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ON THE NUMBER OF 2-PLAYER,  3-STRATEGY,  

STRICTLY ORDINAL,  NORMAL FORM GAMES  

Austin Williams 

Abstract. The 2-player, 2-strategy, strictly ordinal, normal form games were originally studied 

by Anotol Rapoport and Melvyn Guyer in a paper entitled A Taxonomy of 2x2 Games [4].  Their 

paper appeared in 1966 and included an exact count, an enumeration (that is, a complete 

listing), and a taxonomy of such games. Since then it has been known that there are 78 such 

games. If we allow each player access to one additional strategy, however, the number of games 

explodes to nearly two billion. In this paper we compute the exact number of 2-player, 3-

strategy, strictly ordinal, normal form games. 
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1 Introduction 

The 2-player, 2-strategy, strictly ordinal, normal form games were originally studied by Anotol 

Rapoport and Melvyn Guyer in a paper entitled A Taxonomy of 2x2 Games [4].  Their paper 

appeared in 1966 and included an exact count, an enumeration (that is, a complete listing), and a 

taxonomy of such games.  In a subsequent paper by Rapoport alone, the assertion is made [5, p. 

83] that an exact count, enumeration, and taxonomy of 2-player, 3-strategey strategy, strictly 

ordinal, normal form games exceeded the computational abilities of the time.  Today, some 45 

years later, computational abilities have developed that appear to allow an exact count, 

enumeration, and taxonomy of these aforementioned games.  The exact count is performed 

herein, and the enumeration and taxonomy are hoped to follow shortly. 

In Rapoport’s paper [5, p. 83], upper and lower bounds for the count of such games were 

given.  In particular, if   is the number of 2-player, 3-strategy, strictly ordinal, normal form 

games, then 
   

  
   

   

  
.  Apparently, these bounds have not been subsequently improved in 

print.  The count, enumeration, and taxonomy of the 2-strategy case in [4] rely on a particular 

representation of the given games.  These representations are not unique, and the appropriate 

equivalence relation on these representations is developed in [4] in order to produce a one-to-one 

correspondence between the given games and the equivalence classes of these representations.  

The game count is then achieved by counting equivalence classes.  The count of the equivalence 

classes is accomplished by analyzing the action of a certain group on the set of representations of 

the given games referred to above.  In particular, the count is achieved by a careful analysis of 

the various orbits of the representations under the action of this group of what could be termed 

“game symmetries”. 

 We employ essentially the same approach herein to achieve our count.  For convenience, 

we refer to 2-player, N-strategy, strictly ordinal, normal form games as N-strategy Rapoportian 

games.  The paper is organized as follows.  Section 2 contains basic definitions and background 

information.  In particular, Rapoportian games are defined, along with their so-called bimatrix 

representations.  It is shown that every 3-strategy Rapoportian game has at least one bimatrix 

representation, and the set,  , of all such representations is formed.  In Section 3 a demonstration 

that a given 3-strategy Rapoportian game can have several distinct bimatrix representations is 

given, and the appropriate equivalence relation on the representations is generated.  Further, 

symmetries of these representations (hence, of the games) are defined, and the group of all such 

symmetries is determined.  The counting problem is then reduced to the problem of counting 

orbits under the action of this group.  In Section 4 symmetric, asymmetric, and standard 

symmetric bimatrix representations are defined and studied.  In Section 5 symmetric and 

asymmetric orbits are defined, and it is shown that for a given bimatrix representation,    , the 

orbit of   under the group action must be precisely one of these two types.  In Section 6 the order 

of the symmetric orbits is given.  In Section 6, the order of the asymmetric orbits is determined.  

In Section 8 the number of symmetric orbits is counted, and from this the number of 3-strategy 

Rapoportian games is deduced.  Finally, Section 9 contains some thoughts on future work. 
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2 Basic Definitions and Background Material 

Suppose there are two players, each of whom has a set of strategies,   and   respectively.  

Suppose that for each strategy pair           there is an outcome for each player,         

and         respectively.  Let             be the function that maps each strategy pair 

to the pair of outcomes.  Suppose the players have preferences over the product of outcomes, 

     .  A utility function for player  ,           ,  is a function that assigns a real 

number to each of the outcome pairs in       , such that a more preferred outcome pair 

receives a greater number than a less preferred outcome pair, and that assigns the same number 

to two outcomes between which the player is indifferent [3, p. 29].  As an outcome pair is 

assigned to each play, and each outcome pair is assigned a utility for each player, we may define 

for each player a payoff function           given by:                   .  The payoff 

function maps each strategy pair to the utility assigned to the corresponding outcome pair [3 pg. 

48].  As in [4], assume that |   |  |     |.  Note that in the case where the image of  ,  

     , is not onto       ,        is to be treated as a multiset, in order that |   |  
|     |  |     |. 

As defined in Luce and Raiffa’s Games and Decisions [3, p. 55], a 2-player, normal form 

game consists of: 

 
i. The set of 2 players. 

ii. Two sets of strategies, S and T, one for each player. 

iii. Two payoff functions,    and   , one for each player.   

