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Tilings Which Split at a Mirror

Jim Belk∗

June 6, 1999

Abstract

Let φ be a reflection on a surface Σ. The mirror of φ is the fixed
point subset Σφ = {x ∈ Σ : φ(x) = x}, which is a disjoint union of
circles . We say that Σ splits at the mirror of φ if Σ−Σφ is disconnected.
We further assume that the reflection is a symmetry of a tiling of Σ by
triangles. In this paper we investigate a number of conditions on the
tiling that guarantee that Σ splits at a mirror.
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1 Introduction

Let Σ be a compact, orientable surface. Let Θ be a geodesic, kaleidoscopic
tiling of Σ by triangles. We’ll define this concept in a later section. For now
we will just consider examples of such tilings as given by the (2, 3, 5)-tiling
of the icosahedron shown in Figure 1 and a (2, 4, 4)-tiling of the torus shown
in Figure 2. Observe that the side of any triangle in the icosahedral tiling is
part of a great circle made up of sides of many triangles. Furthermore the
reflection in any of these great circles is an isometric mapping of the sphere
to itself which takes triangles to triangles. If R is one of these reflections
then the fixed point subset FR = {x ∈ Σ : Rx = x} is exactly a great
circle, which we call the mirror of R. Similar remarks apply to the torus
tiling except that, we need put a special metric on the torus so that the
reflections are isometries. Alternatively we may work in the universal cover
- the Euclidean plane. Furthermore the properties of the mirrors are more
complex The “horizontal” and “vertical” mirrors each have two components
(think of cutting a bagel in half) but the “inclined mirrors” have only a single
component. There is a further difference in these mirrors which constitutes
the entire focus of this paper.

Definition 1 Let R be a reflection of Σ. We say that Σ splits at R if Σ\FR

has two components. We also say that R is a separating reflection.

For instance, if Σ is a sphere and FR is an equator, then Σ splits at
R into two hemispheres, as illustrated in the case of the icosahedral tiling..
Clearly, every tiling on a surface of genus 0 splits at any mirror. In the torus
example the “horizontal” and “vertical” mirrors each have two components
and the surface splits along these mirrors. The inclined mirrors have only
one components and do not split the surface. Since this is a little difficult to
visualize geometrically, we will prove this later. Strangely, splitting becomes
very rare when we consider higher genus surfaces. For instance, of the
eleven triangle tilings of genus 2 surfaces, only four split at some mirror.
Of the nineteen tilings of genus 3 surfaces, only five split at some mirror.
Furthermore the mirrors can have a very large number of circles or ovals.
Of course, it would be nice if we had some sort of test to determine

whether or not a surface splits at a mirror. Since we are working on surfaces,
Σ\FR is connected if and only if it is path connected. Therefore, for every
triangle t, we can simply test for a path in Σ from a base triangle ti to t
which doesn’t cross FR. Since the system of vertices, edges and polygons
of the tilings is locally finite and exhaust Σ, almost every path in Σ can
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be associated with a finite path of triangles. (Exceptions include paths
which move across a vertex or on an edge and paths which wiggle infinitely
around some edge or spiral infinitely towards a vertex. These cases turn
out to be inconsequential since they are homotopic to a locally linear path
described below.) Therefore, we can determine if Σ\FR is path connected
by determining if, for all triangles t, there is a path of triangles from ti to
t which does not cross FR.

Remark 2 To get a very clean relationship between paths of triangles and
paths on the surface we use the dual graph of the tiling. Let It be the incenter
of the triangle t. Form the dual graph by connecting It and Iu by a line
segment if the triangles t and u have a common edge e. This line segment is
perpendicularly bisected by e as the local reflection across e is a congruence
of triangles. The reflection in e interchanges It and Iu. A path of triangles
starting and finishing at ti corresponds to a closed linear path on the dual
graph starting and finishing at Iti . Every path on Σ based at Iti is homotopic
to such a path. For a path on the dual graph the notion crossing a mirror is
well defined.

Fig. 1: Icosahedral tiling of the sphere.
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Fig. 2: (2, 4, 4) tiling of the torus.

The tiling group In the examples we assumed that for each edge e
there was a reflection Re of the surface that fixed that edge and interchanged
the two triangles whose common boundary is e. All of these reflections
generate a group G∗ of isometries of the surface whose elements are in 1-1
correspondence to the tiles on the surface. The group G∗ and its covering
groups acting on the covers of the surface will prove to be extremely useful
in analyzing the structure of the tiling, and finding tilings with mirrors that
split. The two goals of our study is the following.

Goal 1. Find an efficient group theoretic algorithm to determine
whether a given reflection of the tiling is separating or not.

Goal 2. Find ways of constructing tilings with mirrors that
split, especially by constructing coverings of tilings.

Our principal result for Goal 1 (Theorem 6) is an algorithm, suitable
for computer computation, for determining whether a given tiling splits at a
mirror. It is not a satisfactory answer since there is no efficient algorithm for
large genus surfaces. For Goal 2 a construction is given of a cover Σ̃ −→ Σ
such that the mirror of the lift of a reflection splits, or at least is the prime
candidate of such a cover. (If we go to the universal cover U −→ Σ the
lift of every reflection is separating, but that is not an interesting example.
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Associated to the cover Σ̃ −→ Σ there is a covering of groups G̃∗ −→
G∗. Another group theoretic answer to Goal 1 is G̃∗ = G∗. However the
limited time scope of the original project did not allow for development of
an algorithm for calculating G̃∗. See section 8 on further questions.
The paper[3] by Bujulance and Singerman is a good background paper

on the separability of reflections. It gives several general methods for deter-
mining separability including the graphical Hoare-Singerman theorem given
in [4]. Another general group theoretic criterion is given in [2] which used
to prove that the (2, 3, 7)-tilings derived from PSL2(q) Hurwitz action have
no splitting mirrors. The discussion from earlier versions of [2] lead to the
Theorem 6.

Outline of the report. In section 2 we quickly develop ideas on,
tilings the tiling group and discuss the algorithm on detecting a splitting.
Sections 3, 4, and 4 introduce the machinery for constructing covers in which
mirrors split the covering surface. Sections 6 and 7 discuss the splitting prop-
erties of covering groups and covering surfaces introduced in the previous
sections. Finally in section 8 we discuss future directions.

