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THE GALOIS CORRESPONDENCE FOR BRANCHED COVERING SPACES
AND ITS RELATIONSHIP TO HECKE ALGEBRAS

MATTHEW ONG†

ABSTRACT. There is a very beautiful correspondence between branched covers of the

Riemann sphere P1 and subgroups of the fundamental group π1(P1 − {branch points}),

exactly analogous to the correspondence between subfields of an algebraic extension E/F
and subgroups of the Galois group Gal(E/F ). This paper explores the concept of a Hecke

algebra, which in this context is a generalization of the Galois group to the case of non-

Galois covers S/P1. Specifically, we show that the isomorphism type of a Hecke algebra

C[H\G/H] is completely determined by the decomposition of the induced character 1G
H ,

and that the character of the homology representation of a Galois group generalizes to one

for Hecke algebras, the decomposition of which depends on certain double cosets in the

group corresponding to the Galois closure of the cover S/P1.
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1. THE GALOIS CORRESPONDENCE FOR COVERING SURFACES

The basic reference for the material in this section is [9]. See also [3]. Throughout, we

let P
1 denote the Riemann sphere.

We first recall the notion of a covering surface. Given two topological surfaces X and

Y , we say that Y is a covering surface of X if there exists a continuous surjective map p
from Y to X , and each point in X has a neighborhood V such that p−1(V ) breaks up into

a disjoint union of open sets, each of which is homeomorphic to V under p. Intuitively, p
“wraps” Y onto X , as one can see in the case where R

2 covers the torus upon moding out

by Z× Z.

We shall consider covering surfaces which have the additional property of being an-
alytic manifolds, or Riemann surfaces. This means that each point on the surface has a

neighborhood conformally equivalent to the complex disk (see [9], Ch. 19 or [8], Ch. 1).

†Author’s research supported by NSF Grant #DMS-0097804
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2 GALOIS CORRESPONDENCE, BRANCHED COVERINGS, AND HECKE ALGEBRAS

We also insist that our covers be compact and connected (and thus finite-sheeted), so that

we have only a finite number of ramification points, or points where the local coordinate

map is given by f = zeg(z), where g(z) is analytic and non-vanishing at the origin, and

e > 1. When such a Riemann surface Y covers another Riemann surface X via p, the

images of the ramification points under p are called the branch points of X .

For these so-called branched covers Y
p→ X , let B be the set of branch points and let

X◦ = X◦B = X −B denote the punctured surface obtained by removing the branch points

from X and let Y ◦ = p−1(X◦). One can fix base points x0 ∈ X◦ and y0 ∈ Y ◦, and

define a group action of π1(X◦, x0) on the pre-image of x0 (called the fiber of x0), simply

by lifting a loop γ in π1(X◦, x0) to the various paths which begin and end on the points

of the fiber of x0 (see, e.g., [14]). In the case of normal or Galois covers, this action is

transitive on p−1(x0), and the action can be extended to a full covering transformation of

Y/X . This group of covering transformations is called the Galois group of Y/X , and is

denoted Gal(Y/X).
Now the motivation for dressing these terms in the language of Galois theory is the

following:

Proposition 1 (Galois Correspondence). Let X be a compact connected Riemann surface,

B ⊂ X a finite set, X◦B = X−B, X̃◦B the universal cover ofX◦B , and fix base points x0 ∈
X◦B and x̃0 ∈ X̃◦B . Then there is an inclusion-reversing bijection between the subgroups of

finite index in π1(X◦B , x0) and (topological equivalence classes of) the compact, branched

covers P : Y → X with branch set in B such that:

• For each subgroup of finite index H ⊂ π1(X◦B , x0) there is a unique (up to topo-

logical equivalence) covering space pH : Y ◦H → X◦B lying between X◦B and X̃◦B ,

such that for any yH ∈ p−1
H (x0), π1(YH , yH) ∼= H . Moreover, pH : Y ◦H → X◦B

may be completed to a compact covering pH : YH → X , branched over B.

• Conversely, for each compact, connected, branched covering p : Y → X whose

branch points lie in B and y ∈ p−1(x0), π1(Y ◦, y) is isomorphic to a subgroup H

of π1(X◦B , x0), and Y ∼= YH .

• Furthermore, Galois covers Y/X correspond exactly to normal subgroups N of

π1(X◦B , x0), for some set B, in which case Gal(Y/X) � π1(X◦B , x0)/N and

X ∼= Y/N .

