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Abstract

Cwatsets were originally defined as subsets of Z¢ that are “closed with
a twist.” Attempts have been made to generalize them, but the general-
izations have failed to produce notions of subcwatset and quotient cwatset
that behave naturally.

We present a new, abstract definition that appears to avoid these prob-
lems. The relationship between this new definition and its predecessor is
similar to that between the abstract definition of “group” and its original
meaning as a set of permutations. To justify the broader definition, we
use small cancellation theory to prove a result analogous to the statement
that every group is isomorphic to some permutation group. After devel-
oping the notion of a quotient cwatset, we prove an analogue of the First
Homomorphism Theorem.

1 Introduction

1.1 History and Motivation

The term “cwatset” was coined in [5] to describe a certain type of subset of Z4
that has a “closure with a twist” property. The set

F = {000,110,101},
for example, is not a subgroup of Z3 since it is not closed. However,
F +110 = {110,000,011} = (1,2

and
F 4101 = {101,011,000} = F(1.3)

so IV is closed “with a twist.” Cwatsets were initially motivated by statistics,
but have since been studied purely for algebraic properties. Further background
is discussed by Biss [1].

The notions of cwatset morphism and subcwatset proposed in [1] and [2]
have the disadvantage that the homomorphic image of a subcwatset may not



be a subcwatset of the codomain. We will present an alternative definition that
solves this problem.

We also propose the first definition of a quotient cwatset. This requires us
first to abstract the definition of cwatset, as one needs to abstract the definition
of group to define quotient groups.

In the case of groups, the important structural information is the group’s
multiplication table. With regards to a cwatset, it seems to be a particular
transitive group action on the cwatset. This action, represented by a group
of permutations known as the “L-group” of the cwatset, contains all of the
structure of the cwatset. This allows us to define a cwatset abstractly, and not
specifically as a subset of Z¢. The precise definition will be given in Section 5.

A cwatset, as classically defined, is a subset of ZZ; however, the procedure
that produces the L-group relies only on the fact that Z¢ is a group. It is
natural, then, to ask what happens if we extend the definition of a cwatset to
an arbitrary group. We will explore such generalized cwatsets in Sections 3 and
4.

Returning to our analogy, we see that since every abstract group is isomor-
phic to some permutation group, the abstraction does not produce essentially
new groups. Similarly, we will show in Section 4 that the same is true of ab-
stracting generalized cwatsets.

In Section 5, we abstract the definition of a cwatset and develop the def-
inition of cwatset homomorphism in this abstract context. In Section 6, we
develop the definition of subcwatset, pointing out certain problems along the
way. Section 7 offers a resolution of these problems, and we arrive in Section
8 at the definition of a quotient cwatset, where we prove an analogue to the
First Homomorphism Theorem. Section 9 demonstrates that we can naturally
reformulate the definition of normality in terms of inner automorphisms.

1.2 Notation and Preliminaries

Sym(A) denotes the symmetric group on a set A, defined to be the set of all
bijections from A to itself. If n is a positive integer, then Sym(n) denotes the
symmetric group on some set of cardinality n.

We will adopt the convention of many group theorists to compose functions
from left to right: if f: A — B and g: B — C, then fg: A — C denotes the
composition map of f followed by g. Because of this, we generally write (a)f
instead of f(a).

If G is a group, g € G, and o € Aut(G), then we may write g* to mean
o(g).

2 Prior Work

Definition 2.1. Let C C Zg be nonempty, and let Sym(d) act on Z¢ by per-
muting the d components. We say C is a cwatset if for every x € C, there is
some ¢ € Sym(d) such that C° +z=C.



We first observe that 0 € C for every cwatset C, since if z € C and C7 +z =
C, then there is some ¢ € C such that

¢ +r=u=m,

implying that ¢ = 0. Now, since Sym(d) acts on Z¢ by automorphisms, we have
a semidirect product I' = Z¢ x Sym(d). Associating Z¢ and Sym(d) with their
isomorphic copies in I', we can write I' = Sym(d)Z4, and then can define an
action of I" on the set Z¢ by

z-(og) =2"+g

for 7,9 € Z¢ and ¢ € Sym(d). We next define the M-group of a cwatset C,
denoted M¢, to be the (set) stabilizer of C' under the action of I.

Lemma 2.2. If C C Z¢ is a cwatset, then Mc acts transitively on C.