Acknowledgments This work was carried out at the Rose-Hulman
NSF-REU program directed by Allen Broughton (NSF grant #DMS-9619714).
I would like to thank my fellow participants Dawn Haney, Lori McKeough,
Patrick Swickard, Reva Schweitzer and Ryan Vinroot for their encourage-
ment and useful conversations. I would also like to thank Cheryll Dodd for
preparing the LATEXversion of this paper.

2 Tilings, the tiling group and splitting

Tilings Let Σ be a connected, orientable surface. Suppose that Θ is a
collection of open polygons on Σ. Then Θ is a tiling of Σ if and only if:

1. The elements of Θ are pairwise disjoint.

2. The surface Σ is the closure of ∪Θ.

Throughout this paper, we shall be considering only tilings by triangles.
That is, we shall be considering only tilings Θ whose elements are open
triangles.
Let t be a triangle in Θ, and consider a single edge e of t. Since e is

an edge of a polygon, it is contained in some long, straight curve, known as
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a geodesic. For instance, the geodesics on the plane are the lines, and the
geodesics on the sphere are the great circles. For each geodesic g, we assume
there is a reflection R = Rg = Re on the surface such that g is in FR, the
set of fixed points of R. Note that if R exists, it is the unique isometry of Σ
fixing e pointwise. On the sphere, the Euclidean plane and the hyperbolic
plane, g = FR for all geodesics g. However, this is not true in general. For
example, if g is an outside equator on a torus, then FR is the union of g and
an inside equator g′. In general, FR, called the mirror of the reflection R,
may consist of at most ≤ σ + 1 of geodesics or ovals, where σ is the genus
of Σ.
When Σ is a surface, the set of reflections R associated with geodesics

on the surface generate group under composition, which we denote by G∗

and call the full tiling group. The ∗ is used to signify that G∗ includes
reflections. Since we shall want to use G∗ to label the triangles, we wish to
place conditions on Θ under which G∗ acts simply transitively on Θ.
It turns out that two extra conditions are sufficient: the kaleidoscopic

condition and the geodesic condition. The kaleidoscopic condition requires
that for each edge there is a reflection Re, globally defined on Σ, such that
for each θ ∈ Θ, we have R(θ) ∈ Θ. The geodesic condition stipulates that
Σ\ ∪ Θ be a union of mirrors. Specifically, if e is an edge of a triangle in
Θ, then FR is a union of edges of triangles in Θ, where R is the reflection
associated with e. These two conditions guarantee that G∗ is a group of
transformations which acts simply transitively on Θ .

Remark 3 Note that G∗ is not the symmetry group of the tiling, since
some reflections which preserve the tiling may not be reflections in geodesics
in Σ\ ∪Θ.

Structure of G∗ and G We record some properties about the struc-
ture of G∗, derived from the geometry of the tiling. More details on the
geometric considerations are given in [1] though our notation differs slightly
from that in [1]. Since the angles at a vertex are all equal then the angles
of the triangle have measure 2π

l radians,
2π
m radians and 2π

n radians for some
integers l,m, n respectively, as shown in Figure 3. (In Figure 3 the triangle
is drawn with curved sides since it represents a hyperbolic triangles on a
surface of genus greater than 2.) Let p, q, and r also denote the reflections
in the sides p, q, and r of the base triangle. Define a = pq. It is easily seen
to be a counter-clockwise rotation about the vertex R through 2π

l radians.
Similarly, for b = qr and c = rp are counterclockwise rotations about vertex
P through2π

m radians and about vertex Q through 2π
n radians, respectively.
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From these observations and the fact that reflections have order 2, we get
the following:

al = bm = cn = 1, (1)

and
abc = 1, (2)

since pqqrrp = 1.
Now G∗ = 〈p, q, r〉 and G = 〈a, b, c〉 = 〈a, b〉 is the subgroup consisting

of all orientation-preserving elements of G∗. We call G the OP tiling group.
The subgroup G is normal in G∗ of index 2, in fact G∗ = 〈q〉 � G, a semi-
direct product. The conjugation action of q on the generators a, b of G
induces an automorphism χ satisfying:

χ(a) = qaq = qaq−1 = a−1, (3)

χ(b) = qbq = qbq−1 = b−1 (4)

_ n 

_ π 
m 

π 

0

π _ l 

c 

∆

P 

Q 

a b 

p 

q 

r 

R 

Fig 3: The base triangle and generating
reflections.
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The relation between the group order G and the genus σ of the surface
is given by the Riemann-Hurwitz equation:

2σ − 2
|G| = 1−

(
1
l
+
1
m
+
1
n

)
. (5)

It follows that the genus is given by:

σ = 1 +
|G|
2

(
1−

(
1
l
+
1
m
+
1
n

))
, (6)

and the group order by:

|G| = 2σ − 2
1− (1

l +
1
m +

1
n

) . (7)

The triple of elements (a, b, c) of elements from G which generates G and
satisfies (1) and (2) is a called a generating (l,m, n) -triple of G. Just as we
may create a triple from a tiling, a tiling may be created from triples as in
the following theorem.

Theorem 4 Let G have a generating (l,m, n)-triple and suppose that the
quantity σ defined by (6) is an integer. Suppose in addition, there is an
involutary (χ2 = id) automorphism χ of G satisfying (3) and (4), then
the surface S has a tiling T by (l,m, n)-triangles such that tiling group as
constructed above is the original G, and such that G∗  〈χ〉 � G.

