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ON THE ACTION OF WEIGHT-PRESERVING SETS
MATTHEW BADGER

ABSTRACT. We introduce weight-preserving sets of binary words.
Any transformation that respects the row and column weights of
a 0-1 matrix can be decomposed as a composition of two types
of actions on the matrix. We conjecture that weight-preserving
sets perform only one type of action, permutations of rows and
columns; i.e., weight-preserving sets are cwatsets.

1. INTRODUCTION

Let Zg denote the space of binary words in degree d; i.e., the set of
all expressions a = ajay - - - aq such that a; € {0,1}, for all 1 <3 < d.
The weight of a, denoted w(a), is determined by w(a) = #{i : a; = 1};
that is, the number of “1”s which appear in a. If b = b;by - - - b, is also
a binary word, let the sum of a and b, denoted a + b, be defined by

a-+b=cicr ey € 23, G = a; + b; (mod 2).
In degree 6, for example,

a = 011011 b= 110100 a+b=101111

w(a) =4 w(b) =3 w(a+b)=5

Given a set of binary words A C Z¢, a matriz representation of A
is obtained by interpreting the elements of A as rows in a 0-1 matrix;
the row and column weights of A are the row and column weights, re-
spectively, of a matrix representation of A. Expanding on the previous
example, for A = {011011,110100, 101111} C ZS$,

01101 1|4 11010 0]38
1101003 and 01101 1|4
10111 1}s5 101111]5
22 2 2 2 2 2222 2 2

are two equivalent matrix representations of A4; the row weights of A are
(in ascending order) 3,4,5 and the column weights of A are 2,2,2,2.2.2.
In the sequel, we occasionally drop the distinction between a set of
binary words and its matrix representations, when no confusion results.

Date: November 1, 2005.



2 MATTHEW BADGER

If B C Z% is another set, with the same row weights (in any order)
and column weights (in any order) as A, then we write w(A) = w(B).
Now we can define our object of interest.

Definition 1.1. Let A C ZZ. Then, A is said to be weight-preserving
if, and only if, w(A 4 a) = w(A), for all a € A. -

As an immediate consequence of the definition, observe that every
weight-preserving set A contains the word of all zeros, denoted by 0.
Indeed, for any a € A, 0 = a+ a € A + a; hence, A must contain a
row of weight zero, or equivalently, 0 € A. This observation implies
that the running example in degree 6 is not a weight-preserving set,
since that example does not contain a row of weight zero. Here is the
simplest non-trivial example of a weight-preserving set.

Example 1.2 (Friedman, {10]). Let F' = {000, 110,101} C Z3. Then,
simple inspection shows that the cosets of F' under addition,

-

0 0 0o 1 1 0}2
F=F+000= {11 02, F+110= (0 0 0] 0,
10 1]2 01 1]2
2 1 1 1 2 1
1 0 1] 2
F+101= [0 1 1|2,
0 0 0j0
11 2
have the same row weights (0,2,2) and column weights (1,1,2) as F.
Thus, F' is a weight-preserving set, in degree 3. -

In this paper, we wish to study the actions which send a matrix
representation of a weight-preserving set to that of its additive cosets.
For an arbitrary 0-1 matrix, the related question is, what are all of the
transformations of the matrix (rearrangements of the 0s and 1s) that
respect its row and column weights? In Section 2, we develop a class
of weight-preserving sets, the cwatsets, whose actions permute the rows
and the columns of the set. In Section 3, we then answer our question.
Any transformation that respects the row and column weights of a 0-1
matrix can be decomposed as composition of two types of actions on
the matrix: permutations of rows and columns, and matrix “four-flips”.
In Section 4, we conjecture that weight-preserving sets perform only
one type of action, namely permutations of rows and columns—every
weight-preserving set is a cwatset. To date, this conjecture has been
verified through degree five. In Section 5, we provide ancillary results
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in number theory, which refine previously known divisor conditions on
the order of cwatsets in a given degree. For arbitrary cwatsets, this is
the best possible improvement of the result.

2. CWATSETS AND PERMUTATION

An obvious class of weight-preserving sets is the collection of all
subgroups of Z§. Since a group G C Z¢ is closed and transitive under
addition, for any g € G, the rows of the coset G + g are a permutation
of the rows of G. For instance, if G = {00,10,01,11} = Z2 and g = 10,

0 0] o0 1 0] 1
o 1 0 1 . O O 0__ (1’2) (3,4)
G=1g 1] 1 Grg=1|) 1| p=G"""0n,
1 1|2 0 1|1
2 2 2 2

the coset G+ g exchanges the first and second, and the third and fourth
rows of G. Yet, permuting the rows of a 0-1 matrix changes at most
the order of the row weights, not their values; the column weights are
unaffected. Hence, for arbitrary G and g € G, w(G + g) = w(G).