Proof. 1t is sufficient to show that the element 0 € C can be mapped to an
arbitrary x € C by some element of M¢. For each x € C, there is by definition
some o € Sym(d) such that C - {gz) = C, so oz € M¢c. Now

0 (oz) =07 + 2=z,
as required. .}

We now define the L-group of a cwatset C, denoted L¢, to be the image
of the permutation representation of the action of Mg on C; hence, L¢ is a
transitive subgroup of Sym(C).

In [6], Smith attempted to generalize this definition to subsets of an arbitrary
group G through what he called a “gc-set.” His definition is equivalent to the
following:

Definition 2.3. Let G be an arbitrary group, and let C C G. We say that C
is a ge-set if for every x € C, there is some o € Aut(G) such that C°z = C.

It is clear that every cwatset is a ge-set, since Sym(d) acts on Z¢ by auto-
morphisms, so we can think of Sym(d) C Aut(Z¢). However, we quickly run
into a problem that Smith does not discuss. We can follow the same line of
reasoning as with cwatsets to construct an L-group of a gc-set. However, if C is
a cwatset, then the L-group of C as a cwatset can be different from the L-group
of C as a gc-set. The problem arises from the fact that a gc-set allows for any
automorphism of the group, while a cwatset only deals with automorphisms
generated by Sym(d).

For example, the set C = Z2 is a cwatset whose L-group is a Sylow 2-
subgroup of Sym(C). Viewed as a gc-set, however, the L-group of C is the
entire group Sym(C) since there are more automorphisms of Z2 to work with.
If the underlying structure of a cwatset is to be its L-group, then a cwatset is



a different object viewed as a gc-set. Accordingly, we will modify the definition
of a gc-set to accommodate this problem.

Nevertheless, this seems like the right track: In Z7, €' = {0,1,3} is a gc-
set with L-group isomorphic to the alternating group in Sym(3). As shown by
Goodwin and Lin [3], there is no cwatset with such an L-group. Thus, the ge-set
indeed provides a tool for constructing structurally new cwatsets.

3 Basic Theory

Definition 3.1. Let G be a group and A C Aut(G) be a subgroup. We say that
a nonempty subset C C G is a (G, A)-cwatset if for each x € C, there is
some o € A such that C°z = C.

Note that a classical cwatset C, that is, a cwatset according to Definition
2.1, is a (Z¢, Sym(d))-cwatset. If the groups G and A are understood, then we
simply call C a cwatset.

Now, the condition that C' be nonempty implies that 1 € C, since if z, o are
as above, then z € C' = C%z, so = y°z for some y € C, and hence y = 1.

It may happen that for a given ¢ € C, there are many automorphisms o
such that C?z = C, and in such a case, it is unclear whether there may be a
preferred automorphism. It is useful, then, to study the set

Mc ={(2,0)|C7z=C}CG x A

consisting of all such pairs that “work.” Note that C is a subgroup of G pre-
cisely when (z,1d) € M¢ for all z € C. In particular, any subgroup of G is a
(G, A)-cwatset.

We now give a more useful description of M¢. Since A C Aut(G), we have a
natural semidirect product I' = G x A, and we will identify G and A with their
isomorphic copies in I', writing I' = AG. We then can define an action of I on
G by

z-(0g) =29
forall z,g € G and ¢ € A.

Extending this action to the subsets of G, we note that for any subset C C G,
the (set) stabilizer I'¢ is set M¢ defined above. Since M¢ stabilizes C, the action
of I on G induces an action of M¢ on C. The group Mc is referred to as the
M-group of C.

Lemma 3.2. If C C G is a (G, A)-cwatset, then Mg acts transitively on C.
Proof. The proof is identical to that in the classical case (Lemma 2.2). O

Definition 3.3. Let C be a cwatset. The L-group of C, denoted L¢, is defined
to be the image of the permutation representation of the action of M¢ on C.



Note that if 0g € M induces the permutation y € Lo, then g =1 - . We
define the projection map n: Lg — C by

p—1-p
We now get the following correspondence.

Lemma 3.4. Let G be any group. Considering G to be a (G, A)-cwatset for
some A C Aut(G), suppose H C L 15 subgroup. Then the image of H under
s a (G, A)-cwatset.

Proof. Fix x € Hr, and let v € H with x = vr. By definition of the L-group,
there is some o € A such that oz € G x A4 induces the permutation v. Therefore

(Hrn) (ox) =(H7m)-v=(1-H)-v=1-(Hv)=1-H = Hn,
so Hr is a (G-cwatset. }

The group H is called a covering group for Hr and we say that Hr is
covered by H. We summarize the previous results in the following theorem.