If a player’s preferences are strict (that is, given any two outcome pairs in      , the player 

prefers one to the other), then the player’s preferences over the outcome pairs is totally ordered.  

If, in addition, the utility functions assign a constant difference to successively preferred 

outcome pairs, then such a utility function is called a strictly ordinal utility function [6].  As the 

magnitudes of the differences are unimportant, the range of the strictly ordinal utility functions 

may, without loss of generality, be the integers.   As the strictly ordinal utility functions never 

assign the same number to any two outcome pairs in      , the range of the functions is, 

without loss of generality,        , where   |     |  [4, p. 1].  It follows that the range of 

payoff functions is, without loss of generality,        .  If strictly ordinal utility functions are 

used to reflect players’ preferences over the outcome pairs of a normal form game then the game 

is referred to as a strictly ordinal, normal form game. A 2-player, N-strategy, strictly ordinal, 

normal form game is a 2-player, strictly ordinal, normal form game wherein each player has 

precisely N strategies to choose among.  For brevity, we refer to 2-player, N-strategy, strictly 

ordinal, normal form games as N-strategy Rapoportian games. 

For a 3-strategy Rapoportian game, G, let              denote player 1’s strategy set 

and let              denote player 2’s strategy set.  Then |     |  |   |   .  Let 

                 denote player  ’s strictly ordinal utility function and let        
        be defined by                   .  Note that    is player  ’s payoff function.  As in 

Luce and Raiffa’s Games and Decisions [3, p. 58] the game is represented by the following 

bimatrix: 
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The above matrix is referred to as a bimatrix representation of the game G.  Abbreviate the 

above matrix by the notation        , where   is the set of players,      , and   
       .  Next, the set of all bimatrix representations of 3-strategy Rapoportian games is defined.  

Let            be a set of two players, indexed by  .  Let       ,  where              is 

a set of three strategies available to    and              is a set of three strategies available to 

player   .  Let     |            .  That is,   is the set of all possible payoff functions 

for 3-strategy Rapoportian games.   Let      .  That is,   is the set of all possible 2-tuples 

of payoff functions.  Then             is the set of all bimatrix representations of 3-strategy 

Rapoportian games.  To demonstrate that every element of   is a bimatrix representation of a 3-

strategy Rapoportian game, pick any    .  Then          , where          ,   
                      , and          , where              is   ’s payoff function.  

Hence every element in   represents a 3-strategy Rapoportian game.  Let          .  Then 

        if and only if for all        , for all    , and for all    ,            
      . That 

is, two bimatrix representations are equal precisely when their corresponding entries are equal.   

Remark on the literature: in Essentials of Game Theory by Leyton-Brown and Shoham [2] 

the authors’ definition of a normal form game is referred to in this paper as a bimatrix 

representation of a normal form game.  The difference between the definition of a normal form 

game given in Luce and Raiffa’s Games and Decisions [3, p. 55] and that given in Leyton-

Brown and Shoham’s Essentials of Game Theory [2, p. 3] is subtle.  Luce and Raiffa’s definition 

is used in this paper as it predates that found in Essentials of Game Theory by 43 years, and has 

apparently been cited more often. 

3 Equivalent Representations 

The representation relation between 3-strategy Rapoportian games and their bimatrix 

representations is not functional.  That is, a given game may have several distinct bimatrix 

representations.  Consider the following two bimatrix representations,    and   : 

 
        
                 
                 

                 

    

        
                 
                 

                 

 

 

A quick check shows that                          .  Thus      .  Yet upon inspection 

   and    are similar in that they have simply had their first and second rows interchanged and 

their strategies relabeled.  Thus    and    are two bimatrix representations of the “same game” 

(up to a relabeling of the strategies).  More generally, let        , with              
       ,              and             .  Let                    and            
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        be any permutations.  Then    and    are to be considered representations of the same 

game if for all        , for all     , and for all     ,   (     )                    .  

Colloquially, any permutation of the rows and columns of a bimatrix representation results in a 

bimatrix representation of the same game up to a relabeling of the strategies.  Now consider a 

third game,     , shown alongside   : 

 
        
                 
                 
                 

   

        
                 
                 
                 

 

 

Again, observation shows that                  
        .  Thus      .  But    and    

are similar in that they have had their players’ indexes switched (the row player in one is the 

column player in the other).  That is, the bimatrix has been transposed and the order of the 

payouts permuted.  Again,    and    are distinct bimatrix representations of a common game up 

to a relabeling of the players. 

As in Rapoport and Guyer’s A taxonomy of 2x2 games [4], two bimatrix representations 

are considered as representing the same game if one can be obtained from the other by a finite 

sequence of interchanging rows, interchanging columns, and/or interchanging players .  This idea 

is formalized by considering all the possible finite sequences of row interchanges, column 

interchanges, and player interchanges of bimatrix representations of 3-strategy Rapoportian 

games.  Next, create the group of all the symmetries of bimatrix representations of 3-strategy 

Rapoportian games.  Its elements are the finite sequences of row, column, and player 

interchanges.  For a 3-strategy Rapoportian game the group can be thus generated via the 

following elements: 

 

The interchange of rows 1 and 2, denoted    . 