Splitting Since the action by G∗ is simply transitive, we can label the
elements of Θ using elements of G∗. Specifically, let ti be the chosen base
triangle in Θ. If t is any other triangle in Θ, then there is a unique g ∈ G∗

such that g(ti) = t. That is, there exists a bijection θ : G∗ −→ Θ such that
θ(i) = ti and θ(g) = g(ti) for all g ∈ G∗.
As above let p, q, and r be the three reflections surrounding ti. as shown

in Figure 3. That is p, q, and r are the reflections associated with the
three geodesics that border ti. Then the three geodesics bordering any other
triangle t = g(ti) will be associated with the reflections gpg−1, gqg−1, and
grg−1. Thus, if t is any triangle, we can unambiguously talk about the p-type
edge, the q-type edge, and the r-type edge of t. Furthermore, since the fixed
point subset of every reflection inG∗ must contain an edge, every reflection is
conjugate to one of p, q, and r. Note that gpg−1(θ(g)) = θ(gpg−1g) = θ(gp),
so right-multiplication of g by p amounts to crossing the p-type edge of θ(g).
Similarly, right-multiplication by q or r amounts to crossing the q-type or
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r-type edge, respectively. Therefore, a word in p, q, and r, corresponds to
a path of triangles on the surface and vice versa. For example, the word
pqpr corresponds to the path starting at ti, then crossing the p-type edge to
θ(p) next crossing the q-type edge to θ(pq), then crossing the p-type edge
to θ(pqp), and finally crossing the r-type edge to θ(pqpr). An element of Θ
can therefore be thought of as an equivalence class of words in p, q,and r
that end up at the same triangle. I.e., G∗ is a quotient of the free group
generated by p, q, and r and words determine the same triangle if and only
if the map to the same element of G∗. The closed paths starting at ti will
correspond to those words that equal the identity in G∗.
Now let us consider splitting at the mirror of FR in terms of the group

G∗ and the identification of paths with the words from G∗. Consider a word
w whose corresponding path crosses FR exactly once. If Σ\FR is path con-
nected, there will be another word v which never crosses FR such that w ≡ v
in G∗. In this case, wv−1 will be a closed path in G∗ which crosses FR ex-
actly once. Therefore, if Σ does not split at FR, then there is some closed
path of triangles in Θ which crosses FR an odd number at times. However,
the converse is also true, so Σ dos not split at FR if and only if there is
a closed path of triangles in Σ which crosses FR an odd number of times.
Conversely, Σ splits at FR if and only if every closed path of triangles in Θ
crosses FR an even number of times.
But how can we determine if a path of triangles crosses FR? Recall

that a path of triangles in Σ corresponds to a word in p, q, and r. That
is if θ(g0) = ti, θ(g1), · · · θ(gn) is a path of triangles, then it corresponds to
a word dn in p, q, and r, where dk = g−1

k−1gk. Then we cross FR between
θ(gk−1) and θ(gk) if and only if gk = Rgk−1. Therefore:

Proposition 5 Let t ∈ Θ, and let g ∈ G∗ so that t = θ(g). Then t and ti are
in the same component of Σ\FR if and only if there are d1 · · · dn ∈ {p, q, r}
such that g = d1 · · · dn in G∗ and d1 · · · dk �= Rd1 · · · dk−1 in G∗ for any
1 ≤ k ≤ n.

This approach suggests certain graph-theoretic algorithms to determine
if Σ splits at FR. Given a tiling Θ of a surface, construct a graph whose nodes
are triangles in Θ and whose edges are edges in Σ\ ∪ Θ. (This is the dual
graph described in Remark 2.) Then remove those edges corresponding to
edges in FR, and use a graph-theoretic algorithm to determine whether the
graph is still connected. Furthermore, since the graph is based on a group,
we can use certain properties of the graph to speed up the processing. For
instance, since G∗ is finite, every element of G∗ has finite order, so we can
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construct large cycles in the graph by repeating the same path until we
arrive at the identify node.
An algorithm using the dual graph which may be easily translated into a

group theoretic algorithm is the following. Let X0 = {ti} Let X1 be the set
of neighbors of triangles in X1 which are not obtained by crossing FR. From
the previous discussion these will be {pti, qti, rti}\{Rti}. Having defined Xn

let us construct the neighbours of the various gti not obtained by crossing
FR. For gti this will be the set {gpti, gqti, grti}\{Rgti}. Thus

Xn+1 = Xn ∪
⋃

gti∈Xn

{gpti, gqti, grti}\{Rgti}.

We will know that we cannot add any more triangles without crossing FR

when |Xn+1| = |Xn| . At this point ⋃
t∈Xn

t is the path component of the
base triangle in Σ\FR and FR will separate if and only if |Xn| = |G∗|

2 .
For practical implementation using Magma we just keep track of the group
elements Yn = {g : gti ∈ Xn} and just compute

Y0 = {i}, Yn+1 = Yn ∪
⋃

g∈Yn\Yn−1

{gp, gq, gr}\{Rg}. (8)

Moreover we need only construct |Yn| until |Yn| = |Yn−1| or |Yn| > |G∗|
2 . We

formulate this as a theorem.

Theorem 6 Let G∗ be the full tiling group of a surface Σ, let R be a reflec-
tion on Σ and let all other notation be as above. Then Σ, does not splits at
R if and only if |Yn| > |G∗|

2 for some n.

Example 7 Let us consider the (2, 4, 4) toral examples. Relabel the vertices
so that l = 4, m = 2 and n = 4. as suggested by the 45 − 90 − 45 triangle
at the front of the torus. The elements a2b and bc2 are a pair of orthogonal
translations of the torus of the same order. They must be of the same order
since

a(a2b)a−1 = a−1ba−1 = bcbbc = bc2

because a−1 = bc from 1 The group G the has the structure Z4 �(Zn ×Zn) =
〈a〉� (

〈
a2b

〉× 〈
bc2

〉
). It follows that there are |G∗| = 8n2 triangles. Pictures

of the tiling for n = 1, 2 are given in Figures 4 and 5 below. Now let
us apply the algorithm to the three cases with n = 1 and R ∈ {p, q, r}.
By manipulating the equations a2b = bc2 = abc = 1 we get b = a2 = b,
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c = a, p = qa3, r = qa2 and hence G∗ = 〈q〉� 〈a〉 . We get the following table
which shows that p does not split but q and r do split.

p q r

Y0 {id} {id} {id}
Y1 {id, q, qa2} {id, qa2, qa3} {id, q, qa3}
Y2 {id, q, qa2, a, a2, a3} {id, qa2, qa3, a} {id, q, qa3, a3}
Y3 {id, q, qa2, a, a2, a3, qa, qa3} {id, qa2, qa3, a} {id, q, qa3, a3}

Fig. 4: (2,4,4) tiling - 8 triangles Fig. 5: (2,4,4) tiling 32 triangles

Unfortunately, at this time there is no efficient fully group-theoretic al-
gorithm to determine if a tiling splits. The algorithm above works well for
small groups but works more slowly for large groups, and seems to be inef-
fective for families of groups. For instance, the method used in to determine
separability for PSL2(q)-Hurwitz actions in [2] works for an infinite family
but has limited applicability. Furthermore, there is as yet no reliable way
to produce tilings which split at a mirror, except in special cases such as
hyperelliptic curves. Since splitting becomes rarer as the genus of the sur-
face increases, it is not practical to simply produce random tilings and hope
that some of them will split. A more systematic way of producing splitting
tilings is needed. This topic will occupy the remainder of the paper.