Theorem 3.5. Let G be any group, viewed as a (G, A)-cwatset for some A C
Aut(G). Then C C G is a cwatset iff it is covered by some subgroup H C L.

Proof. Lemma 3.4 shows that all subgroups cover some cwatset. Conversely, a
cwatset C' is always covered by its L-group L¢. 1

4 How Many Cwatsets Are There?

Since every cwatset C determines some transitive subgroup Lo € Sym(C), we
pose the following natural converse: Suppose we started with some set C and
a transitive subgroup L € Sym(C). Does there exist some group G D C and
some subgroup A C Aut(G) such that C is a (G, A)-cwatset with L-group equal
to L? The answer, at least for finite sets C, is yes, and we present an even
stronger result.

Theorem 4.1. Let C be a finite set and let L C Sym(C) be a transitive sub-
group. There exists some group G 2 C such that C is a (G, Aut(G))-cwatset
with L-group equal to L.

Note that here we demand that the subgroup A C Aut(G@) be the full group
of automorphisms Aut(G).

Proof. We will actually construct the desired group. Writing n = |C| — 1, label
the elements of C as {1,a1,...,an}, and let X = {ay,...,a,}, with F = F(X)
the free group on the set X of generators. To each element o € Sym(C), we
define f, : F'— F by

fola)=(a-a)(1-0)7",



for all generators a € C, and extend this to a homomorphism of F' (note that
f#(1) =1 by the above formula). It is easy to check that each f, is a bijection.
Note that if o € Sym(C) and y € C, then

y-o=( o)1-0)7 (1-0)=y/"(1.0), (1)

50 (fo)(1-c) € F x Aut(F) acts like 0 on C.
Suppose we have a set of relations R such that the group G = (X'| R) has
the following properties:

1. The quotient mapping C — G is an injection.
2. For each o € L, f, induces an automorphism of G.

3. For each 7 € Sym(C) such that 7 ¢ L, f; does not induce an automor-
phism of G.

Let I' = GxAut(G). We claim that C is a (G, Aut(G))-cwatset with Lo = L.
First of all, property (1)} allows us to embed C in G, and property (2) implies
that (f,)(1 o) € I for all o € Sym(C).

Since L is transitive, for each x € C, there is some ¢ € L such that 1.0 = x.
By equation (1),

C'(fal')ZC‘U:C,
implying that C is indeed a (G, Aut(G))-cwatset.

Similarly, for each o € L, the element f,(1 o) € I induces the action of o
onC,s0 L C Le.

Conversely, suppose ¢ € Lg. Then there is some element ag € I' that
induces the action of ¢ on C; e, for all y € C,

y-o=y-(ag) =y%g,

SO

y* = (y-o)g~?

for all y € C. Since « is an automorphism,
1=1%=(1-0)g7},

so g = 1-0. We then see that « has the same action as f, on C, so o = f,, since
G = (C). Thus f, € Aut(G), so property (3) implies that ¢ € L, and hence
L=Lg.

The proof is then reduced to showing the existence of the set R, which is
asserted by the Lemma below. O

Lemma 4.2. Under the assumptions of Theorem 4.1, there exists a set of re-
lations R such that the group G = (X | R) has the following properties:

1. The gquotient mapping C — G is an injection.

2. For each o € L, f, induces an automorphism of G.



3. For each 7 € Sym(C) such that 7 ¢ L, f. does not induce an automor-
phism of G.

To find the proper set of relations R, we need some terminology from small
cancellation theory.

Let F be a free group on a set X of generators, and let R be a set of words of
F. We say that R is symmetrized if every element of R is cyclically reduced,
and for each r € R, all cyclically reduced conjugates of both r and r~! are in R.
If r,s € R are distinct elements, with » = ab and s = ac (with equality holding
letter for letter without cancellation), then we say a is a piece relative to the
set R. If the set R is understood, then we simply say that a is a piece. For a
fixed A > 0, the set R satisfies C’'()) if the following holds:

If r € R and r = ab where a is a piece, then |a| < Alr|.
We will use the following theorem (see, e.g., [4, Chapter V, Theorem 4.4]).

Theorem 4.3. Let F' be a free group. Let R be a symmetrized subset of F and
N the normal closure of R. If R satisfies C’(%), then every nontrivial element
w € N contains a subword s of some r € R with |s| > 1|r].

Proof of Lemma 4.2. If n = 1, then the lemma is trivial, so we assume that
n>1.

