vertex, there exists \(\alpha, \beta \in \mathbb{Z}(R) \) such that the only path between them is \(\alpha = a = \beta \). Consider the ring element \(b = (0, 0, \ldots, a_i, 0, \ldots, 0) \). Then \(\alpha - b = \beta \), a contradiction.

The next corollary follows from Theorems 2.3 and 2.4.

Theorem 3.2. Let \(R = \prod_{i=1}^{m} \mathbb{Z}_{n_i} \) for \(m \geq 3 \). Then \(a = (a_1, a_2, \ldots, a_m) \) is a cut-vertex if and only if \(2a_i = n_i \) for some \(i \), \(1 \leq i \leq m \).

Proof. Let \(R = \prod_{i=1}^{m} \mathbb{Z}_{n_i} \) for \(m \geq 3 \).

(\(\Rightarrow \)) Let \(a = (a_1, a_2, \ldots, a_m) \) be a cut-vertex. Then by Theorem 2.4, \(a = (0, 0, \ldots, a_i, 0, \ldots, 0) \) for some \(1 \leq i \leq m \). Since \(a = (0, 0, \ldots, a_i, 0, \ldots, 0) \) is a cut-vertex, then by Theorem 2.3, \(2a_i = n_i \).

(\(\Leftarrow \)) Let \(a = (0, 0, \ldots, a_i, 0, \ldots, 0) \) where \(2a_i = n_i \). Then by Theorem 2.3 \(a \) is a cut-vertex.

3. Cut-Sets in \(\Gamma\left(\prod_{i=1}^{m} \mathbb{Z}_{n_i}\right) \)

In this section we generalize the idea of a cut-vertex to that of a cut-set. Many results on cut-vertices generalize to cut-sets, and we may consider all theorems in the previous section as corollaries to the following theorems on cut-sets.

Note that when \(n = p \), \(p \) a prime, the ring \(\mathbb{Z}_n \) is a field so \(\Gamma(\mathbb{Z}_n) \) is empty. When \(n = 2p \), \(p > 2 \), \(\Gamma(\mathbb{Z}_n) \) is a star-graph, where the only cut-set is \(A = \text{ann}(2) \\{0\} = \{p\} \). For example, Figure 3 shows \(\Gamma(\mathbb{Z}_4) \). Notice that \(\text{ann}(p) \\{0\} = V(\Gamma(\mathbb{Z}_n)) \\{p\} \). When \(n = p^2 \), \(\Gamma(\mathbb{Z}_n) \) is a complete graph; whence there are no cut-sets.

Theorem 3.1. Let \(n \in \mathbb{Z}^+ \) such that \(n \neq p, 2p, p^2 \) for any prime \(p \). A set \(A \) is a cut-set of \(\Gamma(\mathbb{Z}_n) \) if and only if \(A = \text{ann}(p) \\{0\} \) for some prime \(p \) which divides \(n \).

Proof. (\(\Rightarrow \)) Let \(A = \text{ann}(p) \\{0\} \) for some prime \(p \in \mathbb{Z} \) that divides \(n \). Observe that \(p \notin \text{ann}(p) \) since \(n \neq p^2 \). Then \(p \) is only connected to \(A \) in \(\Gamma(\mathbb{Z}_n) \), so when \(A \) is removed, \(p \) is isolated.
Notice that \(n-p \neq p \), and \(n-p \) is connected to all elements in \(A \), but \((n-p)p \neq 0 \) since \(n \neq p^2 \). This implies that \(A \) splits \(\Gamma(Z_n) \) into two subgraphs.

Suppose some subset \(B \) of \(A \) splits the graph similarly, and let \(a \in A \setminus B \). Then \(p-a-(n-p) \), a contradiction.

(⇒) Assume \(A \) is a cut-set of \(\Gamma(Z_n) \) separating subgraphs \(X \) and \(Y \). Take any \(x \in X \setminus A \) and \(y \in Y \setminus A \) where \(x \neq a \), and \(y = a \), with \(a, y \in A \). Rewrite \(x \) and \(y \) as \(x = rp \) and \(y = sp \) where \(p \) and \(q \) are primes dividing \(n \).