3 The universal cover and fundamental group

Since Σ is a surface, it must have a universal cover U . Furthermore, the
geodesic, kaleidoscopic tiling by triangles Θ on Σ must lift to a geodesic,
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kaleidoscopic tiling by triangles Θ′ on U . What is the tiling group Λ∗ of
this tiling? Like the tiling on Σ, it is generated by the three reflections
surrounding the base triangle. As for the relations, a word in p, q, and r is
equal to the identity in Λ∗ if and only if the path in Σ corresponding to the
word is closed and homotopic to the identity path.
Therefore, our strategy for building the relations for Λ∗ will consist of

defining certain small path deformations which, when combined, can be used
to build any homotopy of paths. Suppose that we have some homotopy of
paths. Such a homotopy can be built from small transformations, each
transformation occurring within some ε-ball. If ε is small enough, then
there are only two changes such a small deformation can accomplish: it can
move across an edge and back, or it can move around a vertex.
Now we try to determine the group relations resulting from those two

operations. If we move across an edge, say a p-type edge, and back, it
corresponds to multiplying by p twice on the right. Therefore, we get the
relation p2 = 1. Similarly, q2 = 1 and r2 = 1. If we move around a vertex, say
a vertex with p-type and q-type edges radiating out of it, it corresponds to
right-multiplication by pqpqpq · · · pq. Therefore, we get the relation (pq)l = 1
for some l ∈ N. Similarly, (qr)m = (rp)n = 1 for some m,n ∈ N. Note that
these can also be proven geometrically, see [?]. The following is well known
though we do not prove it here.

Theorem 8 Let Λ∗ be the tiling group generated by an (l,m, n)- triangle on
a simply-connected surface. The Λ∗ has the presentation

Λ∗ = 〈p, q, r|p2, q2, r2, (pq)l, (qr)m, (rp)n〉.

The subgroup G∗ will be a quotient of Λ∗, with the extra relations re-
sulting from closed paths in Σ which are not homotopic to the identity.
Specifically, if we let Γ be the set of all x ∈ Λ∗, where θ(x) is a triangle in U
whose image in Σ is the base triangle ti, then Γ � Λ∗ and G∗ = Λ∗/Γ. Let
ϕ : Λ∗ −→ G∗ be the resulting homomorphism and let

Γ −→ Λ∗ ϕ−→ G∗

be the corresponding exact sequence. Then θ(ϕ(x)) in Σ is the image of
θ(x) under our covering map.

Notation 9 Sometime we will want to use similar notation (or even the
same!) for elements of Λ∗ and there images. If the is a strong need to avoid
confusion we denote the image ϕ(x) for x ∈ Λ∗ by x.
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But what do universal covers have to do with splitting? The following
theorem explains our interest in this subject:

Theorem 10 Any kaleidoscopic, geodesic tiling by triangles of a simply-
connected surface splits at every mirror.

Proof. Let U be a simply connected surface. Let Θ′ be a kalei-
doscopic, geodesic tiling of U by triangles, and let Λ∗ = 〈p, q, r|p2, q2, r2,
(pq)l, (qr)m, (rp)n〉 be its tiling group. We claim that every closed path in
Λ∗ crosses every mirror an even number of times. Specifically, we claim that
each of the six paths specified by the relations crosses every mirror an even
number of times.

First, consider the p2 word. It corresponds to a path starting at the
identity and crossing Fp twice. This path crosses every other mirror zero
times, so it crosses every mirror an even number of times. The situation
with the q2 and r2 words is similar.
Now consider the (pq)l word. When crossing from the (pq)k to the (pq)kp

triangle, we cross the mirror corresponding to the reflection (pq)kp(pq)−k =
(pq)2kp.When we cross from the (pq)k−1p to the (pq)k triangle, we cross the
mirror corresponding to the reflection (pq)kp−1(pq)1−k = (pq)2k−1p. There-
fore, the mirrors we cross are p, (pq)p, · · · , (pq)2l−1p. However, (pq)l = 1,so
this sequence of mirrors is the same as p, (pq)p, . . . , (pq)l−1p, p, (pq)p, . . .
, (pq)l−1p.
However, (pq)l = 1, so this sequence of mirrors is the same as p, (pq)p,

· · · , (pq)l−1p, p, (pq)p, · · · , (pq)l−1p. Therefore, the (pq)l path crosses each
of the mirrors in {p, (pq)p, · · · , (pq)l−1p} twice, and every other mirror zero
times, so it crosses every mirror an even number of times. The situation
with the (qr)m and (rp)n words is similar.

Remark 11 The above theorem can also be proven by using the classifica-
tion theorem of the universal covers an the characterization of the reflections.

