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CWATSETS: Weights, Cardinalities, and Generalizations

Rick Mohr*

May 12, 1996

Abstract

This report provides an upper bound on the average weight of an element in a cwatset and
discusses the ratio of the cardinality of a cwatset to the cardinality of the group containing the

cwatset. The concept of a generalized cwatset is also introduced.

1 Introduction

Cwatsets are structures that are contained in binary space which are not quite a group but are
more structured than just a set. The recent development of cwatsets has found uses in determining

confidence intervals in statistics.

Definition 1 A subset, C, of Zg (binary d-space) with order n is a cwatset of degree d and order
n if, for each element b of C, there exists o in Sy (the symmetric group on d symbols) such that C

+b=Ce.

All cwatsets in Z$ can be found using projections of the subgroups of the wreath product of
Zs by Sq (Sherman and Wattenberg [2]). Kerr [3] used this approach to construct all cwatsets of

degrees 3, 4, and 5.

* Author supported by NSF grant DMS-9322338



There are still many questions involved with the structure of cwatsets. Problems discussed in
this paper include computing the average weight of a cwatset element, determining cwatsets of

maximum order, and generalizing the definition of a cwatset to an arbitrary group.

2 Notation

There are a few notational ideas concerning cwatsets that will be used throughout this paper.
1) w(z) will denote the weight enumerator of a cwatset, and @ will be used to represent the
average weight of a word for a cwatset.

2) A cwatset can have ‘columns’ if it is written so that the elements of the cwatset appear one
above the other, similar to a matrix. For example, the six element cwatset below has four columns:
0000
0011
1001
0111
0100

1101

3 Average Weight

Sherman and Wattenberg [2] proved several facts about cwatsets which involved the weights of

certain elements in the cwatset:
Fact 1 A cwatset contains 0 (i.e. - a word of weight zero).

Fact 2 If a cwatset contains 1 or an element of odd weight, then the order of the cwatset is

even.



Since the average weight of an element is simply the total number of 1’s in the cwatset divided

by the order of the cwatset,

n-w = ar+2a+---+n-1ap

= la1 + (n = Dan_1] + [ap + (n — 2)an—g] + - + gan/g

n n n

< [E(al +an-1)]+ [§(a2 +ap-2)]+---+ 5an/2
n

< §(a0+a1+a2+-'-+an_1)

_ n-d

)

Thus
w<$ O

It’s important to note a few things about the proof. First, a, is not included because 0 is always
in C, which makes a, = 0. Also, the term a,/9 was included, establishing the result if n is even. If
n is odd, this term is omitted, and the proof still holds. Finally, the average weight is exactly half
the degree only if all columns have the same weight (i.e. - the only non-zero term is a,,/5.)

It is known that for a subgroup of Zg, the average weight of an element is exactly d/2 (provided
there are no columns of zeros). If the subgroup is written so that we can refer to columns, then the
number of 1’s in each column is exactly n/2. Thus, the result about subgoups becomes a corollary
to this theorem.

Some observations about this theorem:

1) It can be used to eliminate subsets of Zg as candidates for cwatsets. Simply compute the
average weight of the subset, and if it is greater than d/2, the subset cannot possibly be a cwatset
(the catch is, if w < d/2, this doesn’t prove the subset is a cwatset.)

2) It provides a possible justification of the use of half samples ([4] and [5]) in statistics. It was

proved in [1] that cwatsets can be used to create equal probability confidence intervals. Now, the
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Fact 3 The elements of even weight in a cwatset form a (sub)cwatset.

Fact 4 Let C be a cwatset in Z§ of order n such that n > 2%~1. Then, C contains an element

of weight k, for k = 0,1,...,d.

A natural question to ask: On the average, what is the weight of an element in a cwatset?

To provide an upper bound, we will use the following lemma.

Lemma 1 If a; is the number of columns of weight k in a cwatset of order n, k-ap = (n -

k)an_g.

This lemma is a generalization of a lemma given by Kerr [3] and can be proven with the same
proof she uses.

1

We can prove the following theorem ' using Lemma, 1.

