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A review of selected works on crack
1dentification.

Kurt Bryan *and Michael S. Vogelius
October 16, 2002

Abstract

We give a short survey of some of the results obtained within the
last 10 years or so concerning crack identification using impedance
imaging techniques. We touch upon uniqueness results, continuous
dependence results, and computational algorithms.

1 The Forward Problem

Consider first the two-dimensional forward problem, which has certain spe-
cial features not found in higher dimensions. Let Q be a bounded, simply
connected domain in IR? with smooth boundary and v : Q2 — IR a bounded
function with infoy > 6 > 0; for the moment we assume that v is real-
analytic, although this restriction will later be relaxed. The domain (2 rep-
resents the object in which we wish to detect cracks and v 1s the reference
or background conductivity, considered known a priori.

Unless otherwise noted, we define a crack in © as a curve o contained in
which can be parameterized by a twice continuously differentiable map from
[0,1] — Q with non-vanishing derivative; we also require that o does not self-
intersect, although this condition will later be relaxed. We use 3 = Up—{ox}
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to denote a collection of n cracks. We assume that the cracks are pairwise
disjoint. Note that ¥ may be empty.

Let ¢ denote an applied electrical potential on 9€). If we assume that the
collection of cracks ¥ is perfectly insulating (completely blocking the flow of
electrical current) then the electrical potential v inside  satisfies

V-(yVv) = 0 in Q\ X, (1)
ov
75; = 0 on X
v = ¢ on 0

where v is a unit normal vector field on ¥, consistently oriented on each crack
(e.g., if a crack o is parameterized by ¢ : [0,1] — R?, then take vice(t)) =
(¢'(t))*/|c'(t)] where L denotes a counter-clockwise rotation through an angle
7/2.) The inverse problem of interest is to determine 3 from one or more
pairs of boundary-voltage and current data, (¢, 7—3—5).

The boundary value problem (1) with insulating cracks is equivalent to a
problem involving perfectly conducting cracks, and this framework is slightly
preferable for the analysis that follows. By a perfectly conducting crack we
mean a crack which maintains constant electrical potential along its length.
The boundary value problem (1) can be transformed into an equivalent prob-
lem for perfectly conducting cracks by considering the “y-harmonic conju-
gate” of v. Specifically, let u be a function related to v by (Vu)t = yVo.
It is not difficult to verify the existence of u, given that v satisfies (1) with
73—5 =0 on X. The function u is determined only up to an additive constant.

If v is a solution to (1) then the function u satisfies the boundary value
problem

V-(v7'Vu) = 0 in Q\ZI, (2)
U = ¢ on og
Ju
o et —
EY Y on Of)

where ¢ = %‘f, v is an outward unit normal vector field on 99, and s = (v)+.
The constants ¢, are determined by

% Qv
ck———/p yézds—ku(p)
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where v = —s1, pis a fixed point on o9 (or in Q) and the integration is
carried out along any path connecting p to a point in oy.

Note that knowledge of pairs (¢, ”Yg%lasz) for the perfectly insulating prob-
lem is entirely equivalent to knowledge of pairs (w]og, ) for the perfectly
conducting problem.

The boundary value problem (2) can also be cast in an energy minimiza-
tion form, specifically, u is the minimizer of

1 .
Qw) = 5/97_1]Vw|2 afz~/aQ Ywds  over (3)

K = H'(Q) N {w = constant on each oy} .

"This minimizer, as well as the solution to (2), is uniquely determined modulo
an additive constant.

Note that the constant values assumed by u on the cracks are determined
as part of the minimization process. We also notice that:

Remark 1.1 Let T' be a simple closed curve in Q\ ©. Then

ou v
/Fy“l—a—y—ds: P—a-—;dS:O. (4)
In particular, we may select I so that it encloses a single crack. Therefore, for
the energy minimizing solutions no crack acts as a source or sink of current.
This criterion also serves to uniquely characterize the constants {ex}iy See
[26] for a more detailed discussion.

However, one could also consider the non-physical boundary value and
inverse problem obtained by allowing the constants ¢ in (1) to assume ar-
bitrary specified values (which don’t necessarily minimize the above energy.)
In this case individual cracks will act as net sources or sinks for current. This
has important implications for the inverse problem.

In three or more dimensions the forward problem is again governed by
equation (1) in the case of perfectly insulating cracks, or equation (2) for
conducting cracks. A crack in a three-dimensional conductor is defined to
be a suitably smooth (e.g., C?) surface which does not self-intersect. The
main difference between the two and higher dimensional cases is that in the
latter there is no duality between the perfectly conducting and the perfectly
insulating problems.



2 The Inverse Problem

2.1 Uniqueness Results in The Two Dimensional Case

The first uniqueness result concerning the determination of cracks inside a
conductor was proved in [35]. It was demonstrated that with the Dirichlet
data corresponding to two input current fluxes of a specified form one could
uniquely determine the precise shape and location of a single conductive crack
inside a conductor with real-analytic background conductivity; an analogous
result was also proved for insulating cracks. In [35] it was also shown that in
general two sets of measurements are required to determine a single crack.
These results were generalized in [25] to show that n + 1 input fluxes of a
specified form and the resulting Dirichlet data uniquely determine a collection
of n conductive cracks. Although the authors remarked that this result holds
in the case in which the crack constants are arbitrarily specified, the proof
in fact requires that the constants assumed by the potential on the cracks
be the “energy-minimizing” constants in the variational form of the problem

The results of [25] were improved, simultaneously and independently, in
(9] and [36]. In [36] it is shown that with real-analytic background conductiv-
ity one can determine a collection of any number of conducting cracks using
only two inputs fluxes of a specified form and the corresponding Dirichlet
data. The same result is proven in [9] with much weaker assumptions about
the background conductivity v and the smoothness of the cracks. The au-
thors also provide analogous results for insulating cracks.

In all of the identifiability proofs an essential ingredient is the fact that the
potential functions in 2\ ¥ which are induced by appropriate input current
fluxes do not have “too many” (or any) critical points in \ £. The verifi-
cation of this fact typically involves a detailed analysis of the equipotential
curves of the potential function.