Suppose that Σ does not split. Since the tiling of U splits at every mirror,
we must somehow lose something in the transition from U to Σ. Specifically,
we just have somehow chosen the ”wrong” normal subgroup Γ. If we can
somehow pin down what went wrong with Γ, we might be able to construct
normal subgroups which work, and thus construct tilings that split. In the
next section we develop a tool for investigating this.
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4 Parity functions and the wreath product

Recall that a surface splits at a mirror FR if and only if every path of triangles
from the identity triangle to itself crosses the mirror an even number of times.
Since U splits along every mirror, any closed path of triangles in Θ′ must
cross every mirror an even number of times.
More formally, if w = d1 · · · dn is a word in p, q,and r, and R is a

reflection in Λ∗, we can define the number of times w crosses FR to be
|{k|Rd1 · · · dk−1 = d1 · · · dk}|. Let R be the set of reflections in Λ∗. Then,
for every word w, we obtain at a function ψw : R → Z2 given by ψw(R) =
|{k|Rd1 · · · dk−1 = d1 · · · dk}| mod 2. Based on our previous arguments, we
would then expect that ψw(R) = 0 for all the R ∈ R whenever w ≡ 1 in Λ∗.
Another way to calculate ψw(R) is the following. Let ti = t0, t1, . . . , tn

be the sequence of triangles encountered in the triangle path, i.e., tk =
d1 · · · dkti. Let ιk = 0mod 2 if tk and ti are in the same component of U\FR

and ιk = 1mod 2 otherwise. Note that this can be done on any surface as
long as Σ splits along the reflection. Now the path crosses FR as we go from
tk to tk+1 if and only if ιk+1 − ιk = 1mod 2. The total number of times that
the path crosses FR is

∑n−1
k=0 ιk+1 − ιk = ιn − ι0. Thus the ψw(R) depends

only on the last triangle on not on the path to get there. Now, let v and w
be two words in p, q, and r such that v ≡ w in Λ∗. Then vti = wti and hence
ψv(R) = ψw(R). Thus, if x is any element of Λ∗, we can define a function
ψx : R → Z2, where ψxR) = ψw(R) for all words w equivalent to x in Λ∗.
Now, if R is a reflection in G∗ then ϕ−1(R) consists of certain reflections

and certain glide transformations. The reflections are all those in geodesics
that map to FR. The glide transformations consist of compositions of some
reflection in a geodesic in ϕ−1(R) and translation along the geodesic by some
element of Γ. Let RR be the set of reflections in ϕ−1(R). Let w is a word
in p, q, and r, in Λ∗ and w, p, q, and r the corresponding elements in G∗. By
lifting the path of triangles on Σ defined by w then the number of number
of times w crosses FR in Σ will be the number of times that w crosses any
FS in U , where S ∈ RR, i.e.,

∑
S∈RR

ψw(S).
But Σ fails to split if and only if there is some word w equivalent to 1

in G∗ which crosses FR an odd number of times. A word is equivalent to
1 in G∗ if and only if it is equivalent to an element Γ ⊆ Λ∗, so Σ fails to
split if and only if there is some word w equivalent to an element in Γ which
crosses mirrors corresponding to geodesics in RR an odd number of times.
We obtain.

Theorem 12 The surface Σ splits at R if and only if Σ
S∈RR

ψx(S) = 0 for

14



all x ∈ Γ.
Constructing tilings that split is simply a matter of constructing normal

subgroups of Λ∗ which have this property. Since we are interested in tilings of
surfaces of finite genus which split, we should also add the extra requirement
that our normal subgroups have finite index in Λ∗. Unfortunately, Λ∗ is a
non-abelian infinite group with an infinite number of normal subgroups.
Furthermore, checking every element of such a subgroup to see if it satisfies
our condition is a difficult task, given that the number of such elements if
infinite.
Since random generation of such normal subgroups seems impossible, we

must find some other way of creating them. For instance, given a normal
subgroup Γ which does not work, can we construct another normal subgroup
which does? Suppose that Σ does not split along some mirror FR. Then Γ
must contain some element x such that Σ

S∈RR

ψx(S) �= 0. Our plan is simply
to throw out these bad elements. We will do that in the next section, but
before moving on we will prove a cocycle property of the parity functions.

Theorem 13 Let notation be as above. Then

ψxy(S) = ψx(S) + ψy(x−1Sx) (9)

for all x, y ∈ Λ∗ and all S ∈ R.

Proof. We will proceed through a bizarre sort of induction on y. Our
plan is to first show that ψxd(S) = ψx(S)+ψd(x−1Sx) whenever x ∈ Λ∗ and
d ∈ {p, q, r}, and then to show that the formula works for (x, yd) whenever
it works for (x, y).

Note first that ψd(S) = Xd(S) = { 1 S = d
0 S �= d

, since one path from

the identify triangle to the d triangle is simply 1, d. Now, suppose that
we are at the x triangle, and we cross the d-type edge. Then we have
crossed over the xdx−1 mirror to the xd triangle, so ψxd = ψx+Xxdx−1 . But
Xxdx−1(S) = Xd(x−1Sx) = ψd(x−1Sx) for all S ∈ R. Therefore, ψxd(S) =
ψx(S) + ψd(x−1Sx) for all S ∈ R.
Now suppose that ψxy(S) = ψx(S) + ψy(x−1Sx) for some x, y ∈ Λ∗and

all S ∈ R. Then

ψx(yd)(S) = ψ(xy)d(S)

= ψxy(s) + ψd(y−1x−1Sxy)

= ψx(S) + ψy(x−1Sx) + ψd(y−1x−1Sxy)

= ψx(S) + ψyd(x−1Sx).
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Therefore, by induction ψxy(S) = ψx(S) + ψy(x−1Sx) for all x, y ∈ Λ∗ and
S ∈ R.
There is another way of looking at cocycle property given in the previous

theorem. Consider the function ϑ : Λ∗ → SR (permutation group ofR) given
by ϑ(x)(S) = x−1Sx. Then ϑ is a homomorphism, so we can define a wreath
product Λ∗�Z2 whose multiplication is given by (g1, ψ1)(g2, ψ2) = (g1, g2, ψ3),
where ψ3(S) = ψ1(S)+ψ2(ϑ(g1)(S)) = ψ1(S)+ψ2(g−1

1 Sg1). If ψ1 = ψg1and
ψ2 = ψg2 , however, we get that ψ3 = ψg1g2 . Therefore, the set of all (g, ψg)
where g ∈ Λ∗, forms a subgroup of Λ∗ � Z2, isomorphic to Λ∗.

Notation By the way, for notational clarity, we will from now on write
gψh(S) instead of ψh(ϑ(g)(S)).