Let
100 n

w = H Haf-1o“+10i’
k=11=1
where the product is taken writing from left to right, and let S be the sym-
metrized set generated by {f,(w)|o € Sym(C)}. We claim that S satisfies
C'(%).

We need to show that for any o,7 € Sym(C), no cyclic permutations of
fo(w) and fr(w) (or their inverses) contain a common initial segment of length
greater than é of either’s size. We will check one such case.

Let o,7 € Sym(C) with o #r7and 1.0 =1-7s# 1,and let y =1 0.
We will show that no cyclic permutation of f,(w) and f,{w) contain a common
initial segment of length greater than % of either’s size. Suppose instead that
this is false. Then there is some subword v of both f,(w) and f,(w) with length

greater than -115 of either word. We will now analyze the structure of f,(w):

Let z; = a;-o. Since o is a bijection, we have z; # y for all 4, and so there is no
cancellation between each power of f,(a;) = z;y~!. Thus the only cancellation
occurs for the ¢ for which x; = 1, for which we get the string

—(k-10™4+10i+1
(e 1074106+1) 5

Ti-1Y 1



as a subword in f,(w). Note that the above holds true for 7 as well, and so
|fo(w)] = [f+(w)]. Since [v] > 35|f-(w)|, v contains some subword of the form

— . 3
Dk 107410, g

— (k10" +10i-+1 ~1yk-10"+10n
1y~ ¢ ) ) .

(z1y Tipr - (Tny

Because the power — (k- 10"+ 107+ 1) of y is found uniquely in f,(w), this sub-
word must match exactly with the corresponding subword in f;{(w}, implying
that z; = a; - 7 for all i. But this contradicts the fact that ¢ # 7, and hence
no cyclic permutation of f,(w) and f,(w) contain a common initial segment of
length greater than % of either’s size, as desired.

Now let R be the symmetrized set generated by {f,{w)|e € L}. Since
R C S and S satisfies C’(%), certainly R does as well. Let N be the normal
closure of R. We claim that the group G = F/N satisfies properties (1) - (3)
above.

Let 2,y € C, and suppose that z = y in G, so 2y~! € N. Since both z and
y are either letters or the identity, Jzy =1} < 2. If xy~! # 1 in F, then Theorem
4.3 implies that zy~! contains some subword s of some r € R with |s| > L|r|.
But all elements of R certainly have lengths greater than 5, so the subword s
would have length greater than 3, which is a contradiction since |zy~}| < 2.
Thus zy~! = 1 in F, so = = y, and hence property (1) holds.

Property (2) follows trivially from the definition of G. Now suppose that
for 7 € Sym(C) such that ¢ L, f, induces to an automorphism of G, i.e.,
fo(w) = 1 in G. By Theorem 4.3, f,(w) contains some subword s of some
r € R with |s| > L{r|. Thus some cyclic permutation w’ of f,(w) and 7/ of r
begin with the same subword s. But w’,r’ € S, and § satisfies C’(é), implying
that [s| < }|r|, a contradiction, so property (3) follows. ]

Question 4.4. Does Theorem 4.1 generalize to infinite sets?

5 Cwatsets and Homomorphism

Definition 5.1. Let X be a set with a special element 1 € X, and let M be a
group that acts transitively on X. We say that C C X is an (X, M)-cwatset if
there is some subgroup H C M that covers C, i.e., such that C = {1-u|p € H}.

Note that if G is a group, then every (G, A)-cwatset is a (G, Lg)-cwatset by
Theorem 3.5. Henceforth, unless otherwise specified, the term cwatset will be
used with reference to the above definition. The element 1 is referred to as the
identity element of X. As before, we define the map 7 : M — X by p+ 1 p.

Definition 5.2. Let C C X be an (X, M)-cwatset. The M-group of C, de-
noted Mc, is defined to be the set stabilizer of C under the action of M. We
then define the L-group of C, denoted L¢, to be the permutation representation
of the action of M¢c on C.



Note that since X is an (X, M)-cwatset, Mx = M. Therefore, we will write
(X, My) instead of (X, M). Also, these definitions coincide with the previous
definitions in the case of a (G, A)-cwatset.

Definition 5.3. Suppose C is an (X, Mx)-cwatset and D is a (Y, My )-cwatset,
and let ¢ : C — D. We say that ¢ is a homomorphism if there exists a group
homomeorphism ® : Lo — Lp such that the following diagram commutes:

LC__E__,LD

C _¢, D
In this case, ® is called a lift of ¢. An injective homomorphism s called a

monomorphism, a surjective homomorphism is called an epimorphism, and
a bijective homomorphism is called an isomorphism.