The interchange of rows 1 and 3, denoted    . 

The interchange of rows 2 and 3, denoted    . 

The interchange of columns 1 and 2, denoted    . 

The interchange of columns 1 and 3, denoted    . 

The interchange of columns 2 and 3, denoted    . 

The interchange of the row and column players, denoted  . 

 

In fact, this generating set is redundant.  In particular,                 and             
   , so this group is generated by the elements:    ,    ,    ,    ,and  . 

The generators relate in the following way.  Each generator is its own inverse:      
                   .  The row and column interchanges commute:        
                         ,                , and                . A player 

switch followed by a row switch is identified with the corresponding column switch followed by 

a player switch:            , and            .  Finally:                    , 

and                    .   
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This group has 72 elements.  It is isomorphic to            [F.R. Beyl 7, private 

communication].  This group is not constructed in this paper.  All work with this group is done 

relative to the generators and relations.  Throughout this paper we refer to this group as    .  The 

group     has a normal subgroup of 36 elements generated by the generators of     excluding  .  

We refer to this subgroup as    . 

 

Lemma 1.  The quotient group 
   

   
⁄  is isomorphic to    ⁄ . 

Proof:  Note that |
   

   
⁄ |  

|   |

|   |
 

  

  
     

 

For each       define a map        in the following way.  Let       

  (       )     
   

 
      where     is define as follows.  For all             

  
 (     )             .  For the remaining generators of    , note that each only permutes the 

rows or columns of a bimatrix representation, not the players.  Let                    be the 

permutation that describes the row interchanges of such a generator  , and let            
        be the permutation that describes the column interchanges.  Then 

        (       )     
   

 
      where     is defined by: for all             

  
 (     )    (   

         
     ).  As an illustration, consider the bimatrix representations    

and    from before: 

 
        
                 
                 
                 

    

        
                 
                 
                 

 

 

The group element that sends    to    is    .  Let    be the permutation given by:        , 

       , and        .  Let    be the permutation given by:          for all          .  

Let          .  Then             (       )     
   

 
      where     is define by: for 

all                  
 (     )    (   

         
     ). 

Now that the map    has been defined for all of the generators of    , the map    for the 

rest of the elements of     is defined in the following way.  Let   ,   ,       .  Suppose 

       .  Then define    
 by    

       
    

   .  For example,                 

              .  Finally, let      |      .  Note that   forms a group under composition 

and is isomorphic to     via the map     .  Next, define a group action of     on the set,  , 

of all bimatrix representations of 3-strategey Rapoportian games using   .  Explicitly, define 

        via                          .  For convenience, write “  ” instead of 

“   ”. 

Theorem 1.  The set   is a    -set. 
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Proof:  We observe that             (         )           , and that         

              (         
   )  (       

    
   )    (       

   )  

  (         )=       .  Hence  is an action of     on   and   is a    -set.   

 

Define a relation, , on   by       if there exists       such that       .  

Colloquially,       precisely when    and    represent the same game. 

 

Theorem 2.  The relation  is an equivalence relation on  . 

Proof: (Reflexive)     .  Thus    . 

(Symmetric) Suppose      .  Then there exists              .  It follows that 

        , and      . 

(Transitive) Suppose       and      .  Then there exists                , and 

there exists                .  Then               .  Hence 

     .   

 

Note that       precisely when    and    are in a common orbit of   under the action of    .  

Since       precisely when    and    represent the same game, the problem of counting games 

is thus reduced to the problem of counting orbits of   under the action of    . 

4 Symmetric, Asymmetric, and Standard Symmetric 

Representations 

Let    .  We will refer to   as a symmetric bimatrix representation if there exists a     
   such that for all      and for all                 

           .  Informally, a bimatrix 

representation,  , is a symmetric bimatrix representation if      for some          .  We 

refer to every bimatrix representation that is not a symmetric bimatrix representation as an 

asymmetric bimatrix representation.  Also, we’ll refer to the outcome of a strategy pair       
  as a central outcome if                .  Let   be such a central outcome.   Then the value 

of  , denoted     , will be defined by                     .  For example, consider the 

following bimatrix representation,   : 

 
        
                 

                 

                 

 

 

The outcome for         is a central outcome because                      .  The value of 

the central outcome         is 9.  The outcome for         is not a central outcome because 

                       .  
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Theorem 3:  Every symmetric bimatrix representation has exactly one central outcome in each 

row and column. 

Proof:  Let     be a symmetric bimatrix representation.  Then there exists a       such 

that for all      and all                 
           .  Pick any     . 

(1)  Let  (  )    .  Then           . 

(2)  Since   is a symmetric bimatrix representation,   (     )    (         (  )). 

(3)  By (1),   (         (  ))    (     ). 

(4)  By (2), (3), and transitivity,   (     )    (     ). 

By definition (     ) is a central outcome.  Thus there is at least one central outcome in each 

row,   .  A similar argument shows that there is at least one central outcome in each column,    

(simply pick any     , note that there exists      such that  (  )    , and proceed precisely 

as before).  To show that there is at most one central out come in each row and column, let 

(      ) be another central outcome of   in row   .  It must be shown that       . 