To illustrate the central ideas in the above papers we will, for simplicity,
consider the perfectly conducting case with v = 1, so that the function
u in (2) is harmonic in § \ ©. We will consider input fluxes of the form
Y; = 0p, ~ dp,, for i = 1,2, where Py, P;, and P, are distinct points on 02,
and where p, denotes a delta function on 99 at P, (physically a “point”
input source of current at P;.) Note that for this type of input flux the
solution to (2) will not be an H'(2) function, and so not obtained as the



minimizer of (3). We rather interpret the solution u as a weak solution to (2),
smooth except at the delta function current input, where u has a singularity
of the form +=1In|r|/7, where r denotes distance to the input current point.
It is also worth noting here that the solution u is continuous in € but will
typically have r'/? type singularities at the ends of the cracks (see [35].)

We then have the following uniqueness result.

Theorem 2.1 Let ¥ and % be two collections of cracks in Q. Let uy, u,
(resp., iy, Uz) be the functions which satisfy the boundary value problem (2)
with v =1 on Q\ T (resp., Q\ $) with input fluzes oy, 4o, Let T be any
open portion of 0. If uy = 4y and uy =Gy on I then £ = 3.

One of the main tools we need is a detailed analysis of the equipotential
curves of the function v and how such curves can be extended. This is the
focus of the following two lemmas.

In [35] the authors prove

Lemma 2.1 Let u satisfy Au =0 in Q\ S with u constant on each crack
ok. Let p be a nonempty analytic curve in Q with pNE =0 along which u is
constant. Then there exists an analytic (open) curve p' with p C p' such that

e u 15 constant on p,
e one endpoint of p’ lies on O or on o; for some j,
e the other endpoint of p' lies on OQ or on oy for some k, k # 7.

The proof of Lemma 2.1 is similar to that of the next lemma, proved in [25].
Neither proof requires that the constants ¢; assumed by u on the cracks be
the energy minimizing constants.

Lemma 2.2 Let u satisfy Au = 0 in Q\ T with u constant on each crack
ok Let p be a nonempty analytic curve in Q with pN'T = () along which u is
constant. Let z* be some point in p at which Vu(z*) = 0. Then there exists
an analytic curve p' which has z* as an interior point such that

o p'Np=a,

e u 15 constant on p'.



Sketch of Proof: We can expand u in a Taylor series in r in polar coordi-
nates near z* to obtain w(z) = u(z*) + r¥(asin(N@) + bcos(NO) + r A(r, 0))
for N > 2, (r,0) € [0,¢) x [0,27], and A bounded. Note also that since
Vu(z*) = 0, we have 2£(0,0) = 0. Now we may assume via a rotational
change of coordinates that p is tangential to the (half) line § = 0, so that
b=0and a#0,ie, u(r)=uz*) +r¥(asin(Ng) + rA(r,0)). Since u(r, )
1s analytic in r near r = 0 and %;‘(0,9) = 0, v has an analytic extension
to r € [—¢, €], and hence the function A(r,0) also has an extension in 7 to
[—¢, €], We then have

u(x) = u(z*) + rV(asin(NG) + rA(r, 0))

for (r,0) € [—¢, €] x [0,27] with N > 2. The function F(r,6) = asin(N6) +
rA(r,0) satisfies F(0,7/N) = 0 and £F(0,7/N) = —aN, and so by the
implicit function theorem we can find a unique analytic function #(r) such
that 6(0) = m/N and {(r,8) : F(r,6) = 0} coincides with {r,8(r)} in some
neighborhood of (0,7/N). The curve (rcos(8(r)), rsin(6(r))) + x* satisfies
the requirements in the statement of the Lemma.

The key fact noted in some variation in both [9] and [36] which allows us
to prove a two-measurement uniqueness result is this:

Lemma 2.3 Let u satisfy the boundary value problem (2) with v = 1. Let
o € ¥ and let p be a curve on which u is constant. Suppose that pNo = z*
with x* an endpoint for p. Then p “can be extended”, i.e., there is some
curve p/, with o' N p\ {z*} = @, such that

o ¢ No =y* for some point y* € o,
e u s constant on p'.

Sketch of Proof: (following the idea in [9]). We may assume that u = 0 on
o. Let C be a simple C? closed curve which encloses ¢ but no other crack.
We can find a conformal change of coordinates in which ¢ is mapped to
0B1(0) and C' is mapped to dBg(0) for R > 1. We will still use u to denote
the potential function in the new coordinates. Then w is still harmonic and
we have u = 0 on dB,(0); moreover, u is smooth up to dB;(0) and we can
continue v as a harmonic function into the annulus B, (0)\ B;/g(0) by defining



u(z) = —u(z7"). From Remark 1.1 we can see that

Ju
s = ( 5
/C’ on ds=0 (5)

for any closed curve C' contained in the annular region Br(0)\ Bi/r(0), and
in particular for C" = dB,(0). In the new coordinates p intersects 0B, (0)
at some point and at this point we must have g—:—: = 0. From equation (5)
we conclude that g% (which is continuous on dB,(0)) must vanish at some
other point y on B, (0), corresponding to some point y* € o. We then have
Vu(y) = 0, and using the same reasoning as in the proof of Lemma 2.2 we
can construct a level curve p' C Bg(0) \ B, (0) for u with o' N 9B, (0) = y.
The “pullback” of this curve to the original coordinates yields a curve with
the properties stated in this Lemma. Note that the “extension” of p may
emanate from a point other than z*; it may also emanate from z*, but in
that case it will extend p to the other side of o.

Two additional facts that we need are

Lemma 2.4 Let u satisfy the boundary value problem (2) with v = 1. Let
C be any simple closed curve in Q and suppose u 15 constant on C. Then u
15 constant on ).

Sketch of Proof: Let D denote the region enclosed by C' and suppose that
u = con C. Define a function 7 as

. c, eD
(=) ﬁ{ u(x), iEQ\D.

It’s easy to verify that & € H'(Q) and that @ is constant on each o € ¥
However if u is nonconstant on D then we have Q) < Q(u), a contra-
diction (strictly speaking this energy argument should be performed locally,
since with the input currents v;, the solution v is not in H'Y(Q)). We con-
clude that w = ¢ in D, and by unique continuation and the fact that Q\ ¥
is connected we must have u = ¢ in .