Remark 14 Note that ψid = 0, so that 0 = ψid = ψgg−1 = ψg + gψg−1 . It
follows that

ψg−1 = g−1ψg. (10)

Using this formulae we further obtain:

ψgtg−1 = ψg + gψtg−1 (11)
= ψg + g(ψt + tψg−1)

= ψg + gψt + gtg−1ψg.

5 The Construction of ΓR and Γ̃.

Definition 15 Let ΓR be those elements x of Γ such that Σ
S∈RR

ψx(S) = 0.

Intuitively, ΓR should be a subgroup of Γ, and it should be of index 2
(we will eventually prove these facts.) Unfortunately, it is not clear whether
or not ΓR is normal. We need to determine whether ψtxt−1(S) = 0 (for
t ∈ Λ∗) when ψx(S) = 0. To do this, we need some way of calculating ψtxt−1

in terms of ψx. (Such a tool would also help us prove that ΓR ≤ Γ and that
|Γ : ΓR| = 2.) The tool we need is given in equation 9 of Theorem 13.

Proposition 16 Let notation be as above. Then ΓR is a subgroup of Λ∗.

Proof. Let g, h ∈ ΓR. Then ψgh = ψg+gψh. But x ∈ RR ⊆ ϕ−1(R) im-
plies that g−1xg ∈ ϕ−1(ϕ(g−1xg)) = ϕ−1

(
ϕ(g)−1ϕ(x)ϕ(g)

)
= ϕ−1(ϕ(x)) =

ϕ−1(R), since ϕ(g) = 1, by definition. Furthermore, g−1xg must be a reflec-
tion since x is, so g−1xg ∈ RR. Therefore,ϑ(g) permutes the elements of RR.
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So Σ
x∈RR

(gψh)(x) is even since Σ
x∈RR

ψh(x) is. Thus, Σ
x∈RR

(ψg + gψh)(x) =

Σ
x∈RR

ψg(x) + Σ
x∈RR

(gψh)(x) is also even, so gh ∈ ΓR and ΓR is a subgroup.

Proposition 17 The index of ΓR is given by [Γ : ΓR] = 1 if Σ splits at FR,
and [Γ : ΓR] = 2 otherwise.

Proof: If Σ splits at FR, then every closed path of triangles in Θ crosses
FR an even number of times. Thus, any path of triangles in Θ′ from the
identity to some element of Γ crosses geodesics in RR an even number of
times. Thus ΓR = Γ, so [Γ : ΓR] = 1.
If Σ does not split at FR, then there is some word w whose corresponding

path of triangles in Θ is closed and crosses FR an odd number of times. Let
g be the element of Λ∗ equivalent to w. Then g /∈ ΓR. Suppose that h ∈ Γ
but h /∈ ΓR. Then ψgh = ψg + gψh. But ϑ(g) simply permutes the elements
of RR, so

∑
S∈RR

gψh(S) =
∑

S∈RR

ψh(S) = 1, and so

∑
S∈RR

ψgh(S) =
∑

S∈RR

ψg(S) +
∑

S∈RR

gψh(S) = 1 + 1 = 0.

Therefore, gh ∈ ΓR whenever h ∈ Γ and h /∈ ΓR, so [Γ : ΓR] ≤ 2. But
g ∈ Γ\ΓR, so [Γ : ΓR] �= 1, and so [Γ : ΓR] = 2.
Unfortunately, ΓR need not be normal as we see in the following example.

Example 18 Let (l,m, n) = (5, 5, 5) so that Λ∗ = 〈p, q, r | p2, q2, r2, (pq)5,
(qr)5, (rp)5〉 and let Γ be the smallest normal subgroup containing rpqp.
Then G∗ = Λ∗/Γ ∼= D5, and G∗ is the tiling group of a (5, 5, 5) tiling on a
surface of genus 2. Let R = q. Then rpqp ∈ Γq, but (pq)(rpqp)(pq) /∈ Γq, so
Γq is not normal.

Since ΓR is not necessarily normal, we cannot take the quotient of Λ∗

by ΓR to find a tiling which splits. (Note that a covering of tiling ΣR =
U/ΓR −→ U/Γ −→ Σ exists but not every edge generates a reflection on the
covering surface, i.e., it is not kaleidoscopic.) All hope is not lost though:
we can take the quotient of Λ∗ by the core of ΓR. Hopefully, this will be a
tiling of a surface of finite genus which splits along R.
Let Γ̃ be the core of ΓR. Then Γ̃ is the intersection of all tΓRt−1, where

t ∈ Λ∗. To find a better description of Γ̃, we again turn to our parity func-
tions.
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Proposition 19 Let g ∈ Λ∗, and let S = ϕ(g)Rϕ(g)−1. Then gΓRg−1 =
ΓS .

Proof: If x ∈ RS ,then g−1xg ∈ ϕ−1(ϕ(g−1xg)) = ϕ−1
(
ϕ(g)−1Sϕ(g)

)
=

ϕ−1(R). But g−1xg is a reflection since x is, so g−1xg ∈ RR. Therefore,
ϑ(g)(RS) ⊆ RR. But ϑ(g)ϑ(g−1) is the identity map and ϑ(g−1)(RR) ⊂ RS ,
so ϑ(g) maps RS onto RR.
If t ∈ ΓR, then ψgtg−1 = ψg + gψt + gtg−1ψg by formula 11. But∑

T∈RS

gψt(T ) =
∑
T∈R

S

ψt(g−1Tg) =
∑
T∈R

R

ψt(T ),

which is zero since t ∈ ΓR. Also, ϕ(gtg−1) = ϕ(g)ϕ(g)−1 = 1, so conjugation
by gtg−1 simply permutes the elements of RS . Therefore,∑

T∈RS

gtg−1ψg(T ) =
∑

T∈RS

ψg(T ),

so ∑
T∈RS

(ψg + gtg−1ψg)(T ) = 0

Therefore, ∑
T∈RS

ψgtg−1(T ) =
∑

T∈RS

(
ψg + gψt + gtg−1ψg

)
(T ) = 0,

so gtg−1 ∈ ΓS .

Corollary 20 The subgroup Γ̃ is the set of all g ∈ Λ∗ so that
∑

T∈RS

ψg(T ) = 0

for all S conjugate to R in G∗.