This inclusion-reversing bijection is similar to that seen in classical Galois theory, where

one has a (finite) extension of fields E/F , and one speaks of a correspondence between

the subgroups of E-automorphisms which fix F and the various intermediate fields be-

tween E and F . In fact one can interpret the above proposition in terms of field the-

ory by viewing Riemann surfaces as the zero-set of irreducible bi-variate polynomials

f(Z,W ) ∈ C[Z,W ], in which case the intermediate covers become finite extensions of the

function field C(z), and the covering transformations become field automorphisms which

permute the roots of f(z,W ), for any fixed z ∈ C. See [12] or [8] for more details.

Just as in classical Galois theory, this topological Galois correspondence proves to be

a valuable tool for understanding a lattice of covering spaces because one is working with

concrete groups. Though for general Y/X , π1(Y ◦, y) is infinite, one need only look at

its finite homomorphic images to fully understand the groups of covering transformations

associated with its finite-sheeted covering spaces. Indeed for these spaces, at all but finitely

many points x0 of X, G = Gal(Y/X) permutes simply transitively the fiber of x0. On

these fibers the left action of G is the same as the left regular representation of G. This is

a consequence of the fact that all but finitely many points in X are unramified (recall that
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we assume Y is compact, so this is forced). At the branch points Q there are non-trivial

cyclic stabilizers for all the ramified points Pi above Q (see [1]). The number and order

of these stabilizers play a significant role in determining the structure of Y as well as the

homology representation of G (see Section 5).

2. HECKE ALGEBRAS AND SOME OF THEIR BASIC PROPERTIES

The above discussion should indicate that the optimal covering space Y/X one could

hope for is a Galois one. In this case one has complete Galois correspondence between the

subgroups of Gal(Y/X) and the intermediate covers between Y and X .

Unfortunately, not all covers are Galois. The goal of this section is to describe a gener-

alization of the Galois group to the case of arbitrary covers, not necessarily Galois. This

generalization, known as a Hecke algebra, allows one to recover much of the geometric

information about Y . It also possesses a representation theory which generalizes that for

Galois groups.

For the basic definitions and structure theorems concerning algebras, see [5] or [6].

For a finite group G, and H a subgroup of G, one defines the Hecke algebra of G with
respect to H to be the subalgebra C[H\G/H] of C[G]with basis elements the double coset

averages

(1) εH =
1
|H|

∑
h∈H

h,

where the g ∈ D are selected to give the partition of G in to double cosets:

G =
⋃

g∈D

HgH.

For the proof that C[H\G/H] forms a subalgebra of C[G], see [3].

One should begin by observing that the Hecke basis elements εH ∗ g ∗ εH correspond

naturally to the double cosets HgH ⊂ G. Thus the dimension of C[H\G/H] is exactly

the number of H-double cosets in G. Further, we can view HgH (as well as εHgεH ) as

the H-orbit of the coset gH , where H acts on G/H by left multiplication. That is,

(2) HgH = {hgH|h ∈ H} =
s⋃

i=1

giH,

for some s elements gi forming a left transversal of H in HgH . The analogous equation

in the group algebra is the decomposition of a Hecke double coset average into a linear

combination of coset averages:

(3) εHgεH =
s∑

i=1

1
s
giεH ,

where the normalization factor 1/s appears because under the trivial representation both

sides are 1.

Under this decomposition, the multiplication of two Hecke basis elements can be com-

puted as follows. Since

εHgεH =
s∑

i=1

1
s
giεH
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then for any other Hecke basis element εH g̃εH ,

(εH g̃εH)(εHgεH) = (εH g̃)(εHgεH)(4)

=
s∑

i=1

1
s
εH g̃giεH

=
∑

g∈H/GH

sg

s
εHgεH

where sg = |{i : g̃gi ∈ HgH}|, and H =
⋃

i giH .

With this description, we can give the following interpretation to the Hecke algebra.

Suppose we have some representation of C[G] on a finite dimensional vector space V . The

subspace V H of H-invariants is just εHV . When H � G, we get a representation of G/H
on εHV simply by left multiplication. When H is not normal in G, however, this action is

not well-defined. But we can still enlarge the H-action on εHV via C[H\G/H]. To see

that the action of C[H\G/H] by left multiplication stabilizes εHV , simply observe that

for any Hecke basis element εHgεH ,

(εHgεH)(εHV ) =
(εHgε2H)V =
(εHgεH)V =

(εHg)(εHV )

which is invariant under H since hεHgεHV = εHgεHV,∀h ∈ H . Hence C[H\G/H]
stabilizes εHV .