Similarly, permuting the columns of a 0-1 matrix changes at most the
order of the column weights and leaves the row weights unaltered. In
view of our goal to study actions that preserve row and column weights,
this fact and the previous paragraph motivate the following definition.
Let A and B be two 0-1 matrices, with equal dimensions; then A and
B are said to be egquivalent, and we write A ~ B, if there exists a
permutation of rows 7g and there exists a permutation of columns 7¢
such that

A = B™R7C,
For sets of binary words, we have the following companion definition.

Definition 2.1. Let A C Z%. Then, A is said to be a cwatset if, and
only if, A+a~ A, forall a € A. !

Remark 2.2. Our definition of a cwatset is logically equivalent to the
definition given in {10]. Sherman and Wattenberg define the sets of
binary words that are closed with a twist, to study an extension of
Hartigan’s typical value theorem [1, 4, 9]. Since their introduction in
1993, cwatsets have been developed from an algebraic viewpoint, as a
generalization of groups, and from a graph theoretic point of view, as
a certain class of hypergraphs. Articles with results in these directions
include {2, 3, 5, 6, 7). -
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Following the reasoning of this section’s first paragraph, every group
G C Z% is a cwatset with 7o = id (only rows of a coset are permuted).
We have already seen a non-group cwatset, as well.

Example 2.3 (Example 1.2 Revisited). Let F' = {000,110, 101} C Z3.
We have previously shown that F is a weight-preserving set. In fact,
F'is a cwatset, since

0 0 0
F=F+000= |1 1 0| = Fl4= p3r23c

10 1]
[1 1 0]

F4+110={0 0 0 :F(l)Q)R(l,Z)C:F(1,2,3)R(1,2,3)c,
0 1 1]
[1 0 1]

F+101=1{0 1 1 :F(1’3)R(1:3)C:F(1»3>2)R(1,3,2)C’
0 0 0

where 7 and 7¢ denote permutations of rows and columns, respec-
tively. While it is enough for each coset to be written as just one
permutation of the original set, the example shows that more than one
permutation may exist for each coset. Although true in this example,
in general the permutation of rows need not equal the permutation of
columns. -

The next lemma summarizes our earlier discussion, stating that every
cwatset is a weight-preserving set. Finding a proof or a counterexample
of the converse statement remains open and is the topic of §4.

Lemma 2.4. If A C 7% is a cwatset, then A is wetght-preserving.

Proof. For fixed a € A, there exists a permutation of rows 7 and
a permutation of columns 7¢ such that A + a = A™"™. Yet, per-
mutations of the rows and permutations of the columns do not al-
ter the value of the row and column weights, respectively. Thus,
w(A 4+ a) = w(A™R"C) = w(A). O

In group theory, Lagrange’s Theorem provides a necessary divisor
theoretic condition for the existence of a subgroup of Z& with a given
order (set cardinality). An algebraic study of cwatset structure yields
the following parallel result for cwatsets, the proof of which we omit.
We present a technical refinement of this proposition in section 5.

Proposition 2.5 (Proposition 5, (10]). If A C Z¢ is a cwatset in degree
d and order n, then n|2%d! . -
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While Proposition 2.5 gives a necessary condition for the existence of
a cwatset with a given order, the condition is not sufficient. Consider,
for instance, the space of binary words in degree 5. Although 15/2%5!
and 30|255!, there are no degree 5 cwatsets (or weight-preserving sets)
with order 15 or 30. To check this, we refer the reader the appendix,
which contains an exhaustive list of all inequivalent weight-preserving
sets through degree 5.

3. WEIGHT-PRESERVING ACTIONS

In the previous section, it was shown that the action under addition
of certain weight-preserving sets is to permute the rows and columns
of their matrix representations. Unfortunately, not all actions, which
preserve row and column weights of a 0-1 matrix, permute only rows
and columns. For example, consider the action which sends U to V,

0000 070 0000 070
1000 1|2 1001 0|2
0100 1|2 0100 1|2
U=lo011 0|2 V=10011 o2
1011 1|y 101 1 1|4
0111 1]4 0111 1]4
2 28 8 4 2 28 4 8

by transposing the entries in the second row and right-most columns.
To see that this action is not the permutation of rows or columns,
examine the equality of the two weight 3 columns; while these columns
are equal in U, the columns are different in V. But any permutation
of rows or columns will send two equal columns to two equal columns.
Thus, permutations of rows and columns do not suffice to classify all
of the weight-preserving actions on 0-1 matrices.

In this section, we fill this gap and describe all weight-preserving
actions on 0-1 matrices. Such actions can be written as the product of
permutations of rows and columns, and the matrix “four-flips” defined
below.

Definition 3.1. Let A be an m x n 0-1 matrix, let 1 < ry < ry <m,
let 1 <¢; < ¢y <n,andlet A, be a 2 X 2 submatrix of A such that

10 01
A, = Aricy  Qrycy _ or '
el A
The transformation of A which transposes the rows of A, is said to be
a four-flip in A at rows r1,7, and columns ¢y, c,. ~
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Example 3.2. In the following example, S is the image of a four-flip
in R at rows 3,4 and columns 2,4:

0101 0]¢2 0101 0]2
R |00 01 1)2 g 0001 12
“lo110 1|3 “loo 11 1|3
1011 1|4 1110 1|4
122 383 12283

The four boldface entries in R now have “flipped” binary values in S.
Observe that the four-flip preserves the row and column weights of R,
with the weights in S appearing in the same order as those in R. Yet,
the four-flip sending R to S is not a permutation of rows or columns.
To verify this, consider the “1” entry in the column of weight 1. In R,
the “1” lies in the row with a “0” and “1” in the weight 2 columns. In
S, however, the “1” lies in the row with a “1” and “1” in the weight 2
columns. -

We require the following lemma, on certain products of four-flips.