(4)  As (      ) is a central outcome,   (      )    (      ). 

(5)  Since   is a symmetric bimatrix representation,   (      )    (          (  )). 

By (4), (5), and transitivity,   (          (  ))    (      ). 

Since    is a bijection, (          (  ))  (      ). 

(6)  Hence  (  )     . 

By (1),(6), and transitivity,       .  It follows that (      )  (     ), so there is at most one 

central outcome in each row.  A similar argument shows that there is at most one central 

outcome in each column.  Hence every symmetric bimatrix representation has exactly one central 

outcome in each row and column.   

 

Now let     be a symmetric bimatrix representation with central outcomes          

such that                  .  We refer to   as a standard symmetric bimatrix 

representation if for all                     .  For clarity, observe three representations that 

are standard symmetric and three that aren’t.  These first three representations are standard 

symmetric bimatrix representations with central outcomes in bold: 

 
        
                 
                 

                 

        

        
                 
                 

                 

        

        
                 
                 

                  
 

All three are symmetric bimatrix representations with the greatest, middle, and least valued 

central outcomes in the upper left, middle, and lower right positions respectively.  The next three 

representations are not standard symmetric bimatrix representations.  The central outcomes are in 

bold: 
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The representation    is not standard symmetric because                   .  That is, the 

highest valued central outcome is not in the upper left corner of the bimatrix.  The representation 

   is not standard symmetric since                   .  That is, the central outcomes of    

do not lie along the main diagonal.  The representation    is not standard symmetric either.  It is 

the case that the central outcomes of    lie along the main diagonal in the correct order, but    is 

not a symmetric bimatrix representation, hence it cannot be standard symmetric. 

 

Theorem 4:  If     is a standard symmetric bimatrix representation then        . 

Proof:  Since   is a    -set,     .  It must be shown that     .  Let     be a standard 

symmetric bimatrix representation.  Since   is a symmetric bimatrix representation, there exists a 

bijection       such that for all      and all                 
           .  Since   is 

a standard symmetric bimatrix representation, for all                     , were the   ’s are 

the central outcomes in the definition of a standard symmetric bimatrix representation.  Since    

is a central outcome,              . 

Recall that because   is standard symmetric, for all                     .  Also recall 

that since   is a symmetric bimatrix representation, for all 

                        
             .  Hence for all              ( 

            )  

                                 .  Specifically, for all               
              

         .  Since    is a bijection, it follows that for all                                  . 

(1)  Hence for all                    . 
Now let            . 

(2)  Then since   is a symmetric bimatrix representation,    (     )    ( 
            ). 

(3)  By (1),   ( 
            )    (     ). 

(4)  By (2), (3), and transitivity,   (     )    (     ). 

Note that (4) asserts that    is expressible in terms of   .  Consider the standard symmetric 

bimatrix representation,  : 

 
   
                     

    
                                      

                     

                     

                                      

                                      

 

 

Using (4), write all the entries in   in terms of   : 
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Next, we write the bimatrix    using (4) to express each entry in terms of   : 

 
   
                     

    
                                      

                     

                     
                                      

                                      

 

 

Comparing entry by entry, we observe that         Hence        .   

 

Theorem 5:  If     is a standard symmetric bimatrix representation and       such that 

     then     or    . 

Proof:  Let     be a standard symmetric bimatrix representation.  Let the central outcomes be 

labeled           such that                  .  Since   is a standard symmetric bimatrix 

representation, the central outcomes of   are arranged in the bimatrix of   as follows: 

 

. 

 

By Theorem 4,         , but note that any       (other than   or  ) would permute the 

rows and columns of   in such a way that for some                     .  This is because 

every       (other than   or  ) permutes – in a non-trivial way – the rows and/or columns of 

 .  Since there is exactly one central outcome in each row and column,   would move at least 

one of these central outcomes from the position it must occupy for    to be a standard 

symmetric bimatrix representation.  Thus   and   are the only elements in     such that    is a 

standard symmetric bimatrix representation.  Hence if     is a standard symmetric bimatrix 

representation and       such that      then     or    .   

 

Theorem 6 (Corollary):  If     is a standard symmetric bimatrix representation and       

such that      then    . 

Proof:  The proof follows directly from Theorem 5 and the fact that      .   

 

Theorem 7:  If     is a symmetric bimatrix representation then there exists a unique   
    such that    is a standard symmetric bimatrix representation. 

Proof:  Let     be a symmetric bimatrix representation.  By Theorem 3,   has exactly one 

central outcome in each row and column.  This can happen in one of six ways: 
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, , , , , or , 

 

where the shaded boxes represent the positions of the central outcomes of  .  Let the central 

outcomes be labeled           such that                  . 

 

Case 1:  The central outcomes of   occupy the the following positions: 

 

 
 

Then the outcomes         and    must be in one of the following six arrangements: 

 

, , , , , or  

 

 Case 1-1: The outcomes         and    are in the following arrangement: 

 

. 