Remark 2.1 Note that the proof of Lemma 2.3 fails if the values assumed by
u on the cracks are specified, rather than the energy minimizing constants, for
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then equation (5) may not hold. Also in this case the conclusion of Lemma
2.4 1s plainly false: We could, for example, have u = 0 on the curve C
but w = 1 on some crack o C D. In this case the function @, constructed
in the above proof, is not in the class of functions over which the relevant
“minimization” takes place, and we cannot conclude that u is constant on D.

Lemma 2.5 Let u satisfy the boundary value problem (2) with v = 1 and
fluz o = 32 BiSp, where not all B; = 0 (but note 2 o B =0). Then u has
no critical points (Vu=10) in Q\ ¥.

Proof of Lemma 2.5: We prove this by contradiction. Suppose that
Vu(z*) = 0 for some z* € ©\ £. Expanding u into a Taylor series in
r and using the reasoning of Lemma 2.2 we can find transversal analytic
curves p and p’ such that z* is an interior point for both curves (in particular
pNp =z,

From Lemma 2.1 we can extend both ends of p and p’ until they either
terminate on J€2 or on some crack o. Let us suppose, for example, that one
end of p can be extended as a level curve to some crack Ok, ; let us still refer
to the extended curve as p. By Lemma 2.3 we know that p can be extended
again as a level curve, either terminating on 9 or on some crack Ok,. If the
latter occurs, this process can be repeated. It’s clear that p must eventually
terminate on dS2, for p cannot intersect the same crack twice or else we find
some closed curve C' on which u is constant and so by Lemma 2.4 u would
be constant in €2, a contradiction.

We conclude that both ends of p and p’ can be extended as level curves for
u to 0€. Let the points at which these level curves intersect 9Q be denoted
by x1, 29,23, and z4. Note that these points must be distinct or else some
subdomain D would be enclosed with 9D consisting entirely of pieces of p and
¢, and so Lemma 2.4 shows that u would be constant on (2, a contradiction.
Also, none of the z; can coincide with a point P, i = 0,1,2, corresponding
to which 8; # 0, since u has a logarithmic singularity at such a point. For
simplicity let us suppose all 8; are nonzero.

The set 0Q\ (z, Uz, UzsUzy) contains four connected components. Now
one of these components, call it S, does not contain any of Py, Py, or Py, and
hence Ou/On = 0 on S. It is thus clear that S, together with some portion of
p and p', enclose a region D on whose boundary u is either constant or has
zero Neumann data. An argument similar to that in Lemma 2.4 (and again



requiring that the constants on the cracks be chosen to “minimize” energy)
shows that u must be constant in D, and hence in €, a contradiction.

Proof of Theorem 2.1: We first prove that if u; = @; on I’ thcn uL = u;
in 2. Let O be the (possibly empty) open region enclosed by ¥ U Y, those
points in 2\ (¥ U E) from which it is possible to reach 9§ only by crossing
Y or % Clearly 2\ (OU 2 U Z) has only one connected component. Since
u; and 4; have the same Cauchy data on I' it follows by unique continuation
that u; = 4; in Q\ (OULU %). If O is non-empty then O consists of pieces

of ¥ and ¥. On each piece of 0O, u; or i, is constant, and so u; (i;) assumes
finitely many values on 90; indeed u; (@;) assumes at most |Z| + || values,
where |Z| denotes the number of cracks in ¥. Since u; (%;) is continuous
it now follows that it constant on each connected component of 90, and so
by the maximum principle it is constant on each connected component of O
itself. It follows that u, (@;) is constant in Q, a contradiction. We conclude
that O is empty. If O is empty we have u; = 4; on Q\ (U i) It follows by
continuity that u; = 4; in all of Q.

If we assume that ¥ # ¥ then we can, for example, find some curve p
contained in 3 with pNE = . Since u; = @, and uy = iy in  the functions u,
and up must be constant on p (remember, @, and 1, are by definition constant
on p). Let 2* be a point in the interior of p and n a consistently oriented unit
normal vector field on p. Note that $2(z*) # 0, for if not then we would
have Vuy(2z*) = 0 (since p is a level curve for uy) a contradiction to Lemma

5. Now let u = u; — auy where o = 24(z *)/ %2 (z*). Note that u satisfies
the boundary value problem (2) with a flux of the form ¢ = Y2 | Bi6p, with
not all §; zero. We find that 2%(z*) = 0, so that Vu(z*) = 0, a contradiction
to Lemma 2.5. Thus we conclude that & = 3.

The precise formulation of the result proved by Kim and Seo in [36] is

Theorem 2.2 Let 1,v, be two nonvanishing piecewise continuous func-
tions on 0L with [3q1; ds = 0 and with the property that for each real o the
set {z € 00 : P1(2) — anhy(2) > 0} is connected and 1y is not identically
equal to arby. Suppose that T and T are collections of C? cracks in §, and
suppose vy is real-analytic. Let u;, © = 1,2, be the solution to the boundary
value problem (2) with fluz v = v; and let @; be the corresponding solution
with ¥ replaced by ©. Then u; = fori=1,2 on 8Q implies that & = 3.

Kim and Seo give an example of a suitable choice for v, and 1),. In fact,
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one can give a rather general class of suitable input fluxes. Let Sy, Sy, and Sy
be a decomposition of 9§2 into three disjoint simple arcs. Let ¢;, i = 1, 2,3, be
non-negative functions with g; > 0in S;, ¢; = 0 in 92\ S; and Jongids = 1.
Then one can easily verify that choosing

V=91 —92, Y2=0g1 — g3 (6)

satisfies the conditions in Theorem 2.2.