First assume that \(p \neq q \), where \(p \) does not divide \(y \) and \(q \) does not divide \(x \), and take any nonzero element of \(\text{ann}(p) = \{k(n/p) \mid k \in Z_{p^2}\} \), say, \(c(n/p) \). This is a multiple of \(p \), so we have that \(\text{ann}(p) \subseteq \text{ann}(c(n/p)) \) and that \(x \in \text{ann}(c(n/p)) \), since \(x \) is a multiple of \(p \). Thus for any nonzero \(b \in \text{ann}(p) \) we have \(y = b - c(n/p) - x \). Since \(A \) is a cut-set separating \(X \) and \(Y \), \(b \in A \) or \(c(n/p) \in A \). If \(b \in A \) this implies that \(\text{ann}(p) \setminus \{0\} \subseteq A \), and if \(c(n/p) \in A \) this implies that \(\text{ann}(p) \setminus \{0\} \subseteq A \). Since \(p \) does not divide \(y \) and \(q \) does not divide \(x \), \(x \) is not connected to any element of \(\text{ann}(p) \setminus \{0\} \) and \(y \) is not connected to any element of \(\text{ann}(p) \setminus \{0\} \). If \(\text{ann}(p) \setminus \{0\} \subseteq A \), then since \(x \) is connected to an element of \(A \) and not to any element of \(\text{ann}(p) \setminus \{0\} \), there is at least one additional element in \(A \). Similarly, if \(\text{ann}(p) \setminus \{0\} \subseteq A \), then since \(y \) is connected to an element of \(A \) and not to any element of \(\text{ann}(p) \setminus \{0\} \), there is at least one additional element in \(A \). Since \(\text{ann}(p) \setminus \{0\} \) and \(\text{ann}(p) \setminus \{0\} \) are cut-sets, in either case \(A \) would contain a cut-set as a proper subset, a contradiction.

We may therefore assume that \(p = q \). Then since \(\text{ann}(p) \subseteq \text{ann}(x) \) and \(\text{ann}(p) \subseteq \text{ann}(y) \), for any nonzero \(a \in \text{ann}(p) \) we have \(x = a = y \), which implies that \(\text{ann}(p) \setminus \{0\} \subseteq A \). Since \(\text{ann}(p) \setminus \{0\} \subseteq A \) and \(\text{ann}(p) \setminus \{0\} \) is a cut-set by the first direction of this proof, then \(\text{ann}(p) \setminus \{0\} = A \) by definition of a cut-set.

\[\square\]

Lemma 3.2. In \(Z_n \), let \(p \in \mathbb{Z} \) be a prime that divides \(n \). Then \(|\text{ann}(p)| = p \).

Proof. In the ring \(Z_n \), \(\text{ann}(p) = \{an/p \mid a \in \mathbb{Z}_p\} \) since \(p(n/p) = 0 \), \((p+1)(n/p) = n/p \), and so on. There are \(p \) distinct elements in this set. \[\square\]
Because every cut-set of $\Gamma(Z_n)$ is an annihilator of some prime that divides n, by Lemma 3.2, the size of any cut-set in $\Gamma(Z_n)$ is known. The following lemmas and corollaries will be useful in the proofs of some of the next theorems in this section.

Lemma 3.3. Let $R \cong R_1 \times R_2 \times \cdots \times R_n$. If $a \in R$ with $a = (a_1, \ldots, a_i, \ldots, a_n)$ and $a' = (a_1, \ldots, 0, \ldots, a_n)$ then $\text{ann}(a) \subseteq \text{ann}(a')$.

Proof. Let $b \in \text{ann}(a)$. Then $b \cdot a_l = 0$ for all $1 \leq l \leq n$, and $b_i \cdot 0 = 0$. Thus $b \in \text{ann}(a)$. □

Corollary 3.4. Let $R \cong R_1 \times R_2 \times \cdots \times R_n$. Let A be a cut-set of R. If $a \in A$ with $a = (a_1, \ldots, a_i, \ldots, a_n)$ and $a' = (a_1, \ldots, 0, \ldots, a_n)$, then $a' \in A$.

Proof. Assume $a' \notin A$. Observe that for $b \in Z(R)^*$, if $b \sim a$, then $b \sim a'$ by Lemma 3.3. Thus $A \setminus \{a\}$ is (or contains) a cut-set - a contradiction. □

Lemma 3.5. Let $R \cong R_1 \times R_2 \times \cdots \times R_n$. If $a \in R$ with $a = (a_1, \ldots, a_i, \ldots, a_n)$ and $a' = (a_1, \ldots, 1, \ldots, a_n)$ then $\text{ann}(a') \subseteq \text{ann}(a)$.

Proof. Let $b \in \text{ann}(a')$. Then $b \cdot a_l = 0$ for all $1 \leq l \leq n$ and in particular $b_i = 0$. This implies $b \cdot a_l = 0$, and thus $b \in \text{ann}(a)$. □

Theorem 3.6. Let $R \cong R_1 \times R_2 \times \cdots \times R_n$ with $n \geq 2$. If A is a cut-set of $\Gamma(R)$ then there exists some i, $1 \leq i \leq n$ such that $a = (0, \ldots, 0, a_i, 0, \ldots, 0)$ for every $a \in A$.