More specifically, for any εHv ∈ εHV , εHgεHεHv = εHgεHv represents the HgH-

orbit of v. The multiplication of two Hecke basis elements εHgεH and εH g̃εH corresponds

to the permutation action of g̃ on the H-orbits partitioning HgHv.

Example 1.
Here is an example of the above statements. Consider the 3-dimensional Hecke algebra

determined by G = D2,8,3 = 〈x, y|x2 = y8 = 1, xyx−1 = y3〉 and H ∼= D4. There are

three double coset averages, εH1εH , εHg1εH , and εHg2εH , for some g1,g2 ∈ G. One of

the double cosets has size 8, yielding say, εHg1εH , while the other two have size |H| = 4.

Below is the table of structure constants for the basis element εHg1εH :

1 g1 g2
1 0 1 0

g1 1/2 0 1/2

g2 0 1 0

Each row of the table indicates where εHg1εH sends the H-cosets averages in the cor-

responding double coset average. For instance, the values in the middle row indicate that

εHg1εH sends one H-coset average of εHg1εH into εH , the other into εHg2εH . The top

and bottom row indicate that εHg1εH sends the remaining H-coset averages εH1εH and

εHg2εH back into εHg1εH .

Perhaps the most important property of a Hecke algebra C[H\G/H] is that it is semi-
simple. That is, any representation ρ of C[H\G/H] can be decomposed into a direct sum

of irreducible ones. This follows from the semi-simplicity of the group algebra (see [5],Ch.

5).
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3. ELEMENTS OF REPRESENTATION THEORY

This section outlines two important concepts in representation theory, that of induced

representations and Frobenius Reciprocity.

First recall that for any representation ρ of C[G] on a vector space V , and any subgroup

H in G, we get a representation of C[H] on V by restriction. We usually denote this

restricted representation by ρH when the ambient group G is understood from the context.

We would now like to go the other direction, that is, given a representation ψ of C[H]
on W , we would like to get a representation of C[G] on some space V associated with W .

To do so, take any set {gσ} of forming a left transversal for H in G. Then form the vector

space

V =
⊕

σ∈G/H

W gσ

where W gσ is the vector space isomorphic to W consisting of elements of the form gσ ·
w,w ∈ W . One can think of W gσ as just another copy of W with elements “labelled” by

gσ .

We let C[G] act on V as follows: for g ∈ G, and gσ ∈ T , write g · gσ = gτhg,τ , for

some unique hg,τ ∈ H . Then let g act on V by

g · V =
⊕

τ∈G/H

(hg,τ ·W )gτ

which maps V to V .

It is easy to check that this is a well-defined action independent of the choice of coset

representatives (see [10]).

Another, more sophisticated way of viewing induced representations (which will be

adopted later in this report), is in terms of tensor products. For the definition and proper-

ties of tensor products, see [6] or [5]. The tensor product allows us to view the induced

representation of C[H] on W just as a change of rings, or an “extension of scalars.” Ac-

cording to the theory of tensor products, given a subring R of S, and a left R-module M ,

we can construct a left S-module extending M via S
⊗

RM . In our case, R = C[H],
S = C[G], and M =W . Hence ψG = C[G]

⊗
C[H]W .

Perhaps the simplest example of induced representations is 1G
H , the induced representa-

tion of the trivial representation on C[H]. Here we simply get the permutation action of G
on the H-coset space.

Induced representations are useful ways of constructing representations on C[G] given

ones on C[H]. Usually we would like to know how ψG decomposes into G-irreducibles.

Such knowledge can be obtained by the following (see [6]):

Proposition 2 (Change of Rings Formula). Let R ⊆ S be rings, A an (S,R) bi-module,

B a left S module, and C a left R-module. Then

(5) HomS(A⊗R C,B) ∼= HomR(C,B|R).
With H a subgroup of G, letting R = C[H], S = A = C[G], C a C[H]-representation,

and B a C[G]-representation, this result reduces to the following:

Corollary 1 (Frobenius Reciprocity).

(6) HomC[G](CG, B) ∼= HomC[H](C,B|C[H]).