In [9] Alessandrini and Diaz Valenzuela prove a theorem very similar to
Theorem 2.2 but under more general conditions. Specifically, the conductiv-
ity v may be anisotropic and only L*, i.e., represented by the 2 by 2 matrix
7, with bounded measurable entries and £7y(x)€ > X|¢]? for almost all z € Q
and ¢ € R®. The input fluxes are chosen almost as in equation (6), except
for the fact that it is only required that ¢; > 0 in S,. This is important
in the sense that one may now approximate delta functions by taking the
support of the g; to “narrow” to a single point P,. A collection of cracks ¥ is
defined to be a closed set which is a union of finitely many pairwise disjoint
closed continua (a connected set containing at least two points) oy, ..., 0,
such that each of the sets Q\ ¢}, j = 1 to n, is connected. Alessandrini and
Diaz Valenzuela prove

Theorem 2.3 Let I' be a nonempty simple arc on 0Q and % and S two
collections of cracks. Let u;, i = 1,2 be the solution to (2) with input fluzes
Y1, ¢z chosen in accordance to equation (6), and 4, the corresponding so-

lutions with ¥ replacing ¥. Then u; = 41 and uy = Uy on T implies that
T=73.

They also prove an analogous result for perfectly insulating cracks.

To prove Theorem 2.3 the authors use a quasi-conformal map to reduce
the problem of characterizing critical points and the local behavior for solu-
tions to (2) to equivalent problems for harmonic functions. Specifically, if D
is a simply connected domain and u a solution to V- vVu = 0 in D then
one can write u + it = f o & where t is the associated stream function, &
is a quasi-conformal mapping from D to B,(0) ¢ R? and f is an analytic
function. The key idea is that the geometric structure of the level lines for u
will be the same as that of the harmonic function Re(f). The authors define
critical points for u as those points z for which VRe(f)(£(2)) = 0 and show
that the function u which satisfies (2) with the given input fluxes can have

10



no critical points in 2\ ¥ (a specific example of an analysis characterizing
the number of interior critical points for solutions to elliptic boundary value
problems in terms of the number of sign changes in the boundary data. See
(6] and [7].) The proof that ¥ = 3 if u; = u; for 4 = 1,2 is then similar to
that for Theorem 2.1.

2.2 Stability in the Two Dimensional Case

Of theoretical and practical interest is the issue of how stably one can de-
termine the shape and location of cracks inside a conducting body by using
boundary data, since real data is invariably noisy.

In [8] the authors prove a stability estimate for the identification of a
single insulating crack inside a two-dimensional conductive region Q, which
we now outline. A few technical definitions are required before stating the
result.

Given a curve ¢ C IR?, a point 2 € ¢, and r > 0 we will say that cNB,(z2)is
a Lipschitz graph with norm M if there is some cartesian coordinate system
in which ¢ N B,(z) can be represented as {(z,0(2)); =r < z < r} where
9" |Loo(—ry < M. Given a curve ¢ with an endpoint z and r > 0 we will say
that ¢cNB,(z) is a half Lipschitz graph with norm M if there is some cartesian
coordinate system in which ¢ N B,(z) can be represented as {(z, ¢(z));0 <
z <r} where ||¢/||po(_,m < M.

The stability result requires that for some positive constants L, M, and
¢ the domain Q and crack o satisfy the following conditions:

e length(0Q) < L;

e For each 2z € 90, 9O N Bj(z) is a Lipschitz graph of norm M ;
e length(o) < L;

e dist(c, 9Q) > 6.

e The crack o is a simple curve and if Vi, V3 are the endpoints of ¢ then
0N Bsy3(V;) is a half Lipschitz graph of norm M for i =1,2. Further,
for each z € o\ (Bsj2 (V1) U Bs;,(V2)), o Bs2(2) is a Lipschitz graph
of norm M.

11



Let two input fluxes of the form ¢; = 1y — n;, ¢+ = 1,2, be applied, with
nj = 0on 09, [,on;,ds = 1, and In;llL200) < M for some constant M
and j = 0,1,2. The background conductivity v may be anisotropic, i.e.,
represented by the 2 by 2 matrix v, with bounded measurable entries and
& > NEJ? for almost all z € Q and € € R%. We know from Theorem 2.3
that we can uniquely determine any collection of cracks with these two input
fluxes. We quantify the distance between two cracks o and & using Hausdorff
distance,
dw(o,5) = max{sup dist(z, &), sup dist(z, o) }.

o TET

In [8] Alessandrini and Rondi show

Theorem 2.4 Let u; (resp., 4;) be the potential function on Q0 with insu-
lating crack o (resp., ) for input flux v;, i = 1,2. Suppose I' is a simple
arc on 082 with length(I') > 0. There exists a positive function w defined on
(0,00) such that if

:illéiﬂui ~ Uyl|poo(ry < €

1

then
dy(0,6) < w(e)

The function w satisfies w(e) < K(In|Ine|)™® for 0 < e < 1/e and a, K > 0,
where o, K depend only the constants L, §, and M.

If one is willing to make further a priori assumptions about the nature of
the crack then the stability estimates can be considerably improved. In [4]
the problem of the stability of identifying linear (line segment) cracks which
are perfectly conducting is considered. A priori it is assumed that

e Q is bounded and simply connected in R* with length(9Q) < L for
some constant L.

e There is some constant 6 > 0 such that for all z € 9Q there exists two

circles of radius § which are tangent to 9 at z, one circle contained in
Q, the other in R*\ Q.

cre < M for some M and

e If » = z(s) parameterizes JQ then ||z|
0<a<l

e length(c) > § and dist(o, Q) > 6.

12



The input fluxes are of the form Yi = 19 — 1, 1 = 1,2 where the n; are
non-negative, f,on;ds = 1 and supp(y;) € 90 N B (P;) with h < §/2 and
[y, Py, Py are distinet points on 9§ with [P, — P;] > §. In this case we have

Theorem 2.5 Let u, (resp., ;) be the potential function on Q with conduc-
twe linear crack o (resp., 7 ) for input flux 1)y, i = L2 IfT' is a simple arc
on OS2 with length(I') > § then there cxists constants C' and ho, depending
only on the prior constants L, and M, such that for h < hy

d'}.{(()’, (}) S CZ Hui b dz]

j,:[

L2 (y)-

The requirement h < hy quantifies the condition that the input electrodes
be sufficiently “concentrated.” Moreover, as h — 0 the constant C' remains
bounded, so the theorem is also valid for delta function current inputs.