Theorem 1 The average weight of an element of a cwatset of degree d is less than or equal to

dy2.

Proof. Without loss of generality, we will assume k < 5. From Lemma 1, we see that a,,_j < ay
with equality only if £ = % or a; = a,_ = 0. This gives us
On-k < Qg
Nap—k — 2ka, 1 < nap — 2kay,
2nan_ — 2ka,_ < nag — 2kag + na,_x
2kag + 2nan_ — 2kag,_ < nag + na,_p

kap + (’I’L - k)a'n——k < %n(ak + an—k)

YA proof of this theorem using dot products of cwatset elements is given in appendix A.



average subsample size of the cwatset elements is about half the size of the total sample. So, on
the average, cwatsets act like half samples. It is known that cwatsets give good approximations to
the underlying mean, so its seems likely that half samples should do well also.

The average weight of a cwatset can also be computed using the weight enumerator. If w(z) is

!

the weight enumerator, then w = %g% With this, we can prove the following fact.

Fact 5 Let C) and Cy be cwatsets with average weights w, and Wy respectively. Then if C3 =

C1® Gy, the average weight of Cy is W3 = Wy + 1.

Proof. If wi(z) is the weight enumerator for C;, then w3(z) = w1 (z) - wa(x).? So,

_ wi(1)

w3(1)

wi (Dwa(1) + wy (1wy(1)
wy (1)ws(1)

wi(1l) | wy(l)

wi(l)  we(l)

= ] +uwo. O

4 Maximal Order Cwatsets?

Another problem to ponder which is linked to the use of cwatsets in statistics: What is the proper
cwatset of maximal order contained in Z¢ for a given value of d?

To make discussing this problem a little easier, we’ll introduce some notation. Let Cy be the
maximal order proper cwatset in Z§. If there is no unique maximé;l order proper cwatset, then

choose Cj to be any one of these cwatsets. Next, we introduce the following definition.

>This result can also be used as a technique for decomposing cwatsets (see appendix B).



Definition 2 For any cwatset, C, of degeree d and order n, let

n

p(C) = od

Now instead of looking at the order of the largest cwatset, we can look at p((f’d). From the knowledge

of existing cwatsets 3], the values of p(C4) can be computed for some of the lower dimensions.

di 1 2 3 4 5 6 7

pl1/2 1721374374 ]3/4]3/4(2)|7/8(?)

The values of p for dimensions 1 through 5 are exact. All evidence suggests the values for dimensions
6 and 7 are correct; however, the possibility of higher ratios has not been disproven. Even though
the ratios appear to be following a nice increasing pattern, there is still no proof as to what the
value of p is for a given dimension or even that this pattern continues.

The question now becomes finding out what the limit of p(Cy) is. Since the order of é'd+1 must
be greater than or equal to the order of {0, 1}eaé'd, we know that the ratios must be non-decreasing.
But does the limit go to 1 (meaning the cardinality of a cwatset can be arbitrarily close to the

cardinality of the entire group), or does it approach some other limit (and if so, what is it)?

5 Generalized Cwatsets

Definition 3 Let Hy x G be the semidirect product of groups H and G determined by the homo-
morphism ¢ : H — Aut(G). A subset, C, of G s defined to be an (H, ¢) subset of G if for every b
€ C there exists h € H such that

C-b=C¢h

6



where (-) 18 the corresponding binary operation of the group.

Notice that if G = Z§, H = Sy, and ¢ is the appropriate homomorphism, then we get our defin-
tion of a cwatset. So (H, ¢) subsets are really a generalization of the ‘classical’ cwatset definition.
In fact, when G, H,and ¢ are clearly determined, we will refer to C as a cwatset of G (because our

set is still closed with a twist).

Fact 6 Let C be an (H, ) subset of the group G. The identity element, e, of G is contained in

C if and only if for every z in C, 71 is also in C.

Proof. Assume e € C. Then e € C%) since e?") = e for any automorphism. For any z € C,C-z
contains e, so there must exist ¥y € C such that y -z = e. This implies y = z~lecC.
Now assume that for every z € C, 2”1 € C. Thuse=z"1-z2€C -z = C*M | So there exists

y € C such that y?h) = . But this is only possibleif y =e. O

This result should come as no surprise. It is simply a generalization of Fact 1, because in a classical
cwatest each element is also its own inverse.