Proof. Let A be a cut-set of R which splits $\Gamma(R)$ into X and Y. Without loss of generality, assume there exists some $b = (b_1, b_2, \ldots, b_n) \in A$ with $b_1 \neq 0$, $c = (c_1, c_2, \ldots, c_n) \in A$ with $c_2 \neq 0$.

Consider the set of all elements in $Z(R)$ with a 0-entry in the 1^{st} position; let this set be denoted by $\{1\}$. Let 1_1 denote the element $(1, 0, \ldots, 0)$ and similarly denote 1_2, and so on. Notice $\text{ann}(1_1) = \{0\}$. Denote by $(1_1)^*$ all elements with 0 everywhere except the 1^{st} position; i.e., $(1_1)^*$ is the ideal generated by 1_1, omitting 0. If $1_1 \in A$ then $(1_1)^* \subseteq A$ since any element which annihilates 1_1 also annihilates any element in $(1_1)^*$.

Consider the element $1_1 = (0, 1, \ldots, 1)$. Notice $\text{ann}(1_1) = (1_1)^* \cup \{0\}$. Therefore, $(1_1)^*$ forms a cut-set by isolating 1_1. Notice $(1_1)^* \subseteq A$ since $c \in A$, a contradiction. Therefore, $1_1 \notin A$ and we can similarly show $1_i \notin A$ for every $1 \leq i \leq n$. Without loss of generality, $1_1, 1_2 \in X \setminus A$ since $1_1 \sim 1 - 1_2$. Similarly every $1_i \in X \setminus A$ for $1 \leq i \leq n$. This implies that if $y \in Y \setminus A$ then $y_i \neq 0$ for any $1 \leq i \leq n$, since otherwise it would be connected to an element in $X \setminus A$, namely 1_i.

Consider $\alpha = (b_1, 0, \ldots, 0)$ and $\beta = (0, c_2, 0, \ldots, 0)$. Notice $\alpha, \beta \in A$ by Corollary 3.4 since $b, c \in A$. This implies b_1 and c_2 are not units, since otherwise we reach the contradiction shown in the previous paragraph.

Since $\alpha \in A$, there exists $y = (y_1, y_2, \ldots, y_n) \in Y \setminus A$ such that $y \sim \alpha$. Clearly $\text{ann}(y) \setminus \{0\} \subseteq Y$. Consider the element $y' = (y_1', y_2', \ldots, y_n')$ where $y_1' = 1$ and $y_i' = y_i$ for all $i \neq 2$. By Lemma 3.5, $\text{ann}(y') \setminus \{0\} \subseteq \text{ann}(y) \setminus \{0\}$. Also, $\text{ann}(y') \setminus \{0\} \subseteq A$ since any element which annihilates y' must have a zero in the second position. Therefore, $\text{ann}(y') \setminus \{0\} \subseteq A$ since $\beta \notin \text{ann}(y') \setminus \{0\}$. Thus $\text{ann}(y') \setminus \{0\}$ forms a cut-set, a contradiction of the minimality of A. Therefore, all elements in A must be of the form $(0, \ldots, 0, a_i, 0, \ldots, 0)$. □
Theorem 3.7. A set A of $V\left(\Gamma\left(\prod_{i=1}^{m}Z_{n_i}\right)\right)$ with $m \geq 2$ is a cut-set if and only if $A = \{(0,0,\ldots,a_i,\ldots,0),(0,0,\ldots,a_{i2},\ldots,0),\ldots,(0,0,\ldots,a_i,\ldots,0)\}$ where $\{a_i,a_{i2},\ldots,a_{ik}\} = \text{ann}(p)\setminus\{0\}$ for some prime $p \in \mathbb{Z}$ such that $p|n_i$ in \mathbb{Z}_{n_i}.

Proof. (\Leftarrow) First note that the case where $n_i = p$ is included in this theorem because the nonzero annihilators of p are exactly the nonzero elements of \mathbb{Z}_{n_i}. Without loss of generality, let p be a prime such that p divides n_1 and let $\text{ann}(p) = \{0,a_{i1},a_{i2},\ldots,a_{ik}\}$ in \mathbb{Z}_{n_1}. Because $\text{ann}(p,1,\ldots,1) = \{(0,0,\ldots,0),(a_{i1},0,\ldots,0),(a_{i2},0,\ldots,0),\ldots,(a_{ik},0,\ldots,0)\}$, then by Theorem 3.1 we know that for any nonzero $x \in \mathbb{Z}_{n_1}$, $y \in \mathbb{Z}_{n_1}$, and primes p_1, p_2, \ldots, p_k dividing n_1, $\text{ann}(p_1) = \{0,a_{i1},a_{i2},\ldots,a_{ik}\}$ in \mathbb{Z}_{n_1}, implying that no proper subset of A will act as a cut-set.