 

In this case   is already a standard symmetric bimatrix representation.  Since      , 

and     , there exists       such that    is a standard symmetric bimatrix 

representation.  Furthermore, suppose that for some          with     ,      was a 

standard symmetric bimatrix representation.  Then           .  Since    is a standard 

symmetric bimatrix representation, Theorem 6 states that     .    .  So   is the 

unique element,      , such that    is a standard symmetric bimatrix representation.  

Hence there exists a unique       such that    is a standard symmetric bimatrix 

representation. 

 

Case 1-2: The outcomes         and    are in the following arrangement: 
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. 

 

Then         is a standard symmetric bimatrix representation.  Furthermore, for any  

       with          ,      would not be a standard symmetric bimatrix 

representation (again using Theorem 6). Hence        is the only       such that    

is a standard symmetric bimatrix representation.  Thus there exists a unique       such 

that    is a standard symmetric bimatrix representation. 

 

Case 1-3: The outcomes         and    are in the following arrangement: 

 

. 

 

Then         is a standard symmetric bimatrix representation and         is the only 

      such that    is a standard symmetric bimatrix representation.  Hence there exists 

a unique       such that    is a standard symmetric bimatrix representation. 

 

Case 1-4: The outcomes         and    are in the following arrangement: 

 

. 

 

Then               is a standard symmetric bimatrix representation and               

is the only       such that    is a standard symmetric bimatrix representation.  Hence 

there exists a unique       such that    is a standard symmetric bimatrix 

representation. 

 

Case 1-5: The outcomes         and    are in the following arrangement: 

 

. 
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Then               is a standard symmetric bimatrix representation and               

is the only       such that    is a standard symmetric bimatrix representation.  Hence 

there exists a unique       such that    is a standard symmetric bimatrix 

representation. 

 

Case 1-6: The outcomes         and    are in the following arrangement: 

 

. 

 

Then         is a standard symmetric bimatrix representation and         is the only 

      such that    is a standard symmetric bimatrix representation.  Hence there exists 

a unique       such that    is a standard symmetric bimatrix representation. 

Therefore if the central outcomes of   occupy the the following shaded outcomes: 

 

, 

 

then there exists a unique       such that    is a standard symmetric bimatrix representation. 

 

Cases 2 through 6:  For each of the five remaining cases: 

 

,  , , , and , 

 

the proof that there exists a unique       such that    is a standard symmetric bimatrix 

representation follows the same procedure as for Case 1, and is omitted for brevity.  Therefore if 

    is a symmetric bimatrix representation then there exists a unique       such that    is a 

standard symmetric bimatrix representation.   

5 Symmetric and Asymmetric Orbits 

In this section it is shown that if two bimatrix representations are equivalent, then either both of 

them are symmetric, or both of them are asymmetric.  This shows that for each orbit of   under 
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the action of     either all of the elements in the orbit are symmetric bimatrix representations, or 

all of the elements in the orbit are asymmetric bimatrix representations. 

 

Lemma 2:   For all             there exists        such that      . 

Proof:  Let          .  (It must be shown that there exists        such that      ).  Let 

     .  Then               It need only be shown that       .  By Lemma 1, 
   

   
⁄      ⁄ .  Therefore  

   
   

⁄  has precisely two elements, namely     and     .  Since 

         ,      .  In other words,         .  Therefore: 

(1)               

Also, since      , it follows that: 

(2)               .   

From (1) and (2) follows: 

                                          

By transitivity,          .  Therefore        as desired.   

 

Theorem 8:  If         ,    is a symmetric bimatrix representation, and       then    is a 

symmetric bimatrix representation. 

Proof:  Let          with     a symmetric bimatrix representation.  Suppose      .  Then 

there exists              .  Either      , or          . 

 

Case 1:  Suppose      .  Let    be the subgroup of     that is generated by    ,    , and 

   .  If       then    a finite sequence of row interchanges.  Similarly, let    be the 

subgroup of     that is generated by    ,    , and    .   If       then    is a finite sequence 

of column interchanges.  Thus there are four sub-cases to consider: 

1)     

2)      with    .  That is,   is a non-trivial row interchange. 

3) 3)      with    .  That is,   is a non-trivial column interchange. 

4)              .  That is,   performs a non-trivial row interchange and a non-trivial 

column interchange. 

For each case, show that    is a symmetric bimatrix representation. 

 

Case 1-1:  Suppose    .  Then              .  Since       and    is a 

symmetric bimatrix representation, it follows that    is a symmetric bimatrix 

representation. 

 

Case 1-2:  Suppose      with    .  Let                     .  Let    
                     .  Let                    be the permutation of rows 

performed by   such that: 

(1)      
 (        )    (    ).   

Rewrite (1) as follows: 

(2)       
 (    )    (   

       ). 
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Since    is a symmetric bimatrix representation, there exists        such that for all 

     and for all                 
           .  Therefore: 

(3)                 
           . 

 

Suppose         .  Then           .  In order to show that    is a symmetric 

bimatrix representation it must be shown that there exists        such that for all 

     and for all                                .  Let        be defined as 

follows: 

(4)       (      )   (  )    .   