Or, letting χ,χG, and φ be the corresponding characters, we have:
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Corollary 2.

(7) 〈χ, φH〉H = 〈χG, φ〉G.
Here 〈 , 〉G denotes the inner product of characters over G.

4. CLASSIFYING HECKE ALGEBRAS FOR LOW GENUS COVERS

The goal of this section is to describe a simple means of determining whether two

Hecke algebras are isomorphic, and an application of this method to classifying the Hecke

algebras associated to the Galois groups for low genus branched covering spaces of the

sphere.

We first use the following description of Hecke algebras:

Proposition 3. Let εH = 1
|H|
∑

h∈H h. Then C[H\G/H] ∼= HomC[G](1G
H , 1

G
H), where

1G
H is the induced representation of the trivial representation on H .

Proof: We have by Lemma 3.19 in [5] that C[H\G/H] ∼= HomC[G](C[G]εH ,C[G]εH),
where C[H\G/H] acts on itself via right multiplication. Since εH is the projection of C[H]
onto the trivial representation 1H , εHC[H] ∼= 1H . Then

1G
H
∼= C[G]

⊗
C[H] εHC[H]

∼= C[G]εH
⊗

C[H] C[H]
∼= C[G]εH

where the last equality is a basis property of tensor products.�
The above equality gives a simple way to classify Hecke algebras up to isomorphism.

Recall from section II that Hecke algebras are semi-simple, so that they can be decomposed

into direct sums of simple algebras, where the decomposition is unique up to isomorphism.

Therefore to determine the isomorphism structure of a Hecke algebras, it suffices to know

the number and type of these simple algebras. Such data is given by the following:

Proposition 4.

(8) HomC[G](1G
H , 1

G
H) ∼=

m⊕
i=1

Mni×ni

where m is the number of distinct G-irreducible representations appearing in 1G
H , and ni

is the multiplicity of the i’th irreducible representation in 1G
H . Mni×ni

is the algebra of

ni × ni matrices over C.

Proof: This is just a simple consequence of Schur’s lemma:

HomC[G](ψi, ψj) ∼=
{

C i = j
0 i = j

for ψi, ψj G-irreducibles. Write

1G
H =

m⊕
i=1

⎛⎝ ni⊕
j=1

ψi

⎞⎠
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with {ψi} the G-irreducible representations. Then using the fact that the

Hom(–,–) functor commutes with direct sums in both the first and second variables, and

applying Schur’s lemma, we get the result.�
Since for any G-character ψ and irreducible G-character χ, 〈ψ, χ〉 is the multiplicity of

χ in ψ, we have:

Corollary 3. The Hecke algebra C[H\G/H] is classified up to isomorphism by the data

{〈1G
H , χ〉}. That is, C[H\G/H] splits up into a direct sum of C-matrix algebras, one for

each irreducible G-character χ which appears in 1G
H , whose dimension is equal to 〈1G

H , χ〉.
By Frobenius Reciprocity, we may recast the above inner product as

〈1G
H , χ〉G = 〈1H , χH〉H

and so we have an easy way of decomposing 1G
H .

As an illustration, we list the number of isomorphism classes of Hecke algebras asso-

ciated to Galois groups Gal(Y/X), where Y/X is a branched covering of the sphere of

genus 2 or 3, distinct up to topological equivalence. This data comes from [1], and was

processed using the MAGMA script decomp 1. which may be found at the script archive

[4].

Dimension Genus 2 Genus 3

2 3 5

3 4 5

4 6 5

5 2 2

6 2 8

7 1 3

8 3 7

9 0 1

10 1 1

11 0 0

12 4 6

13 1 0

14 0 2

15 0 1

16 1 11

20 0 1

21 0 1

24 3 4

32 0 2

44 0 1

48 1 2

96 0 1

168 0 1

5. THE GENERALIZED HOMOLOGY TRACE FORMULA

This section gives a generalization of the homology trace formula for branched covers

of the sphere to the case of non-Galois covers.

For the definitions and basic properties of homology groups, see [3],[9],or [13].