In the classical context, all cwatsets are projections of subgroups of Sg, X Zg. This means that
the order of a cwatset always divides 2¢ - d! = |Sy 5 X Z4| (Sherman and Wattenberg (2]). However,
in (H,¢) subsets, we run into trouble. Projections of subgroups of Hy x G are still cwatsets, but
now there are cwatsets which do not contain the identity element, meaning they are not projections
of subgroups. So does the order of an (H, ¢) subset still divide |Hy x G|? If the cwatset contains
the identity, then the answer is yes (just use the same argument that was used for classical cwatests
[2]). In other cases, it also appears to be true, but there’ is still no proof. I conjecture that the

order of an (H, ¢) subset must divide |Hy x G|.



6 (H,¢) subsets of ZJ

If G = Z¢ and H = Aut(Z$), instead of just Sy, then we can solve the problem of finding the

maximal order cwatsets in a given dimension. In fact, it’s easy to show that

24 1

The basic idea is that, since we have more automorphisms to use now, we can form a cwatset just
by throwing out any non-zero word from the group. This solves the earlier problem in the sense
that we now know what ratio occurs for each dimension and that the ratios go to 1 in the limit
of big d. So, we can get a cwatset with an order arbitrarily close to the order of the entire group.
Even better, we can get the ratio of the order of a cwatest' to the order of the group arbitrarily

close to any fraction, as we will soon see.
Lemma 2 p(C) @ C3) = p(C1) p(C2).
Proof. Let C; and Cy have dimensions a and b respectively. Then

C,oC Cil-|C
per@cy = 1A A% _ ) e o

Theorem 2 There ezists a sequence of cwatsets {Cyp} such that lim,,o p(Cp) =71 for0 <r <

Proof. The idea behind constructing the sequence of cwatsets is to approximate r by a sequence

of products of numbers of the form %}1 (1/2, 3/4, 7/8, etc.). For example, suppose r = 0.317.

Then we can form a sequence with a limit of r.

r=—==05

1
2
8



1‘2=~2—'Z=0.375
1 3 7
ry= 55 g =032812
1 3 7 31
= = (0.3 109375
ra=g-7 g 35 = 0-317871093
etc.

Now we use Lemma 2 and the fact that

. 24 — 1

to construct the sequence of cwatsets needed. For our example,
C,=Ci
Cy=C10C
C3=C1aCodC;s
Ci=C10Cr®C30Cs
...ete.

The reason for choosing these cwatsets as the sequence is seen below.

- 1
p(C) =p(C)) =5=05=n

N N - - 1 3
p(Co) = p(Cy & C2) = p(C1)p(C2) = 5 - 7 =0.3T5 =13
N N - - - 2 1 3 7
p(C3) = p(C1 ® C2 ® C3) = p(C1)p(C2)p(C3) = 5 - 7+ ¢ = 0328125 =13

Thus,
Jiz ) = i re =7

This same argument holds forany 0 <r <1. 0
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Remember that this result holds only for the generalized cwatsets in Zg. However, if the
pattern for classical cwatsets continues (1/2, 3/4, 7/8,...), and I believe that it does, then this same

argument will apply as well.

7 Questions Galore

Classical Cwatsets

e For which values of k that divide 244! do there actually exist cwatsets? Julie Kerr [3] proved that
there is no cwatset of order 15 (which divides 255!) in Z3. This problem is a generalization of the
problem discussed in section 4.

e What are some algorithms for constructing cwatsets? We already have direct sums and cyclic
cwatsets. Are there other constructions?

e What is the supremum for p(C) where C is any proper cwatset?

o Why does the order of the largest cwatset in 24 always seem to be of the form 24 — 24?7 This
fact is easily seen by examining the list of cwatsets given in Kerr’s paper [3]. It is possible that this
has to do with the fact that |C| divides Z§, x Aut(Z§) = 2¢(2¢ ~ 129 —2)(24 —4) --- (24 — 2¢71).

e Is there a cwatset of order 60 in Z$? The answer appears to be no. If so, this will prove that
the maximum p is 3/4 (see section 4).

o What about a lower bound for the average weight of a cwatset element?

o What about the standard deviation of the weights of cwatset elements? The only standard
deviation we have now is for all of Z¢ and is o = V/d/2. A general result, along with the average
weight, would give us a better idea of the weight distributions.