If ¢ : C — D is a homomorphism, the set
ker(¢) = {z € C'|¢(z) = 1}
is the kernel of ¢.

The analogous definition suggested in [1] replaces the L-groups L¢ and Lp
with the corresponding M-groups M¢ and Mp. In the case of classical cwatsets,
these definitions are equivalent, since L¢ is found isomorphically in Mg for
any classical cwatset C (its image in M¢ is known as the action group) [2].
However, this is not true in general, so the two definitions are not equivalent,
and we must therefore make a choice. A close reading of [1] and [2] shows that
the (equivalent) L-group statement is used. In light of this, we feel justified in
choosing the L-group for Definition §.3.

Example 5.4. Let C = Z; be a (Zy, Aut(Zz))-cwatset and let D = {0,2} CZ
be a (Z, Aut(Z))-cwatset. Note that Lo & Sym(2) = Lp, and so we obviously
have C = D. The cwatset D is Example 1.5 of [6], and we see now that it is
isomorphic to a classical cwatset.

Lemma 5.5. If ¢: C — D and ¢ : D — E are homomorphisms, then:
1. ¢ is a homomorphism.
2. ker(¢) = 1 iff ¢ is injective.
Proof. Immediate from the definition. O

Lemma 5.6. Let ¢ : C — D be a homomorphism of cwatsets with lift ® : Lo —
Lp. If ¢ is injective, then ® is injective.



Proof. Let p € ker(®). Then
L= pudm = png,

so um € ker(¢), and hence um = 1. Fix ¢ € C, and set y = - u. Since L¢ acts
transitively on C, there is some v € L¢ with - v = 1. Since p” € ker(®), we
have (u¥)n € ker(¢) =1, so

l=@)r=1-(v w)=z (w)=y v
We now have z = 1-v~! = y = -, so p = 1. Thus ker(®) = 1, as desired. [0

We would like the analogous statement to be true of surjectivity; that is,
we ask if ¢ is surjective, is ® surjective as well? Unfortunately, that does not
hold. For example, let D be any cwatset with Lp < Sym(D), and ¢ : C — D
a surjective homomorphism with ® : Lo — Lp surjective. We may now view
D as a (D,Sym(D))-cwatset, thus expanding its L-group. The map & is still
a homomorphism, but now it only maps onto the old Lp, and not the entire
group Sym(D).

Nevertheless, this concept is important, so we capture it in the following
definition.

Definition 5.7. Let ¢ : C — D be a homomorphism of cwatsets. We say that
¢ is totally surjective if ¢ is surjective and its lift & : Lo — Lp is surjective.

6 Subcwatset

The definition of a homomorphism paves the way for a provisional definition of
a subcwatset.

Definition 6.1. Let C be an (X, Mx)-cwatset. A subset B C C' is a subcwat-
set of C if it is an (X, Mx)-cwatset and the inclusion map i : B — C is a
homomorphism.

Lemma 6.2. Let C be an (X, Mx)-cwatset. If B C C is a subcwatset of C' and
A C B is a subcwatset of B, then A is a subcwatset of C.

Proof. This follows from Lemma 5.5. O

Suppose that groups G and H act on a set Q and that § : H — G is a
monomorphism. Then #(H) acts on € in two ways: first by inheriting the
action of GG, and second by the induced action of H. When these two actions
are the same, we say that 6(H) respects the action of H on .

Theorem 6.3. Let C be an (X, Mx)-cwatset, and suppose that B C C. Then
the following are equivalent:

1. B is a subcwatset of C.

10



2. B is an (X, Mx)-cwatset, and L¢ contains an isomorphic image of Lp
that respects the action of Lg on B.

Proof. First suppose (1), and let 1 : B — C be the inclusion with pre-lift
I: Lg — Le. By Lemma 5.6, I is injective, so L¢ contains an isomorphic
image of Lg. Now let b € B with 8 € Lp such that gz = b, and let p € Lp.
We have

b (ul) = (Bi) - (uI) = (BI)(uI)m = (Bp)Im = (Bu)mi = Br-p=b- p,

as desired.

Now suppose (2), and let I : Ly — L be an injective homomorphism such
that Lpl respects the action on B. We claim that I respects the injection
1:B— (. Let p € Lg. Then

plm =1-(pl) =1 p= pr = pmi,

80 Im = mi. Thus 7 is a homomorphism with lift I, and hence B is a subcwatset

Unfortunately, we now run into two significant problems.
Fact 6.4. The homomorphic image of a subcwatset need not be a subcwatset.