Suppose we have a Galois branched cover Y/P1 of the sphere, n-sheeted, with branch

pointsQ1, . . . Qt. Without loss of generality we may assume the branch points all lie along
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the equator of the sphere, since we simply wish to connect the vertices by edges so that

they divide the sphere into two faces. For a finite number of vertices this can always be

done. So connecting consecutive branch points along the equator by edges E1, . . . Et, we

cover the sphere with two t-gons F1 and F2, one on the upper hemisphere, the other on

the lower hemisphere. Since Y covers all points of P
1 evenly save the branch points, each

edge Ei and face Fi lifts to n distinct edges (faces, respectively) in Y , where n is the

degree of the cover. The lifted edges/faces correspond to an entire G-orbit of edges/faces

in Y , where G = Gal(Y/P1). We have fewer vertices lying above the branch points

because of ramification. Each branch point Pi possesses some non-trivial cyclic stabilizer

〈ci〉 ⊂ Gal(Y/P1). Hence the vertices lying above Pi correspond to the cosets G/〈ci〉,
sinceG acts transitively on the vertices (Orbit-Stabilizer Theorem). Let us call such a tiling

on P
1 or the tiling on Y or constructed from a branched cover an “equatorial tiling”. Not

that the cover need not be Galois to construct an equatorial tiling.

We may now consider the action of G on H2(Y ), H1(Y ), and H0(Y ), the homology

spaces spanned by the faces, edges, and vertices, respectively, of the above tiling. G acts

as a group of covering transformations, so it takes faces to faces, edges to edges, etc. This

action yields homology representations of G, which can be used to distinguish distinct

group actions of G on various branched covers. In particular, we are interested in the

homology representation of G on H1(Y ). In fact, we have the following formula for

χH1(Y ):

(9) χH1(S) = 2ρ0 + (t− 2)ρ+
t∑

i=1

ρi

where ρ is the regular representation of G, ρ0 the trivial representation, and ρi the induced

representation of the trivial representation on 〈ci〉, with 〈ci〉 defined above. A proof of this

result can be found in [2].

We shall give a generalization of this formula to the case when Y/X is not Galois. To

do so, we shall trace through the proof of the above formula, making modifications to it to

include the case of non-Galois covers.

We shall first need to recall the notion of an Euler-Poincaré map. The following ex-

position comes from [11]. Suppose we have a map φ from the category of R-modules

to an abelian group Γ, such that φ(0) = 0, and such that for any exact sequence of R-

modules 0 → L → M → N → 0, we have φ(M) = φ(L) + φ(N). Then φ is called an

Euler-Poincaré map.

One example of an Euler-Poincaré map is the map φ which counts the dimension of a

finite dimensional vector space. If we have a surjective linear transformation T from V to

W ,

0→ ker T → V →W → 0

is exact, and φ(V ) = dim(V ) = φ(ker T ) + φ(W ) = dim(ker T ) + dim(Im T ) by

linear algebra.

We now consider a complex E of R-modules such that almost all Hi = 0. Then one

can easily prove the following, based on the definition of φ:

Proposition 5. Let E = {Ei} be a complex defined as above. Then∑
i

(−1)iφ(Hi(E)) =
∑

i

(−1)iφ(Ei)
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This proposition allows us to transfer our knowledge of the values of φ on the complex

E to its values on the associated homology groups, or vice versa. For instance, if we

are given a triangulation, or more generally a tiling by simply-connected polygons, of a

connected surface S, we can let C2 be the C-vector space of 2-chains spanned by the faces

of this triangulation, C1 the space spanned by the edges, and C0 the space spanned by the

vertices. By algebraic topology, we get a complex E of chain spaces {Ci} associated to S,

→ 0 ∂→ · · · 0 ∂→ C2
∂→ C1

∂→ C0
∂→ 0

with ∂ the so-called boundary operator. Then again by algebraic topology, when we con-

sider the associated homology groups, we have Hi = 0, i ≥ 3, H2 = H0
∼= C, and

H1
∼= C

2σ , where σ is the genus of S. Then applying the map φ which counts the dimen-

sion of the spaces Ci, Hi, we get

∑
i

(−1)iφ(Hi) = 1− 2σ + 1

=
∑

i

(−1)iφ(Ci)

= φ(C2)− φ(C1) + φ(C0)
= F − E + V

which is the familiar identity of Euler.

In our case, we have a tiling of the S sphere given by an n-sheeted branched cover

S/P1. We let E be the complex of chain spaces associated to this tiling, so that Ci = 0,

i ≥ 3, C2 is the space spanned by the faces of the tiling, C1 the space spanned by the

edges, and C0 the space spanned by the vertices.