 

It must be shown that for all      and for all                                .  By 

(4), note that              
( (  ))      

(  (      ))        .  Hence: 

(5)                    . 

Also note that by (4): 

(6)       (  )   (   
     ). 

Pick any      and any     . 

By (2),    
           (   

        ). 

By (3),   (   
        )    (         (   

     )). 

Let             for some     .  Then 

  (         (   
     ))    (    (   

     )). 

By (1),   (    (   
     ))    

 (        (   
     )). 

By (5),   
 (        (   

     ))    
 (          (   

     )). 

By (6),   
 (          (   

     ))    
 (               ). 

Finally, by transitivity,   
           

 (               ).  Thus, there exists      

  such that for all      and all                                .  By definition,    

is a symmetric bimatrix representation. 

 

Case 1-3:  Suppose      with    .  The argument follows the same procedure as 

Case 1-2, but let the permutation operate on the columns instead of the rows.  Conclude 

that    is a symmetric bimatrix representation. 

 

Case 1-4:  Suppose               with    .  Note that        for some       

and       with         (otherwise either      or     .    ).  Since 

      , by substitution,          .  Note that        .  Since       with 

    , and    is a symmetric bimatrix representation, Case 1-2 applies.  Therefore      

is a symmetric bimatrix representation.  Now note that                .  Since      

with     , and since        is a symmetric bimatrix representation, Case 1-3 applies.   
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Therefore          is a symmetric bimatrix representation.  Finally, since           ,  

   is a symmetric bimatrix representation. 

 

Case 2:  Suppose          .  This case reduces to case to Case 1 as follows.  Since    is a 

symmetric bimatrix representation, Theorem 7 says there exists a unique        such that      

is a standard symmetric bimatrix representation.  Since       , it follows that          .  

Operating on the right by   : 

(1)               

Since           and 
   

   
⁄      ⁄  , it follows that            .  Since     

          Lemma 2 guarantees there exists        such that        .  Substituting     for 

    into equation (1): 

(2)                   

Since      is a standard symmetric bimatrix representation it follows that           is a 

standard symmetric bimatrix representation.  Then by Theorem 4: 

(3)                                         

(4) By (2), (3), and transitivity,            . 

(5) By (4) and cancellation,        . 

(6)  By (5),          . 

Since        and     is a group: 

(7)           . 

By (6) and (7), Case 1 applies. Thus    is a symmetric bimatrix representation.  

 

Theorem 8 establishes that for each orbit of   either all of the elements in the orbit are 

symmetric bimatrix representations, or all of the elements in the orbit are asymmetric bimatrix 

representations.  If all of the elements in the orbit of   under the action of     are symmetric 

bimatrix representations, then we refer to the orbit of   as a symmetric orbit.  If all of the 

elements in the orbit of   under the action of     are asymmetric bimatrix representations, then 

we refer to the orbit of   as an asymmetric orbit. 

6 The Order of a Symmetric Orbit 

Now we will show that every symmetric orbit contains precisely one standard symmetric 

bimatrix representation.  Then we will show that the order of the orbit of any standard symmetric 

bimatrix representation is precisely 36.  We will thus conclude that each symmetric orbit 

contains exactly 36 elements. 

 

Theorem 9:  If      is a symmetric bimatrix representation then   is equivalent to precisely 

one standard symmetric bimatrix representation. 

Proof:  Let     be a symmetric bimatrix representation.  Then by Theorem 7 there exists a 

unique       such that    is a standard symmetric bimatrix representation.  By the definition 

of ~,      .  Since    is a standard symmetric bimatrix representation,   is equivalent to a 
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standard symmetric bimatrix representation.  To show the uniqueness of   , suppose that there 

exists        such that     is a standard symmetric bimatrix representation.  It must be shown 

that       .  Either        or           . 

 

Case 1: Suppose       .  Then since Theorem 7 guarantees uniqueness of  ,     , and thus 

      . 

 

Case 2: Suppose           .  By Theorem 3,  there exists        such that       .  

Since,     is a standard symmetric bimatrix representation,      is a standard symmetric 

bimatrix representation.  Since ,      is a standard symmetric bimatrix representation, Theorem 

4 tells us that         .   Hence     is a standard symmetric bimatrix representation.  As 

      , and     is a standard symmetric bimatrix representation, Theorem 7 asserts that 

    .  Thus       .  Finally, since                , it follows that       , as 

desired.  Thus if     is a symmetric bimatrix representation, then   is equivalent to exactly 

one standard symmetric bimatrix representation.   

 

This theorem establishes that every symmetric bimatrix representation has a unique 

standard symmetric bimatrix representation in its orbit.  It also follows that the number of 

symmetric orbits is precisely the number of standard symmetric bimatrix representations.  This 

fact is used in section 8 to determine the number of symmetric orbits.  At present, though, we 

simply note that each symmetric orbit is can be thought of as the orbit of some unique standard 

symmetric representation. The following theorem gives a lower bound on the order of the orbit 

of a symmetric bimatrix representation. 