In fact, the isomorphic image of a subcwatset need not be a subcwatset.
Furthermore, this problem is not a consequence of our generalization, as the
following classical counterexample shows.

Writing a classical cwatset as a matrix whose rows are its elements, let

000 0 0000000
111 1 1111000
110 0 0011110

C=lo o1 1 |2™P=] 1100110}
010 1 1010011
1010 0101011

and let ¢ : C — D be defined by mapping row i of C to row ¢ of D; this is an
isomorphism [3]. Now, it is straightforward though tedious to show that

0 0 0

0
1
B= 0
1

1
1
0

O =

1
0
1
is a subcwatset of C, but

Bé =

= O e O
= O O
O = =D
O = = O
psd pe DO
—_—_0 O
o O oo

is not a subcwatset of D.

11



Fact 6.5. The homomorphic preimage of a subcwatset may not be a subcwatset.

In particular, the kernel of a homomorphism need not be a subcwatset.
Again, this is already a problem for classical cwatsets, as the following coun-
terexample [2] shows.

Let
000000O
111100
001 1 11 0
“=looo0o01 0 andD=<1>’
111000
01 1 1 11

and let ¢ : C — D be defined by mapping the first three elements to 0 € D,
and the second three to 1 € D. Here, the kernel

is not a subcwatset of C.

7 More Subcwatsets and Normality

Facts 6.4 and 6.5 make it clear that the definitions presented thus far are flawed.
What remains unclear is whether the problem lies in the definition of a sub-
cwatset or in that of a homomorphism. We propose a possible solution to this
problem through a modification of the definition of subcwatset.

Definition 7.1. Let C be an (X, Mx)-cwatset, and let B C C. We say that B
is a subcwatset of C if it is a (C, L¢)-cwatset.

We will see at the end of this section that this new definition fixes most
of the problems of the old one. For the remainder of this paper, we will use
Definition 7.1 when referring to a subcwatset. Note that this definition would
be impossible to formulate outside of our abstract setting.

If B is a subcwatset of C, then some subgroup of Le covers B. This is similar
to the “alternative definition” of a subcwatset presented in [2] with one crucial
difference. In that setting, the subcwatset B is still treated (using our notation)
as an (X, Mx)-cwatset, so Mg might not be contained in L. Here, however,
B is treated as a (C, L¢)-cwatset, meaning that Mg C L¢ by definition.

If B C C is a subset, then we define

Lg = {n€ Le|um € B}.
The following observation will be used in Section 9.

Lemma 7.2. Let C be a cwatset and B C C be a subcwatset. Then LchWB =
7
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Proof. The inequality L{ Mp C Lg is trivial. For the reverse inequality, we let
p € LG. Since Mp covers B, we know there is some v € Mg with vr = punr.
Then pv=lr = 1, implying that v~ € LY, so we can write u = (uv~')(v) €
L?MB‘ Thus LchB = Lg, as desired. ]

We are now ready to define normality.

Definition 7.3. Let N C C be a subset. We say that N is a normal sub-
cwatset of C if Lg is a subgroup of Lc. In this case, we write N aC.

Note that although we don’t require N to be a subcwatset of C, it is im-
mediate from the above definition that all normal subcwatsets are indeed sub-
cwatsets.

We also note that L{ is a subgroup of L for all cwatsets C, so 1 a C.
Furthermore, L& = L¢, so C < C.

Lemma 7.4. Let ¢ : C — D be a cwatset homomorphism with ® : Lo — Lp a
lift. Then

1. If B C C is any subset, then L§® C Lgd,. Suppose in addition that ¢ is
totally surjective. If B<AC and B 2 ker(¢), then LGP = L§¢.

2. If E C D is any subset, then LE®~1 = ngl.

Proof. Let B C C, and choose some p € Lg. Then
p®T = urd € By,

so u® € L, implying that LE® C LB
For the second part of (1), we need to show that Lg¢ C LG, so we let
v E Lg¢. We have v € B¢, so choose b € B such that vn = bg, and choose

g€ Lg such that b = Bn. Since ¢ is totally surjective, there is some p € L¢
such that v = pu®. Now

u®r = vr = b = frg = fPn,

s0
1= (u@)(80) 'm = (uB~")m = (uB~)md.
Thus
(uB™")m € ker(¢) C B,
so uB~t € L§. Therefore
p=(up"1)(p) € L

since L§ is a group. Since v = u®, we have v € L§®, as desired.
Now let E C D, and choose some p € Ls. Then

peelp & udreEeurpc Ee ur € B¢ @ pe LG, .,
which proves (2). ]

13



We now see the purpose our new definition of subcwatset:
Theorem 7.5. Let ¢ : C — D be a cwatset homomorphism. Then

1. If B is a subcwatset of C, then B¢ is a subcwatset of D. If, in addition,
¢ is totally surjective and B is a normal subcwatset that contains ker(g),
then Bo < D.