Since S/P1 is not in general Galois, we must first construct a Galois cover of S which

is Galois over P
1. To this end, let B denote the set of branch points of S/P1 and then take

the cover Y ◦ → P
1−B corresponding to the subgroup Δ(S◦, s0), where Δ(S◦, s0) is the

core of π1(S◦, s0) in π1(P1 −B, x0), defined by

Δ(S◦, s0) =
⋂

g∈π1(P1−B,x0)

gπ1(S◦, s0)g−1.

One can easily check that this is the largest normal subgroup of π1(P1 −B, x0) contained

in π1(S◦, s0), and that Δ(S◦, s0) is of finite index in π1(P1 − B, x0). Hence by Galois

correspondence the closure Y/P1 of the associated cover Y ◦/(P1−B) is the Galois cover

of S/P1.

Then lettingG = Gal(Y/P1),H = Gal(Y/S), we can consider the action of the Hecke

algebra C[H\G/H] on the chain spaces Ci(S), along with their associated homology

groupsHi(S), as follows: First, define the equatorial tilings on S and then Y by an iterated

lifting of the base equatorial tilings on P
1. For any Ci(S), we have the natural projection

p∗ of Ci(Y ) onto Ci(S) via the projection Y
p→ S. So, for any γ ∈ Ci(S), let εHgεH act

on γ by

εHgεH ◦ γ = p∗(εHgεH γ̃)

where γ̃ is any lift of γ. This is well-defined since p∗(γ̃)=p∗(δ̃) if and only if εH γ̃ = εH δ̃.

To see this, suppose that εH γ̃ = εH δ̃. Then,

p∗(εH γ̃) =
1
|H|

∑
h∈H

p∗(hγ̃) =
1
|H|

∑
h∈H

p∗(γ̃) = p∗(γ̃),
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by the H-invariance of p∗. It follows that p∗(εH γ̃) = p∗(εH δ̃). Now suppose that

p∗(γ̃)=p∗(δ̃) We may write εH γ̃ uniquely as

(10) εH γ̃ = a1εH β̃1 + · · ·+ asεH β̃s,

where the Hβ̃1, . . . , Hβ̃s are the H-orbits of the i-cells of Y . It follows that

(11) p∗(εH γ̃) = a1p∗(β̃1) + · · ·+ asp∗(β̃s).

If p∗(γ̃)=p∗(δ̃), then it follows that εH δ̃ has the same expansion as εH γ̃ in (11), since

{p∗(β̃1), . . . , p∗(β̃s)} is a basis for Ci(S). Note that the above argument shows that p∗ :
εHCi(Y )→ Ci(S) is an isomorphism.

In the case of C2(S) or C1(S), we may reinterpret this action as follows: since Y/P1

is Galois, G permutes simply transitively the lifts of all the faces (or edges) in P
1. Hence

we may relabel all these lifts by their corresponding group elements in G. Then the pro-

jection map p amounts to just left multiplying by the idempotent εH , and the action of

C[H\G/H] on Ci(S) for i = 1, 2 is just the action of C[H\G/H] on the right H cosets

εHg. Since these right cosets form the C[G]-module εHC[G], C[H\G/H] acts on εHC[G]
by left multiplication. Then C[H\G/H] simply acts on the left as the algebra of C[G]
endomorphisms of εHC[G]. From the discussion in Proposition 3, this action is equivalent

to the action of C[H\G/H] on itself via left multiplication.

Note that for a Galois cover S/P1 this left regular representation reduces to just the left

regular representation of the Galois group G/H .

Now noting that as C[H\G/H]-modules, C2(S) decomposes into a direct sum of two

isomorphic subspaces (one for the upper tile, the other for the lower), and C1(S) decom-

poses into a direct sum of t isomorphic subspaces (one for each edge), then along with

Corollary 1, we have

Proposition 6. The homology representations of C[H\G/H] on C2(S) and C1(S) are

given by

• χC2(S) = ρ̃
⊕
ρ̃

• χC1(S) =
⊕t

i=1 ρ̃

where ρ̃ is the left regular representation of C[H\G/H] on itself.