Generalized Cwatsets
e Does there ezist an appropriate cwatset such that p(C) can be any rational number? Earlier

we showed that we can get p(C) to approximate any rational number as close as we want. Can we

10



get the exact fraction?

o Let G = Z‘,f and H = S4. If 0 € C, will C always be a subgroup?
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Appendix A

Another way to prove that @ < d/2 is to use dot products. The dot product of cwatset elements
is essentially the same as the dot product of vectors: sum the products of the components. For
example, suppose a = 1011 and b = 0111. Then a-b = 1(0) + 0(1) + 1(1) + 1(1) = 2.

There are three basic relations that will be used:

z - = weight of =
£ - y = the number of places where 1’s overlap
(z+y) - (z+y)=z-z+y-y—2z-y

Now, the total number of ones in a cwatset (nw)is given by 3., z - z. However, adding a given
element y to the cwatset will not change the total number of ones. So this total is equally well

written as 3°.(z +y) - (z + y). Equating the two sums yields:

Szoz = Y (z+y)-(z+y)
T
= Za:-a:-i-}:y-y—“lz:n-y
T T T
= Zm-m+n(y-y)—22m-y
T T
But this implies that
ny-y) =25 ey
T
Since this is true for any given y, we can sum both sides over all possible y in the cwatset. Doing

this gives us
Snyy=2).Y z-y
y y =
no = 222:1: Yy = 2210(0;)2
y T 1
where w(c;) is the weight of the ith column. By the Cauchy-Schwarz inequality,

dZ'w(Ci)2 > {Zw(cz')]2 = (nw)?

12



So
2(nw)?

2 _ A2
n“w 2};10(0,) z—

or

B <

o | A

The reason this proof is included is because the idea of dot products looks as though it might
be a fairly powerful technique. The entire proof is based entirely on the fact that the number of
ones in a cwatset is ’conserved’. Everything else is just algebra. Hopefully, this technique can be

expanded to give more results (possibly including the standard deviation of the weights).
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Appendix B
The fact that the weight enumerator of a direct sum is the product of the weight enumerators
can be used to decompose cwatsets which are direct sums of other cwatsets. The basic idea is to
factor the weight enumerator of the larger cwatset, and then look for smaller cwatsets whose weight
enumerators correspond to these factors. For example, consider the cwatset Cj.
0000
0011
1001
0111
0100
1101
It’s weight enumerator is 1 + = + 222 + 22% = (1 + z)(1 + 2z?). The cwatset C; = {0,1} has
the weight enumerator 1+ z. The cwatset Co = {000,101,011} has the weight enumerator 1+ 2z2.
And indeed C3 = C;®C5y. Well, not exactly. A ’real’ direct sum would look like
0000
0101
0011
1000
1101
1011
However, the above cwatset is just C:(}m), so the two cwatsets are really the same. Already we see
how factoring the weight enumerator can help us find the components of a direct sum even when

the cwatset doesn’t look ’exactly’ like a direct sum.

14



Caution!

Although this technique is useful, it can also be misleading. First of all, just because a weight
enumerator factors, does not mean it is a direct sum. For instance, take the following cwatset, H.
000
100
110
111
011
001
It has the weight enumerator 1 + 2z + 222 + 23 = (1 + z)(1 + = + z2), but this cwatset is not
the direct sum of other cwatsets. There is one other pitfall when looking at weight enumerators.

Consider the cwatset, J:

0000

1000

0011

1011

0010

1001
The weight enumerator for J is (1+z)(1+ z + z2) just like for H. However, this cwatset is a direct
sum. It is actually {0} @ H. The trick is that the weight enumerator for {0} is just 1, so it can be

overlooked in the factorization.
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