2. If E is a normal subcwatset of D, then E¢~! is a normal subcwatset of

C.

Proof. Let ® : Lc — Lp be a lift of ¢. If B be a subcwatset of C, then Mp®
clearly covers B¢, which proves the first part of (1). Assuming that ¢ is totally
surjective and B is a normal subcwatset that contains ker(¢), Lemma 7.4 (1)
implies that LE® = qus, so Bg a D, as desired.

For (2), Lemma 7.4 (2) implies that LG, _, = LZ®~". If EaD, then LE®~!
is a group and equals Lg¢-1, so Ep~1aC. O

Theorem 7.5 mirrors the corresponding result for groups, with two excep-
tions:

1. In the second half of part (1), we have the extra hypothesis that B D
ker(¢).

2. If E is a subcwatset of D, we do not know whether E¢~! is a subcwatset
of C.

The resolution of these issues is currently open.

8 Quotients

The idea of normality allows us to capture the structure of kernels of morphisms.

Lemma 8.1. If ¢ : C — D be a cwatset homomorphism, then ker(¢) < C.

Proof. Since 1 < D, Theorem 7.5 (2) implies that ker(¢) = 1¢~1 «C. O
We now work towards constructing a quotient cwatset.

Lemma 8.2. Let N «C be (X, Mx)-cwatsets, and let u,v € Mx. If pm = v,
then L%}p = Lgu.

Proof. Since pum = vm, pr~tr =1, s0o ! € LY C L. Thus L{u = L§v, as
desired. a

Definition 8.3. Let NaC be (X, Mx)-cwatsets, and choose x € X. The right
coset of N associated to z, denoted N*, is defined to be the set (LIC\}LL)TF for
some p € Mx with pr = .

This set is well-defined due to Lemma 8.2.
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Lemma 8.4. Let N <C. Then the set of right cosets of N in C partitions C'.

Proof. Lemma 8.2 implies that distinct right cosets of N are disjoint, because
the corresponding cosets of L%} are disjoint. Since every ¢ € C is obviously in
some right coset, the result follows. O

Also note that if N «C are (X, Mx)-cwatsets, then the right cosets of NV
in X partitions X as well. We introduce the notation C/N for the set of right
cosets of N in C (and similarly X/N for the set of right cosets of N in X).

Lemma 8.5. Let N<C. For every x € C, we have
IN| = |N¥].

Proof. Choose u € Le with ur = z. The map 8 : N — N7 defined by 8(n) =
n - u i8 a bijection, which implies that |N| = |[N7|. ]

If N 4 C, then the index of N in C, denoted |C : NJ|, is the number of
distinct right cosets of N in C. We now have an analog to Lagrange’s theorem.

Theorem 8.6. Let N<aC. Then |C| = |N||C : N|. In particular, if C is finite,
then |N| divides |C| and |C|/|N|=|C : N|.

Proof. The cwatset C is the disjoint union of [C : N| right cosets, each of
cardinality equal to |N}. ]

Theorem B.7. Let N <C be (X, Mx)-cwatsets. Then C/N is an (X/N, Mx)-
cwatset (with identity of X/N equal to N) whose M-group is Mc.

Proof. We must first provide a transitive action of My on X/N. Since My acts
naturally on the cosets of L§;, we simply take the projection of this action, i.e.,
for (LGu)m € X/N and v € Mx, we define

(LG u)m v = (LGu)m.

Transitivity of this action follows from that of the action of Mx on X.

We now have the appropriate objects for a cwatset, and we claim that the
group Mc¢ covers C/N. Let S = {N-pulp € Mc}, and we claim that S = C/N.
If 1 € Mg, then

N p=(L§)r-p= (LG € C/N,
so § C C/N. Similarly, if N € C/N for some ¢ € C, then N¢ = (L§ u)7 for
some 1 € Me with pur = ¢. Thus N¢ = N - u, and hence C/N C S. Tt follows
that S = C/N, and so C/N indeed is an (X/N, Mx)-cwatset.