2.3 Uniqueness Results in the Three Dimensional Case

Some work has been done to establish uniqueness results for two-dimensional
cracks inside a three-dimensional conductive body. In [5] Alessandrini and
DiBenedetto study uniqueness results for a finite collection of such surface
cracks inside a three-dimensional object; they consider both perfectly con-
ducting and perfectly insulating cracks.

Let €2 be a bounded region in R® with QL@ boundary for some o €
(1/2,1). A crack o is a simply connected, Lipschitz, non-self-intersecting
surface lying at a positive distance from 6Q and such that Jo is also Lipschitz.
We use X to denote a finite collection of such disjoint cracks. The background
conductivity of 2 is taken to be identically one.

For the conductive problem the input fluxes are of the form §p — d¢ where
P and @ are distinct points on the boundary of 9. The potential u will be
harmonic in Q\ ¥ with u = ¢;, on crack ok. It is also required that u satisfy

the “zero flux” condition 5
U
| ds =
/O'k [GVJ =0
du

for each crack oy, where [g—’lj] denotes the jump in 3. across o (this condition
determines the constants c;, up to a common additive constant). In this
setting Alessandrini and DiBenedetto prove
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Theorem 2.6 LetI' C 9Q be a set open in the relative topology of OS2 and
a finite collection of perfecily conducting cracks. Let Py, P, and P, be distinct
points on 00 and u; the potential functions on the domain Q \ X with input
fluwes iy = 6p, — 6p, i = 1,2, Let & denote a second finite collection of
perfectly conducting cracks and ; the corresponding potential functions on
Q\S. Then u; =ii; on T for i =1,2 implies that ¥ = ¥..

As noted earlier, unlike the two-dimensional case, in three dimensions
there is no simple duality between the perfectly conducting and perfectly
insulating cases. However, in [5] Alessandrini and DiBenedetto also prove a
uniqueness result for collections of insulating cracks which are planar. We
say that a crack o; is planar if it is an open portion of a two-dimensional
plane, simply connected with Lipschitz boundary.

Theorem 2.7 Let I' C 9 be a set open in the relative topology of 0S2. Let
Py, Py, Qq, Q2 be distinct points on 0 which are not coplanar and let u; be
the potential functions on the domain Q\ ¥ with input fluzes Y = dp, — dg,,
v = 1,2, where ¥ is a finite collection of insulating planar cracks. Let U;
denote the corresponding potential functions on \ % for some other finite
collection of insulating planar cracks. Then u; = i@; on I for v =1,2 implies
that ¥ = 3.

The authors also establish a stability result for conducting cracks; see
section 2.4 below.

In [34] the author gives a relatively simple proof that given a three di-
mensional region {2 containing a single two-dimensional crack o, the full
Dirichlet-to-Neumann operator uniquely determines o for insulating bound-
ary conditions. In fact, the author shows more: let the boundary conditions
on the crack be of the form %+ +bruy = 0, g—ff_ + b_u_ = 0 in which

subscripts + on u and g—;‘ signify the traces on each side of 0. The subscript
+ signifies the trace on the side of ¢ into which the normal v points, and
by <0, b_ > 0 are unknown functions on each side of the crack. The au-
thor shows that the forward problem is well-posed and that knowledge of the
Dirichlet-to-Neumann operator determines not only the crack, but the funec-
tions by and b_ as well. Inclusion of the functions b, and b_ embodies the
case in which one need not have a perfectly conducting or insulating crack,
but possibly some other conduction condition. Taking b, = b_ = 0 models
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a perfectly insulating crack; the limit |b| — oo corresponds to a perfectly
insulating crack.

In [11] the authors give a simple constructive proof that a single planar
two-dimensional crack can be identified, under a certain nondegeneracy con-
dition, by a single input flux and the corresponding voltage measurements.
We note that even for a planar crack a single pair of measurements is not
always sufficient for identification , i.e., the nondegeneracy condition may
exceptionally fail. The ideas in [11] form the basis for a complete recon-
struction algorithm [17], which we describe in the section on reconstruction
algorithms below.

2.4 Stability in the Three Dimensional Case

In [5] the authors also prove a log-log stability result for perfectly conducting
planar cracks in a three-dimensional conductor §2. It is assumed that @ ¢ R3
is bounded and convex with C*? boundary, that o lies in some plane 7, and
that do is C*. Tt is also assumed that for some § > 0,

diam(o) > 6, dist(s,9Q) > 4, dist(P;, P;) > 6, i # j

with input fluxes dp, —dp, 1 = 1,2 as above, and that the resulting potentials
are measured on I' C 92, where I is open in the relative topology of 9. It
is required that I' be sufficiently large, in the sense that there exists yo € T’
such that 9Q N Bs(ye) C T, and that dist({ Py, P, P,},T) > 6. With these
assumptions it 1s shown that

Theorem 2.8 Let u; and 4;, 1 = 1,2 denote the potential in Q0 with perfectly
conducting planar cracks o and &, respectively, with fluzes dp, — 6p.. Then

dy(0,0) < w(max ||u; — @] poo(r))

where dy denotes Hausdorff distance and w is a continuous, non-negative,
non-decreasing function satisfying w(s) < K(In|lns|)~* for s € [0,1/e) and
some constants K, o > 0 (K and « depend on the a priori data |09 2,
‘80’!02, '85’!(;2, and (3)
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3 Reconstruction Algorithms

Much work has been done on the very practical problem of reconstructing the
interior conductivity of an ob Jject from electrostatic boundary measurements,
but as with uniqueness and stability, we should expect that superior results
will be obtained by incorporating a priori information about the expected
features of the object, in this case, cracks.

The first reconstruction algorithm specifically designed for locating cracks
in a two-dimensional conductor was developed by Santosa and Vogelius in
[44]. The algorithm assumes that the crack is linear and perfectly conduct-
ing; the latter assumption is not restrictive, given the duality between the
conducting and insulating problems. As discussed above, in this case we
have a Lipschitz stability estimate for the location of the crack. For this
algorithim a linear crack o is specified by giving the cartesian coordinates
of one endpoint, the angle of the crack with respect to the horizontal axis,
and the length of the crack, a total of four parameters. The algorithm uses
current input fluxes of the form 6p — d¢g, where P and () are distinct points
on the boundary of the region {2; the induced potential is then measured on
9§2. One would expect generically that the position of the crack would be
overdetermined by this data.