6 Properties of G̃∗

Let G̃∗ = Λ∗/Γ̃, and let I = Γ/Γ̃. Then G∗ = G̃∗/I. Now let µ : G̃∗ → G∗

and ϕ̃ : Λ∗ → G̃∗ be the proper homomorphisms. Let p̃, q̃ and r̃ be the three
generating reflections of G̃. We claim that G̃∗ tiles a surface of finite genus.
Consider the covering map of U onto Σ.What is the preimage of a point

in Σ? Triangles tt, t2 ∈ �′ map to the same triangle in Σ if and only if
t1 ∈ Γt2. Therefore, we would expect that s1 and s2 map to the same place
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in Σ if and only if s1 ∈ Γs2. Assuming this is true, we could have constructed
Σ as the set of all Γ-orbits of U under the quotient topology.
Let Σ̃ be the set of all Γ̃-orbits of U , where the topology on Σ̃ is the

quotient topology derived from U . Then the map π : Σ̃ → Σ given by
π

(
Γ̃s

)
= Γs is a covering map, so Σ̃ is a surface covering Σ. Furthermore,

the geodesic, kaleidoscopic tiling � on Σ lifts to a geodesic, kaleidoscopic
tiling �̃ on Σ. Finally, if g ∈ G̃∗, then we can associate with g the trans-
formation on Σ̃ given by g

(
Γ̃s

)
=

(
ϕ̃−1(g)

)
s. The set of transformations

associated with elements of G̃∗ forms a group, which is in fact the tiling
group of �̃.
Now that we have constructed our tiling of our new surface, we would

like to check if it splits. Unfortunately, we constructed G̃∗ as a quotient of
two infinite groups, and find ourselves unable to do any computations. We
need a better representation of G̃∗.
Suppose that g1 and g2 are two distinct elements of G̃∗, but that µ(g1) =

µ(g2). How can we distinguish between g1 and g2? By Corollary 20, g1 and
g2 differ in the following ways: if we take h1 ∈ ϕ̃−1(g1) and h2 ∈ ϕ̃−1(g2),
then

∑
T∈RS

ψh1(T ) �= ∑
T∈RS

ψh2(T ) for some reflection S conjugate to R in G∗.

Therefore, we can label any element g of G̃∗ using µ(g) and the sequence
of

∑
T∈RS

ψh(T ), where h is any element of ϕ̃−1(g) and S ranges over everything

in the conjugacy class of R. More formally, let Π be the conjugacy class of
R in G∗, and define τ : G̃∗ → ZΠ

2 by τg(S) =
∑

T∈RS

ψh(T ), where h ∈ ϕ̃−1(g).

Then we can label any element g of G̃∗ by the ordered pair (µ(g), τg).
There is another way of looking at the parity functions τ. If w is a word

in p, q, and r, define τw : Π → Z2 to be the mirror-crossing parity function
for mirrors in Π. (We are doing the same thing we did to define ψ, but we
are doing it in Σ instead of U .) Suppose that g ≡ w in G̃∗, so that w ≡ h in
Λ∗ for some h ∈ ϕ̃−1(g). Then τg(S) = Σ

T∈RS

ψh(T ) = Σ
T∈RS

ψw(T ) = τw(S).

Therefore, τg is the parity function of the path in G∗corresponding to some
g-equivalent word in G̃∗.
Since we defined the τ parity functions and the ψ parity functions in the

same way, many of the results for ψ parity functions apply to the τ parity
functions. Specifically, if v and w are words, then τvw = τv+vτw. Therefore,
if x, y ∈ G̃∗, then τxy = τx + µ(x)τy (note that µ(x) and x are represented
by the same word. We write µ(x)τy instead of xτy since the domain of τy

lies in G∗ and not G̃∗.) As before, we can then describe G̃∗ as a subgroup
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of G∗ � Z2. Specifically, G̃∗ = 〈p̃, q̃, r̃〉, wherep̃ = (p,Xp), q̃ = (q,Xq), and
r̃ = (r,Xr). (Note that p, for instance, is not guaranteed to be in II, so Xp

may be the constant zero function.)
Based on what we have done, one might think that Σ̃ must split at

F
R̃
for any reflection R̃ in µ−1(R). Unfortunately this is not the case. Let

us apply the criterion in Theorem 12: Σ̃ splits at a mirror S if and only if∑
T∈RS

ψg(T ) = 0 for all g ∈ Γ̃.What guarantee do we have that ∑
T∈RS

ψg(T ) =

0 for all g ∈ Γ̃? We know that Σ
T∈RR

ψg(T ) = 0 for all g ∈ Γ̃, but µ−1(R)

may contain several reflections, so R
R̃
is not necessarily equal to RR .

Fortunately, it is often the case that Σ̃ does split. Through experimenta-
tion, it appears that surfaces constructed in this manner actually split much
more often than random surfaces and, as we shall see in the next section,
we already know certain properties of this splitting.

7 Splitting Properties of Σ̃

Our first result is a fundamental theorem which will be the basis for all other
theorems in this section. We constructed Σ̃ specifically so that this theorem
would hold, and it explains the purpose of all the work we have done thus
far:

Theorem 21 Let Fµ−1(R) =
⋃

S∈µ−1(R)
FS . Then Σ̃ splits at Fµ−1(R). Further-

more, g and h correspond to triangles in the same component of Σ̃\Fµ−1(R)
only if τg(R) = τh(R).

Proof. First note that τi(R) = 0 and that τx(R) = 1 for at least one
x ∈ G̃∗.We shall show that the only way to change τ(R) is to cross a mirror
corresponding to a reflection in µ−1(R).
Let g ∈ G̃∗, and let h = gd̃ = Sg, where d̃ ∈ {p̃, q̃, r̃} and S = gd̃g−1

is the proper reflection in G̃∗. Assume that τg(R) �= τh(R). We want to
show that µ(S) = R. Since d̃ = (d,Xd), τh = τg + µ(g)Xd. But τh(R) �=
τg(R), so Xµ(g)dµ(g)−1(R) = (µ(g)Xd)(R) = ψg(d) − ψh(d) = 1. Therefore,

R=µ(g)dµ(g)−1 = µ
(
gd̃g−1

)
= µ(S).