The above argument shows that Mc € Mg y. To show equality, we let
uw€ Mo IfceC,thenc-pu e N® pCC,s0pu€ Mc, as desired. (]

Lemma 8.8. If N « C, then the canonical map p : C — C/N is a totally
surjective cwatset homomorphism.
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Proof. By Theorem 8.7, the M-group of C/N is precisely the M-group of C,
so we have a homomorphism P’ : Mc — L¢yn. Furthermore, this factors
through the quotient to a homomorphism P : Lec — Ly, since if two ele-
ments of M¢ induce the same permutation of C, then they certainly induce the
same permutation of C/N. By construction, P respects the map p, so p is a
homomorphism. |

Theorem 8.9. Let C be an arbitrary cwatset. Then the normal subcwatsets of
C are precisely the kernels of all homomorphisms defined on C.

Proof. This follows from Lemma 8.1, and the fact that N <C implies that N is
the kernel of the canonical homomorphism p: ¢ — C/N. O

Theorem 8.10 (First Homomorphism Theorem for Cwatsets). If ¢ : C —
D is a totally surjective cwatset homomorphism with kernel K, then there is
an isomorphism f : C/K — D with a lift ' : Lo;x — Lp that is a group
isomorphism.

Proof. Suppose that @ : Lo — Lp is a lift of ¢, and define f : C/K — D by
fKS) =(c)¢

for ¢ € C. We first show that this map is well-defined.

Suppose that K? = K¢ for b,c € C. We claim that b¢ = cé. Choose some
u,v € Lo such that ur = b and v = ¢. Since K = K*, we have L¢pu = LGv,
so ur~! € LE. This means that (uv=1)7 € K, so

1 = (w hrg = (™ )or = (u@)(v™"' )
= (um)- (V)" = (b) - (v) L.
Thus
bp =1 (v®) = vd®r = vre = co.

We now claim that f is a bijection. First choose some d € D. Since ¢ is
surjective, there is some ¢ € C such that ¢¢ = d. Thus f(K®) =cp =d, s0 f
is surjective. Now suppose that f(K®) = f(K°¢) for some b,c € C, so b = c¢,
and choose some u, v € Lo such that ur = b and v = ¢. Then

1 = by (v®)™! = (u@m) (v®)™}
= () B = () = (),
so (uv~Y)m € K. Thus uv~! € LE, so Kb = K°.

We next define a lift F': Lo g — Lp as follows: If u € Lgk, there is some
v € Lo that induces the action of p on C/K. We define

F(u) = vd.

We now show that this map is well-defined by showing that the action of v®
on D is independent of our choice of v. It will follow immediately that F is a
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homomorphism since ® is a homomorphism. For d € D, we choose § € Lp such
that 6w = d. Since ® is surjective, there is a v € L such that v® = 4. Note
that

(K" f = (ym)¢=d.

We now have

d-(v®) = ()T = (W) = ()re
(v )¢ = (KT™)f = (K7™ - p)f
1

(D)= -/,

which clearly does not depend on the choice of p.
We now claim that F respects f. Let 4 € Lg/k. From the above calculation,

i

H

pFPr = (W) f " wf= (K -p)f=uprf

as desired.

To show that F is a bijection, first let § € Lp. Since ® is surjective, there is
some v € Lo with y® = 6. If p € Lo/ denotes the action of v on cosets, then
F(u) = ~v® =6, so F is surjective. Injectivity follows from Lemma 5.6. O

9 Automorphisms and Normality

An isomorphism ¢ : C — C from a cwatset to itself is called an automorphism.
Note that if 4 € L, then the map ¢, : C — C defined by

pulz) =z p

is an automorphism: If ®, : Lc — L¢ denotes conjugation by p, then @, is a
lift of ¢,,, so ¢, is a homomorphism, and it is easy to check that it is a bijection
as well. An automorphism induced in this manner is an inner automorphism
of C.

Theorem 9.1. Let C be a cwatset and B C C be a subcwatset. Then B < C iff
B is fizred by all inner automorphisms of C.

Proof. First suppose that B is fixed by all inner automorphisms of C. Therefore
LY € N1.(Mg), so LY Mp is a group. By Lemma 7.2, that group equals L§,
so indeed B« (.

Now let B« (C. By Lemma 7.2, Lf C LS, so LgLf = Lg since Lg is a
group. Thus B - L{ = B; that is, B is fixed by all inner automorphisms. O
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