The algorithm, however, distills the boundary data down to just four
numbers by integrating the data against specified test functions which depend
on the current estimated position of the crack. Specifically, let u? denote the
solution to Au® = 0 in \ o, with 4% constant on o, %}i = dp — g on 01,
and [;ou”ds = 0. Note that u° has logarithmic singularities at P and Q.
Let us use ug to denote the harmonic function on Q with this same Neumann
data (the response of an “uncracked” domain.) Note that ug is in principle
known (and indeed, if Q is a circle we can write up 1n closed form.) It’s not
hard to see that the quantity u® — ug is smooth on 002, and we will in fact
work with 4% —ug on 99 (so an uncracked domain should give a zero response
for any input fux).

In order to define the test functions let us take, for the moment, a carte-
sian coordinate system in which a crack o lies with one endpoint at the origin,
at a zero angle with respect to the horizontal axis, with length L (so that
the other endpoint of ¢ is at coordinates (L,0).) We denote z = (z,y) (or
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z =z +1y) and define functions

—
i
—
=
oy
IS

o
[

wy(2) = Imlz], wy(z

wy(z) = { Re[(z - L)m], Re(z) > L/2,

—~Re[(z — L)/z(z — L)], Re(z) < L/2
wi(z) = { Relyz(z 2 L)), Re(s) > 1/2

The functions wy and wy extend to Re(z) = L/2 by continuity. Both wy and
wy are smooth everywhere; w; has a square root singularity at z = 0 and
wy has a square root singularity at z = L. One can check that all w; are
harmonic in 2\ o, and all satisfy

Ag%dszo, L{%ﬂ ds = 0.

The algorithm distills the quantity (u” — ug)|sq into the four numbers

Floww) = [ (u — ug)(2) 24

o 5, (z)ds., (7)

for i =1 to 4 where w? denotes the function w; adapted to the crack o (that
1s, w] = w; o1 where 1 is the mapping which transforms o to (0,L) on the
z axis). The rationale for this choice of test functions is described below.

Let & denote the actual location of the linear crack and note that we
can determine F;(G,w”) for any linear crack ¢ by applying the specified
current flux, measuring the potential u® on %, subtracting ug and then
computing the F; using (7). One would expect generically that the four
equations F;(o, w”) = Fj(&,w”) in four unknowns (the coordinates describing
o) would have a solution at o = & which is at least locally unique. The system
of equations F(o,w”) = F(&,w") could be solved using any standard root-
finding technique, e.g., Newton’s method.

However, the algorithm has an additional important feature, a feature
which is a major reason for these specific choices for the w;. In order to
introduce this feature, we should first note that for any given crack location
o, certain input fluxes will yield very small values for u% —u, on 9. Suppose,
for example, that Q is the unit ball and consider a perfectly conducting crack
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o of length L, vertically oriented in  anywhere on the line z = 0. In this case
it’s casy to see that an input flux §p — 0g with P = (1,0) and Q = (—1,0)
will yield u” = uy throughout €2, since o lies on an equipotential surface for
. In short, such an input flux yields no useful information for recovering
o trom boundary data. Note also that o can be moved up and down the
line = 0 and produce no change in the boundary measurements. Moving
the points P and @ slightly may yield non-zero values for u° — up, but the
values will be so small that measurement error will corrupt the data, and we
expect reconstructions which use this data will be compromised. Moreover,
even relatively large changes in the crack position will likely produce only
small changes in the boundary data.

On the other hand, if we place the electrodes at positions (0, 1) and (0, ~1)
then the crack o cuts orthogonally across equipotential lines for u,, and so we
expect u” —ug to be large and maximally sensitive to changes in the position
of o.

"The algorithm in [44] is based on Newton’s method for solving F;(o, w?) =
Fi(G,w?), but also attempts to adaptively change the input flux in a way that
maximizes the sensitivity of u” —ug to changes in the crack position after each
iteration of Newton’s method. The manner in which the electrode locations
are updated is detailed below.

With the given choices for F; one can verify that at o = & the four by four
Jacobian matrix for the system Fj(o, w”) — F,(5, w”) = 0 is lower triangular,
regardless of the input flux used. We should expect that Newton’s method
(which involves implicitly inverting the Jacobian) will be well-conditioned, or
alternatively, that the estimate of the crack location will be most stable with
respect to the boundary data, when the diagonal elements of the Jacobian are
as large as possible (which tends to improve the conditioning of the associated
linear system of equations). Thus at each stage of Newton’s method the
algorithm adapts the input flux pattern to maximize certain diagonal entries
of the lower triangular Jacobian. Indeed, the authors show that at o = & the
first and second entries of the diagonal are given by m and 2m where

m = (& —w)(P) - (€ — w)(Q)

where the electrodes are located at points P and () on 022 and £ satisfies
AL =0in 2\ 5 with £ = 0 on & and % = %lon Q. Note that in an
iterative scheme (an approximation to) the function £ can be computed from
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the current estimated crack o. One can thus maximize m and the associated
diagonal entries of the Jacobian by choosing P to maximize the quantity
§—wy on 0N and @ to minimize € — w,; on o).

The general outline of the algorithm is this. Let F(o,w’) = (F\(o,w"),
Fy(o,w?), Fy(o,w?), Fy(o,w)).

1. Make initial guess o = o, at the crack location, set k = 0.

2. Based on the current estimated crack location o, select the maximally
sensitive electrode locations P and @ as defined above.

3. Apply the appropriate currents, measure the resulting potential on 0€2,
and use equation (7) and the w; to compute F(7, w*).

4. Compute F(oy,w). If the residual ||F (o, wo) — F(&,w")|| is suffi-
ciently small (in say, the L? norm) then terminate with estimate 5 = 0.

5. Compute the Jacobian and make the appropriate Newton update to
compute a new estimated crack location op,;. Set & = k + 1 and
return to step 2.