Conjecture 22 The set difference Σ̃\Fµ−1(R) has exactly two components.
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Not only does Σ̃ split at Fµ−1(R),but we know exactly what the compo-
nents of Σ̃\Fµ−1(R) are! Conjecture 22 makes the relationship between τ(R)
and components an if and only if relationship, since it leaves no room for
more than one τ(R) = 0 or τ(R) = 1 component.
Of course, µ−1(R) may consist of several reflections, so this theorem does

not force Σ̃ to split along any one mirror R̃ ∈ µ−1(R). However, there is
one case where Σ̃ must split along F

R̃
.

Corollary 23 Suppose that R̃ is the only reflection in µ−1(R). Then Σ̃
splits at F

R̃
.

If Conjecture 22 holds, then the converse is also true. Even if Conjecture
22 is false, examples where Σ̃ splits at F

R̃
and R̃ is not the only reflection

in µ−1(R) must be extremely rare, so Corollary 23 still provides a good test
for splitting when trying to generate tilings that split.
The following theorem provides a very simple way of showing that Σ̃

splits:

Theorem 24 If |kerµ| = 2, then Σ̃ splits at F
R̃
.

Proof. Assume that Σ̃ does not split at F
R̃
. Since |kerµ| = 2,

∣∣∣G̃∗
∣∣∣ =

2 |G∗|, so Σ̃ splits into exactly two components at Fµ−1(R). Moveover, each
component is of size |G∗| ,so there is exactly one preimage of every triangle
of G∗ in each component. Let S be the element of µ−1(R) that is not
R̃. Since Σ̃ does not split at F

R̃
, we must be able to move between the

two components of Σ̃\Fµ−1(R) without crossing F
R̃.
Therefore, there is some

a ∈
∼

G
∗
and d̃ ∈

{
∼

p,
∼

q,
∼

r
}
such that τa(R) = 0, τad̃

(R) =1, and ad̃a−1 �= R̃.

However, µ
(
ad̃a−1

)
= R, so ad̃a−1 must be S. Therefore, ad̃ = Sa, so

τSa(R) = 1. We claim that τS(R) = 1. Since τ
R̃
(R) = 1, we will get that S

and R̃ are in the same component of Σ̃\Fµ−1(R), a contradiction, since each

component of
∼

G
∗
contains exactly one copy of everything in G∗.

We know that τSa(R) = τS(R)+µ(S)τa(R). But µ(S) = R, so µ(S)τa(R) =
Rτa(R) = τa(R−1RR) = τa(R). Thus, τS(R) = τSa(R) − µ(S)τa(R) =
τSa(R)− τa(R) = 1− 0 = 1.
By the way, the converse of Theorem 24 is false, as the following example

shows.
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Example 25 Let G∗ = (Z4 × Z4) × Z2. Then G∗ is the tiling group of a
tiling of a genus 3 surface Σ (where |pq| = |qr| = |rp| = 4) which does not
split at Fp. The resulting Σ̃ is a genus 9 which splits at F∼

p
, but |kerµ| = 4.

The following theorem give us another group theoretic characterization
of splitting.

Theorem 26 The surface Σ splits at FR if and only if
∣∣∣G̃∗

∣∣∣ = G∗.

Proof. ‘Suppose that Σ̃ splits at FR. If t ∈ Γ, then ∑
S∈RR

ψt(S) must

therefore be even, so that ΓR = Γ. But Γ is normal in Λ∗, so Γ̃ = core(ΓR)
= core(Γ) = Γ. Therefore, G̃∗ = Λ∗/Γ̃ = Λ∗/Γ = G∗. Now suppose that
G̃∗ = G∗. Then Λ∗/Γ = Λ∗/Γ̃, so Γ = Γ̃. But Γ̃ ≤ ΓR ≤ Γ, so Γ = ΓR.
Therefore,

∑
S∈RR

ψt(S) is even for all t ∈ Γ, so G∗ splits at FR.

Corollary 27 The surface Σ splits at FR if and only if G̃∗ = |G∗|.

Even though Corollary 27 seems somewhat pointless and trivial, it ac-
tually accomplishes one of our stated goals. Recall that is no known fully
group-theoretic criterion to determine whether a tiling splits. However, The-
orem 13 is just that: it decides whether a tiling splits based on the order of
a certain subgroup of G∗ � Z2.

8 Further Questions

All attempt at analyzing separability more closely has resulted in more ques-
tions than answers. Here is a list of questions that are promising avenues of
attack on the separability question.

1. Find a fast algorithm that based on the ideas of Theorem 6 for deciding
separability. For instance if one can build a path from ti to pti that
does not pass through Fp then p is not separating.

2. See if there are any efficient graph-theoretic algorithms that determine
separability using the dual graph. The algorithm in Theorem 6 is
analogous to a breadth first search.

3. Is there a bound on the size of [G̃∗ : G∗].
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4. What is the structure of kerµ?

5. Can kerµ −→ G̃∗ −→ G∗ be identified with any of the homology covers
described in [1]?

6. Is there a quick way to compute G̃∗.

7. Prove or provide a counterexample to Conjecture 22

References

[1] S.A. Broughton, Kaleidoscopic Tilings on Surfaces, Rose-Hulman NSF-
REU Notes, June 1998.

[2] S.A. Broughton, E. Bujalance, A.F. Costa, J.M. Gamboa, G. Gromadski,
Symmetries of Riemann surfaces on which PSL2(q) acts as a Hurwitz
automorphism group, J. of Pure and Appl. Algebra, 106, (1996) 113-126.

[3] E. Bujalance and D. Singerman, The Symmetry Type of a Riemann Sur-
face, Proc. London Math. Soc. (3) 51 (1985) 501-519.

[4] A. H. M. Hoare and D. Singerman, Orientable Subgroups of Plane
Groups, Groups - St. Andrews, London Mathematical Society Lecture
Notes 71, (Cambridge University Press, 1982), 221-227.

23


	Rose-Hulman Institute of Technology
	Rose-Hulman Scholar
	6-6-1999

	Tilings which Split a Mirror
	Jim Belk
	Advisors:
	Recommended Citation


	99-02cover.pdf
	99-02direct.pdf