 

Theorem 10:  If     is a symmetric bimatrix representation and           then     
            . 

Proof:  Let     be a symmetric bimatrix representation and let          .  By Theorem 7, 

there exists a unique        such that     is a standard symmetric bimatrix representation. 

(1)  Suppose        . 

It must be shown that       .  Beginning with (1), operate on the right by       : 

(2)  (   
     )  (   

     ) . 

(3)  Note that     (   
     ) . 

Since   is a symmetric bimatrix representation, and by noting (2) and (3), Theorem 8 tells us: 

(4)  (   
     )   is a symmetric bimatrix representation. 

By (2) and (4): 

(5)  (   
     )   is also a symmetric bimatrix representation. 

(6)  By Theorem 7,  there exists a unique        such that (     
     )   is a standard 

symmetric bimatrix representation. 

(7)  By (2) and (6), (     
     )  is a standard symmetric bimatrix representation. 

Since (     
     ) , (     

     ) , and       are all standard symmetric bimatrix 

representations, Theorem 9 tells us that all three of these standard symmetric bimatrix 

representations must be the same bimatrix representation.  Thus: 
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(8)       
            

          . 

Rewrite (8) with parenthesis as follows: 

(9)       
              

               . 

Since       is a standard symmetric bimatrix representation, Theorem 5 asserts that: 

(10)       
       or       

       and 

(11)       
       or       

     . 

Well   ,   , and     
 are all elements of    .  Hence      

       .  But          , so  

(12)       
     . 

By (10) and (12),       
     . 

(13)  A similar argument shows that      
     .   

By (12), (13), and transitivity,      
         

   
 .  By cancelation,       .   

 

Theorem 11:  If     is a symmetric bimatrix representation then the orbit of   has order    . 

Proof:  The proof follows immediately from Theorem 10.   

 

A lower bound on the order of each symmetric orbit has been established.  Theorems 12 

through 14 establish an upper bound for the order of each symmetric orbit. 

 

Theorem 12:  If     is a symmetric bimatrix representation and               then 

                . 

Proof:  Let     be a symmetric bimatrix representation and              . 

(1)  Suppose        . 

(2)  By Lemma 2, there exists   
    

      such that       
  and       

 . 

Substituting these in (1) gives: 

(3)      
      

  . 

Operating on the left by    : 

(4)     
     

  . 

By (4) and Theorem 10,   
    

 .  Operating on the left by  : 

(5)     
     

 . 

By substituting (2) into (5),       .   

 

Theorem 13:  If     is a symmetric bimatrix representation then for all          there exists 

a unique            such that        . 

Proof:  Let     be a symmetric bimatrix representation and let       .  Let          .    

is a symmetric bimatrix representation, so by Theorem 7 there exists a unique        such 

that     is a standard symmetric bimatrix representation.  Since     is a standard symmetric 

bimatrix representation, Theorem 4 tells us that         .  Operating on the right by   : 

(1)              . 

Then acting on the left by     : 

(2)  (                 
          . 

Since     ,   , and    are all elements of     while only   is an element of        , it follows 

that: 
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(3)  (                  . 

Conclude: 

(4)  (                   such that          
       . 

To show uniqueness: 

(5)  Let             such that        . 

It must be shown that             . 

(6)  By (2) and (5),                    . 

By (3), (5), and Theorem 12 we have             .   

 

Theorem 14 (Corollary):  If     is a symmetric bimatrix representation then the orbit of   

has order    . 

Proof:  The proof follows immediately from Theorem 13.   

 

Theorem 15 (Corollary):  If     is a symmetric bimatrix representation then the orbit of   

has order   . 

Proof:  The proof follows immediately from Theorems 11 and 14.   

7 The Order of an Asymmetric Orbit 

In this section we show that every asymmetric orbit contains precisely 72 elements.  We 

accomplish by showing that the only element of      that sends an asymmetric representation to 

itself is the identity element.   

 

Theorem 16:  If     and       then              or   is symmetric). 

Proof:  Let             where          .  Let      .  Let            , where 

            .  Suppose     .  Either       or          . 

Case 1:  Suppose      .  The bimatrix representations   and    are shown below: 

 
   
                     

    
                                      

                     

                     

                                      

                                      

 

 
    
                       

    
                                          

                       

                       

                                          

                                          

 

 

Since     , compare the matrices component wise and see that for all 

              (     )     (     ).  Remember, all of the   (     )’s are distinct elements of 

       , and   only acts on   by some combination of row and column interchanges (never 

player interchanges because      ). This means the row and column interchanges must have 
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been the trivial ones.  That is, when   acts on   is doesn’t interchange any rows or columns.  If it 

did, then for some              we’d have   (     )     (     ), which is not the case since 

    .  Hence    . 

 

Case 2:  Suppose          .  Since          , and      ,     .  Since          , 

Lemma 2 asserts that there exists        such that      .  By supposition     . 

(1)  It follows that           

In order to show that   satisfies the definition of a symmetric bimatrix representation, 

construct a bijection,     , such that for all      and for all 

                
           .  Define       in terms of two other functions,     and 

  , which are define as follows.  Let     and     be the permutations on the set {1,2,3} given in 

the definition of the map    . 