(\Rightarrow) Let A be a cut-set of $\Gamma(\prod_{i=1}^{m}Z_{n_i})$ and let X and Y be two subgraphs created when A is removed. Take any $(x_1,x_2,\ldots,x_m) \in X \setminus A$ and $(y_1,y_2,\ldots,y_m) \in Y \setminus A$ such that $(x_1,x_2,\ldots,x_m) - (a_{i1},a_{i2},\ldots,a_{ik})$ and $(y_1,y_2,\ldots,y_m) - (b_1,b_2,\ldots,b_m)$ for some $(a_{i1},a_{i2},\ldots,a_{ik}), (b_1,b_2,\ldots,b_m) \in A$. Because any (u_1,u_2,\ldots,u_m) where each u_i is a unit contains only the zero element in its annihilator, we know that at least one of the x_i must be a zero-divisor of the corresponding \mathbb{Z}_{n_i}, and similarly for the y_i. Since we also know that all elements of A are zero in every component position but, say, the ith position by Theorem 3.6, the ith component position of both (x_1,x_2,\ldots,x_m) and (y_1,y_2,\ldots,y_m) must contain a zero-divisor. We may therefore assume without loss of generality that both x_1 and y_1 are zero-divisors of \mathbb{Z}_{n_1}. Since this is the case we can rewrite $x_1 = rp_{x_1}$ and $y_1 = rp_{y_1}$ for $r,q \in \mathbb{Z}_{n_1}$ and primes $p_{x_1}, p_{y_1} \in \mathbb{Z}$ dividing n_1.

First assume that $p_{x_1} \neq p_{y_1}$, where p_{x_1} does not divide y_1 and p_{y_1} does not divide x_1. Then by Theorem 3.1 we know that for any nonzero $\beta \in \text{ann}(p_{y_1})$ and any nonzero $c(n/p_{x_1})$, $y_1 - \beta - c(n/p_{x_1}) - x_1$ in $\Gamma(\mathbb{Z}_{n_1})$. Therefore we have that $(y_1,y_2,\ldots,y_m) - (\beta,0,\ldots,0) - (c(n/p_{x_1}),0,\ldots,0) - (x_1,x_2,\ldots,x_m)$. This implies that $(\beta,0,\ldots,0) \in A$, which would imply inclusion of all such $(\beta,0,\ldots,0)$ in A, or $(c(n/p_{x_1}),0,\ldots,0) \in A$, which would imply a similar inclusion. Since p_{x_1} does not divide y_1 and p_{y_1} does not divide x_1, (x_1,x_2,\ldots,x_m) is not connected to elements of the form $(\beta,0,\ldots,0)$ and (y_1,y_2,\ldots,y_m) is not connected to elements of the form $(c(n/p_{x_1}),0,\ldots,0)$. However, since we know that both (x_1,x_2,\ldots,x_m) and (y_1,y_2,\ldots,y_m) are connected to elements in A and that the set of all nonzero $(\beta,0,\ldots,0)$ and the set of all nonzero $(c(n/p_{x_1}),0,\ldots,0)$ are cut-sets by the first direction, we see that A contains a proper subset that is a cut-set, a contradiction.

We may therefore assume that $p_{x_1} = p_{y_1}$. Then since $\text{ann}(p_{x_1}) \subseteq \text{ann}(x_1)$ and $\text{ann}(p_{x_1}) \subseteq \text{ann}(y_1)$, then for any nonzero $\alpha \in \text{ann}(p_{x_1})$, $(x_1,x_2,\ldots,x_m) - (\alpha,0,\ldots,0) - (y_1,y_2,\ldots,y_m)$. We then have that $(\alpha,0,\ldots,0) \subseteq \text{ann}(x_1,x_2,\ldots,x_m)$ and $(\alpha,0,\ldots,0) \subseteq \text{ann}(y_1,y_2,\ldots,y_m)$, meaning that $(\alpha,0,\ldots,0) \subseteq A$, but since the set of all nonzero $(\alpha,0,\ldots,0)$ where $\alpha \in \text{ann}(p_{x_1})$ is a cut-set by the first direction, then $A = \{(\alpha,0,\ldots,0) \mid \alpha \neq 0, \alpha \in \text{ann}(p_{x_1})\}$. \qed
4. Acknowledgement

This paper is the result of a summer’s worth of undergraduate research at the Wabash College mathematics REU in Crawfordsville, Indiana. The REU was funded through the National Science Foundation grant number DMS-0755260. The authors would like to thank Wabash College, Dr. Michael Axtell and the Wabash Summer Institute in Mathematics 2009.

References