This algorithm proved quite successful on both computationally generated
data and on data collected from an experimental apparatus; see [39].

This algorithm was also adapted to seek out multiple cracks in a conduc-
tor in [26]. In this case the algorithm, in seeking out a collection of n cracks,
applies n distinct fluxes at each stage of Newton’s method. The fluxes are of
the form dp —d¢,, i = 1 to n. The points P and the Q)i are chosen by a proce-
dure similar to the single crack case, in which we seek to maximize diagonal
entries on the relevant Jacobian matrix in order to stabilize the estimates
of the crack locations. The algorithm was tested on both computationally
generated data and experimentally gathered data [28].

One of the difficulties in the multiple crack version of the algorithm is that
of determining how many cracks might be present (one must choose this a
priori). As originally proposed the algorithm uses an ad hoc procedure for
adjusting the number of estimated cracks as the algorithm runs. However,
in [10] a modification to the algorithm is proposed, in which the number of
cracks is automatically adjusted using a Bayesian statistical approach, which
also serves to help regularize the inversion.
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Other approaches have also been used for the recovery of cracks in con-
ductors. The so-called “reciprocity gap” principle has been used to recover
both linear cracks in two-dimensional conductors and planar cracks in three-
dimensional conductors [13, 17].

The basis of the reciprocity gap approach is as follows. Let Q be a
bounded domain in R*® with unit conductivity and o a planar insulating
crack contained in Q. Suppose that the plane in which o lies is described by
the equation n - x = ¢, where n = (ny,ny, n3) denotes a unit normal vector
to the plane and x = (x, o, z3). Let u be the electrical potential induced
in 2\ o by input current ¢, so that Au = 0 in Q \ o with 2* =0 on ¢ and
g—% = g on 9§ (v an outward unit normal vector field on 0Q). We require
Jsq 9ds = 0, and we can normalize v by [snuds = 0. We use f to denote the
measured boundary potential, so f = u|sq. Let v denote a C?(2) harmonic
function on © and define

v
RG v) = / v — —f)ds, 8
wn(v) = | (gv—>-f) (8)
the so-called reciprocity gap functional. Note that given the input current ¢
and response f we can compute RGy 51(v) for any given harmonic function
v. One can easily verify using the divergence theorem that

RGio(v) = [ [ul 52 ds (9)
where [u] denotes the jump in  in the direction of the normal vector field
-n.

In [13] the authors show that if the input flux g is chosen such that
J,[u]ds # 0, then a normal vector to the plane containing o is given by L =
(Ly, Lo, L3) with L; = RGy 5(v;), where v; denotes the harmonic function
vi(x) = z;. Of course then we have n = L/|[L||. Although the condition
[,[u] ds # 0 is not guaranteed, it is generically expected for a “typical” input
flux.

Since we have identified n we can, by an appropriate change of coor-
dinates, assume that the plane containing o is of the form z; = c. They
then show that (again provided Jylulds # 0) one can obtain ¢ as ¢ —
RGy 11(p)/|IL|| where p(z1, 2y, z3) = (3 — 23)/2, which is harmonic. Thus
if the input flux is such that [ [u]ds # 0, we can identify the plane in which
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the crack lies. One can perform similar computations to show that one may
identify the line on which a linear crack lies in a two-dimensional conductor.

Having determined the plane in which the crack lies, one may attempt
to recover the actual shape of the crack. In [17] the authors approach the
problem as follows. Let us assume that after appropriate scaling, translation,
and rotation the plane containing o is given by 23 = 0 and that o is contained
in the square § = {(z,,2,,0) € R’ -1 < 2,2y < 1}. Define harmonic
functions

. 1 A
A G B — Ty, To) sinh(wxsy/p? + g2
(/)p,q( Ly£2 3) ﬂmw;},q( 1 2) ( 3\ P Q)

for : =1 to 4 where

Ua(en,2) = cos(pma) coslqras), B2, (m,22) = cos(pra) sin(gray)
¢2,q(z1,x2) = sin(prz;) cos(qray), ?/);1(](;61,3:2):sin(pwml)sin(qwzg)
Then A .

RGlo (&) = [ Tuly* ds (10)

where [u] denotes the extension of [u] by zero from o to S. It’s not hard
to see then that we can recover the Fourier coefficients of [ZL] by computing
RGy,5)(¢") for all positive integers p and ¢, with i = 1 to 4, and so recover
[{L] We expect that [u] # 0 on any open portion of o and indeed, this is
proven in (13}, subject again to the condition that [ [u]ds # 0. We can
thus identify the crack as the support of [1;] Analogous formulae hold in the
two-dimensional case. 3

However, any estimate of [u] based on a truncated Fourier series will
certainly have as support all of S. In [17] the authors construct an estimate
of o as follows. Let [1;]” denote the estimate of ['ZL] constructed by truncating
the Fourier series constructed from equation (10) at p,g < n. For e > 0
define 3

one = {2 € S;|[u] (z)| > €}.

We take o, as an approximation to o. The authors prove convergence results
which state that provided a certain “stress intensity factor” does not vanish
on do, we have
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Theorem 3.1 Given any § > 0, there exist two positive constants ¢ and ¢
and some positive real number ¢y such that for € < ¢y and n > e~ 29 e
have

d’H(anm (7) < C("Q s

where dy is Hausdorff distance.

‘The authors provide a variety of numerical computations to illustrate
the effectiveness of the algorithm, in both two and three dimensions. A
major limitation of this very direct and elegant approach is that it appears
impossible to adapt to the identification of multiple cracks that are not all
coplanar.

The reciprocity gap principle has also been applied to the crack identifi-
cation problem in elastostatics, in which the forward problem is governed by
the linear equations of elasticity; see [14, 19].

Another approach for determining cracks has been proposed in [32]. The
authors describe an efficient procedure for recovering a piecewise linear crack
inside a two-dimensional polygonal domain, in which the “crack” may even
self-intersect (enclosing a void) or penetrate the exterior boundary of the
region. 'The approach is to reformulate the conduction problem using a
Schwarz-Christoffel transformation, and reduce the crack identification prob-
lem to system of non-linear algebraic equations which can be solved efficiently.
The authors propose several distinct algorithms, depending on the nature of
the crack to be identified.