The homology representation of C[H\G/H] on C0(S) is a bit trickier. Here, G does

not act simply transitively on the vertices of the tiling, since the stabilizers of the branch

points {Pi} are non-trivial cyclic subgroups 〈ci〉. So instead of substituting any element

of G for γ̃, we must substitute left cosets g〈ci〉, for fixed ci. Then we get an action of

C[H\G/H] on the double cosets εHgε〈ci〉.
To reinterpret this action, we need the following result from representation theory

Theorem 1 (Mackey). Let H ,K be subgroups of G, and W a C[H]-representation. Then

(12) (WG)K =
⊕
t∈T

(WHt∩K)K ,

where T is any set of (H,K) double coset representatives, and Ht = tHt−1.

In our case, with H = C[H\G/H], we are interested in the H-representation on

εHC[G]ε〈ci〉. Or, since εHC[H] = C[H]εH = εH , this representation is equivalent to

H⊗C[H] C[G]ε〈ci〉.
SinceH can be considered as a (H, H) bi-module, for any irreducibleH-representation

φ we can apply the change of rings formula to get:

HomH(H⊗C[H] C[G]ε〈ci〉, φ) = HomC[H](C[G]ε〈ci〉, φ|C[H]).
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Since as a C[H]-module, C[G]ε〈ci〉 ∼= ((1〈ci〉)
G)H we can apply Frobenius Reciprocity to

get:

〈χH⊗C[H]C[G]ε〈ci〉
, φ〉 = 〈((1〈ci〉)

G)H , φH〉
Applying Mackey’s Theorem to the last expression yields:

Proposition 7. Let ci, H , G, and φ be as above, T any set of (H ,〈ci〉)-double coset repre-

sentatives. Then

〈((1〈ci〉)
G)H , φH〉 =

∑
t∈T

〈(1〈ci〉)〈ci〉t∩H)H , φH〉

=
∑
t∈T

〈(1〈ci〉t∩H)H , φH〉

=
∑
t∈T

〈(1〈ci〉t∩H), φ〈ci〉t∩H〉〈ci〉t∩H

The last two lines are by transitivity of restriction and Frobenius Reciprocity.

This characterizes the action of H on the ramification points over a single branch point

Pi. Then the representation ofH on C0(S) breaks up into a direct sum of t subrepresenta-

tions, each acting on the fiber of somePi in Y (or equivalently,H acts on εHC[G]ε〈ci〉), i =
1, . . . t. Since for compact connected Riemann surfaces, H2(S) ∼= H0(S) ∼= C, so H acts

trivially on these spaces. Then using the fact that the trace of a Hecke algebra element is

an Euler-Poincaré map, we get

(ρ̃+ ρ̃)− (
t∑

i=1

ρ̃) + (
t∑

i=1

ρ̃i) = ρ̃0 − χ1(S) + ρ̃0

where ρ̃0 is the trivial representation of H on itself, ρ̃ is the regular representation, and ρ̃i

is the action ofH on εHC[G]ε〈ci〉.
Expressing the above characters in terms of G-characters, we get

Proposition 8. The homology representation of the Hecke algebra C[H\G/H] decom-

poses as

χ1(S) = 2ρ0 + (t− 2)
∑

χ∈X(G)

〈χ, 1G
H〉χ(13)

+
t∑

i=1

⎡⎣ ∑
φ∈X(G)

(∑
a∈Ti

(〈(1〈ci〉t∩H), φ〈ci〉t∩H〉φ
)⎤⎦

where Ti is any set of (H, 〈ci〉)-double coset representatives, and X(G) is the set of irre-

ducible G-characters.

This establishes the general homology formula. Note that for Galois covers, H = G,

and we get back equation (9).

6. QUESTIONS

There is one immediate question which presents itself for investigation. It regards

bounding the dimension of a Hecke algebra C[H\G/H] in terms of the genus of the cov-

ering space and some independent constant. In the case of Galois covers, we have the

familiar Hurwitz bound on the size of the Galois group, given by
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(14) |G| ≤ 84(σ − 1)

for surfaces with σ ≥ 1.

For non-Galois covers, the dimension of C[H\G/H] is just the number of (H,H)
double cosets in G. As Ellenberg remarks in [7], it would be interesting to see if a similar

such bound existed for general branched covers, i.e., if there were a constant γ independent

of G and H such that

(15) dim(C[H\G/H]) ≤ γ(σ − 1)

for surfaces with σ ≥ 1.

dim(C[H\G/H]) ≤ γ(σ − 1). We note that such a question could be amenable to

computational exploration using a program such as MAGMA.
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