Let              be defined by         {
                

                
 

Note that        is onto  , and        is onto T. 

Also note that    
       {

   
               

   
               

 

Let            be defined by        {
            
            

  

Note that       is onto  , and       is onto S.  Also note that    
     .  Finally, let 

      be defined by                 .  Note that            
         . 

Now that       is defined, it remains to be shown that for all      and for all 

                
           .  Let      and     .  By definition of ,  

  ( 
           )    (   

                (  ))    (   
          (      )) 

   (   
            ). 

(2)  In particular,   ( 
           )    (   

            ).   

Now let’s look at the bimatrix representations  ,    , and     : 

 
   
                     

    
                                      

                     

                     

                                      

                                      

 

 
     
    (   

         
     )       

         
      

    
  (   

         
     )       

         
        (   

         
     )       

         
      

    (   
         

     )       
         

      

    (   
         

     )       
         

      

  (   
         

     )       
         

        (   
         

     )       
         

      

  (   
         

     )       
         

        (   
         

     )       
         

      

 

 
      
    (   

         
     )       

         
      

    
  (   

         
     )       

         
        (   

         
     )       

         
      

    (   
         

     )       
         

      

    (   
         

     )       
         

      

  (   
         

     )       
         

        (   
         

     )       
         

      

  (   
         

     )       
         

        (   
         

     )       
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By (1),           .  By definition this means that the corresponding components of  ,   , 

and      are equal.  Equating the corresponding components of  ,   , and       we observe 

that: 

(3)    (     )    (   
         

     ). 

By (2), (3), and transitivity,   (     )    ( 
           ) as desired.  Hence        is a 

bijection such that for all      and for all                 
           .  By definition   

is a symmetric bimatrix representation.   

 

Theorem 17:  If     is an asymmetric bimatrix representation and       then      
    . 

Proof:  Let     be an asymmetric bimatrix representation and      .  Suppose     .  

Since   is not a symmetric bimatrix representation, Theorem 16 asserts that    .   

 

Theorem 18 (Corollary):  If     is an asymmetric bimatrix representation, then the orbit of   

has order   . 

Proof:  The proof is immediate from Theorem 17.   

8 The Number of 3-Strategy Rapoportian Games 

The goal of this section is to count number orbits of   under the action of    .  We first establish 

a formula for the number of orbits of   under the action of     in terms of the number of 

symmetric and asymmetric orbits.  Next, the symmetric orbits of   are counted, and finally, we 

count the orbits of   (and thus the number of 3-strategy Rapoportian games). 

 

Theorem 19:   If     and     are the number of asymmetric orbits and symmetric orbits 

respectively, then                  . 

Proof: The proof follows immediately from Theorems 15 and 18, and noting that | |     .   

 

Theorem 20:  The number,    , of symmetric orbits is        . 

Proof:  Let      be the number of mutually distinct symmetric bimatrix representations.  By 

Theorem 9, each symmetric orbit of   contains exactly one standard symmetric bimatrix 

representation.  Hence      equals the number of standard symmetric bimatrix representations.  

We set out to count the number of standard symmetric bimatrix representations. 

All standard symmetric bimatrix representations, by definition, have central outcomes 

         such that                   where for all                     .  Remember that 

         .  As shown in the proof of Theorem 4, if   is a standard symmetric bimatrix 

representation then it can be expressed using only the utility function    as follows: 
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Note that there are only 9 values in this expression.  Three of the 9 values are the central 

outcomes:                ,                , and                .  The remaining six 

are:          ,          ,          ,           ,          , and          . 

First note that the number of ways values may be assigned to      ,      , and       

from the the set         is ( 
 
)    .  This is because any choice of three integers from         

can be assigned to      ,      , and       in exactly one way due to the requirement that 

                 .  The remaining  values can be assigned in any of        ways.  

Hence the number of standard symmetric bimatrix representations is   ( 
 
)         

          .   

 

Theorem 21:  The number orbits of   under the action of     is 1,828,945,440. 

Proof:  By Theorem 19,                  .  By Theorem 20,           .  By 

substitution,                     .  Solving for    , observe that                  .  

Hence the number orbits of   under the action of    is:                              
             .   

 

We thus conclude, in a very precise sense, that the number of 2-player, 3-strategy, strictly 

ordinal, normal form games is              . 

9 Final Thoughts 

Now that the 3-strategy Rapoportian games have been counted, the next step is to enumerate 

them (that is, to list them) using a computer.  This can be done by selecting one bimatrix 

representation from each of the orbits of   under the action of    , and constructing a game that 

is represented by it.  In the case of symmetric orbits this is very straightforward – simply choose 

the unique standard symmetric bimatrix representation from each symmetric orbit.  Since we 

counted the standard symmetric bimatrix representations directly, we can generate them 

efficiently with a computer using a method similar to the method we used to count them.  Once 

the games have been enumerated we can use a computer to classify them based on their strategic 

properties.  The full taxonomy can then be published online in a searchable format. 
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