In addition to the above techniques, more traditional regularized least-
squares techniques have been investigated, see e.g., [42] and the references
therein. The main novelty in [42] is the design of an efficient boundary
integral equation formulation for the forward problem (and for computing
derivatives with respect to crack parameters) thus minimizing the cost of the
optimization.

Two additional approaches to crack identification have emerged in recent
work. In [18] the authors use complex analytic techniques to detect and es-
timate crack locations from boundary data. Moreover, this technique allows
one to estimate the crack location(s) even if one has measurements of the in-
duced potentials on only a portion of the boundary. The algorithm described
in [23] also enjoys this advantage.

The basis of the technique in [18] is as follows. Suppose v =1 and
that only a single insulating, interior crack o is present. Let a current g be
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imposed on J€2. The potential u satisfies Au = 0 in \ o with ¢ d” = g on
o) and ()Z = 0 on 0. Suppose we have measurements of u on bOIIl(, bogjment
[" of 082 Let v denote the harmonic conjugate to « in Q\ o. The function
F = wu+ v is then analytic in 2\ o.

Now since Vv = (Vu)', we have 2
on J€2 as

- = =% = g, so that we can compute v

v() = / 9(y)ds,

for z € O (with the normalization v(a) = 0 for some fixed a € 99Q). We
thus know the value of Im(F) = v on all of 9§ and the value of Re(F) =wuon
[' C 09, with I analytic on 2\ 5. To solve the inverse problem we may then
seek a crack o and bounded analytic function F' on Q\ o such that Im(F)
and Re(F') take on the known values on 02 (or I') and on T, respectively. In
practice, of course, the latter two constraints can be achieved only to within
some specified tolerance.

"The approach taken in [18] consists of finding a meromorphic function ¢
on {2 with at most N poles (/V a positive integer which can be adjusted) which
minimizes sup [Re(¢) — u| subject to the condition that supy |Im(¢) — v| be
smaller than some prescribed tolerance. The authors give a procedure for
approximately solving this problem, using ideas from AAK approximation
theory (see [1]). The idea is that the poles of ¢ inside Q somehow approx-
imate the location of o, at least as N increases. The authors provide some
analysis of what kind of convergence can be expected, and glve numerical
examples. It should be mentioned that for fixed (small) N, related “pole-
finding” algorithms have earlier been studied in [41].

Finally, an interesting new approach to crack detection is proposed in
[23]. This approach also has the advantage that one need not specify the
number of cracks a priori, and this method allows one to reconstruct crack
estimates by taking measurements only on some portion of 9. The method
is a modification of ideas developed in [21, 22] and [37].

Let I be a subset of JQ with positive measure and define L2 %(I) to be
those functions in L?(T") with zero integral over I. Let 5 be a collectlon of
insulating cracks in Q. For a function g € L2 %(T") we can solve the problem
Au=0in Q\ X, with 2 = 0 on ¥ and GQ\F and 2% = g on I'. The
solution is determined up to an additive constant only, but we can fix a
unique solution by requmng ulr € L%(T). Define an operator A on L2 (D)
by A(g) = u|r, the “restricted” Neumann to-Dirichlet operator. Let AO be
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the restricted Neumann-to-Dirichlet operator on Li(F) for the case in which
1o cracks are present. Of course we seek to use the operator A (or really, our
ability to evaluate this operator for select input currents) to determine 3.

In [23] the authors provide a factorization A — Ay = K*K, where K maps
L5 (T') to a certain Sobolev space defined on 2\ ¥. This can be used to
demonstrate that the operator A — Ay is symmetric, positive semidefinite,
and compact. As such we can find a basis of orthogonal eigenfunctions v; for
A — Ay on LE(T). Moreover, the operator (A — Ag)'/? is well-defined.

Now consider some suitably smooth curve oy in €, and let n denote a
unit normal field on oy. Define

1 0 1
vi(z) = 57;/00 ¢(y)8ny In (lz‘yl> dsy

for z € §2\ 0o. Here ¢ is a smooth density which is positive except at the
endpoints of 0y, where it vanishes. Let vy be a harmonic function on Q with
G0 = &4 on 99 such a function exists since f,q 22 ds = 0. For a suitable
choice of ¢ the function v = v; — vy — ¢ (or rather, its trace on I') will be in

L% (T). The authors prove that

Theorem 3.2 The trace v|r is in the range of (A — Ag)'/? if and only if
Oy C_: 2.

They also provide a quantitative method, based on knowledge of the eigen-
functions v; and eigenvalues, for determining whether a function lies (to some
given precision) in the range of (A — Ay)'/2.

This leads to a simple method for reconstructing cracks: divide  into
a large number of small rectangles; in each rectangle consider a small linear
“test” crack og; rotate this test crack through various angles about its center
and determine if the corresponding function v lies in the range of (A — Ag)Y/2,
to within some tolerance. If so, consider oy part of the collection of cracks &
we seek to image. The authors also use “test dipoles” (the zero length limit
of a short crack) to image ¥. Although computationally intensive, the algo-
rithm yields good results, with no a priori assumptions required concerning
the number of cracks. This is an example of an imaging method that recon-
structs objects by testing whether certain “signatures” are in the range of a
(measured) linear operator. Methods of this type are often associated with
the name “linear sampling”.
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4 Final Remarks

The elliptic boundary value problems corresponding to the perfectly insu-
lating and the perfectly conducting cracks we have considered here may be
obtained as the limit of problems in which the cracks are approximated by
“thin domains” inside which the conductivity goes to zero or infinity at an
appropriate rate (relative to the thickness). The crack identification prob-
lems we have discussed may thus be seen as important special examples
of a more general class of problems involving volumetrically small inhomo-
gencities. There is a whole body of work associated with such problems.
In particular, various authors have developed special purpose algorithms for
these identification problems, of a nature similar to some of the algorithms
described here. It is well outside the scope of this brief survey to attempt any
review of the literature on these subjects. In the absence of such a review
the interested reader may, as a point of departure, consult [30] and [24], and
the references therein.
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