Lemma 3.3. Let A be a 0-1 matriz. If f is a four-flip in A, then the
i-th row (column) of AT has the same weight as the i-th row (column)
as A. Moreover, if gy is a transformation of a submatriz Ag such that,

10 71 01 1
AS =10 * 1 i) g3 1 = 0 Ta,
1 0frg 0 1fr;
C1 C C3 €1 C2 C3
or, such that,
10 71 01 T
10«1 To 1 % 0 T
As = 1 % 0]rg 94 0 x 1| ry’
0 1fmr4 1 0fry
C1 Cy C3 C4 Ci Cy C3 C4
etc., wherery, ...,y are distinct rows (in any order) and cy,. .., cx are
distinct columns (in any order), then there exist four-flips fi,. .., Fe1

such that gr = fi o0+ 0 fr_1.
Remark. In this context, compositions are applied from left to right,
f1is a four-flip in Ay := A, and f;1, is a four-flip in A4;4; == A{‘.

Proof. First, we must show that four-flips do not change the order of
the weights of a matrix. Let f be a four-flip in A at rows ry, 7, and
columns ¢y, ¢;. Because the four-flip alters A at only the intersections
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of these rows and columns, it suffices to check that the weights do not
change under f, in the rows and columns of the submatrix A,,

A = [arm a""IC2J
s .

Oracy  Oryey

Since, without loss of generality,

_ |1 01 f o 1]1
As—[O 1}1 and As“L 0}1’
11 11

the weights are preserved.

Next, we must show that transformations defined by g, can always
be written as a product of £ — 1 four-flips. Proceed by induction on k,
where Ag is a k X k submatrix.

Base Case: If £ = 3, then

10 el 01 71
As=10 z 1|ry, Tg3 1 =z 0| r,.
1 0fr;3 0 1| rs

C1 Cp C3 €1 C2 C3

There are two subcases. If z = 1, apply a four-flip f; in the upper-left
corner first, followed by a four-flip f, in the lower-right corner second:

10 T1 01 T1 01 1
AS =101 1 T2 f1 1 01 T2 f2 1 10 T .
10 T3 10 T3 01 T3
Ci Cy C3 Cy Cg C3 C1 Cy C3

Otherwise, if z = 0, apply a four-flip £, in the lower-right corner first,
followed by a four-flip f; in the upper-left corner second:

10 T 10 1 01 r1
AS =10 0 1 T2 f1 010 Ta fz 1 00 Ty .
10 T3 01 T3 01 T3
C1 Cy C3 Ci Cy C3 C1 Cy C3

In both subcases, there exist four-flips fi, f, such that g3 = fi1o fa.
Thus, the base case holds.

Induction Step: Suppose there exists £ > 3 so that for all 3 < k& </,
any map of the type gy can be written as the product of k—1 four-flips.
We must show that a transformation of type go; can be decomposed
as the product of ¢ four-flips.
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Recall that

1 0 2 0 1 e
0 zo 1 T 1 20 O T2
- M »
Ag = 1 oy : Je+1 0 . =z
Yy gy 2 Te Z Ty Y Te
Z Y Tes1 Y z2] T
Cl1 Ca -+ Cp Cpq Ci Co -+ G Cpp

where y = 1—2 = £ (mod 2) and where z,,...,x, € {0, 1} are arbitrary.
We claim that, for some i, 1 <1 </,

' Gric; Griciyy | |1 0 01
() L a} _ [O 1] or [1 1
To verify this, assume that ({;) fails for 1 <4 < ¢ — 1. Then,

Ty = 0, otherwise (1) holds;
z3 = 1, otherwise ({2) holds;
...;and,
xp = y, otherwise ({,—_;) holds.

But z, = y implies that ({;) holds. Therefore, ();) is true for some 1,
1 <1</, as claimed. Fix any such i, and define f; to be the four-flip
in A at rows r;,7;41 and columns ¢;, ¢;.;. Then,

0 ] T1
0 U
U Tiy V Ti-1
Afl . vOT; | T T4
s u|lTiy v Ti41
VUV Tip2 U Tit2
u .z

L 2 Y ) Texr

€1 1 G-l G Gyl CGip2 ttt Ceql

where v = 1 —u =1 (mod 2) and where the = 1 — z are four-flipped.
Let a be an action on the upper-left submatrix of Af;l of type ¢; and,

let 3 be an action on the lower-right submatrix of Agl of type goy1_s.
Then, observe that

(@) As T (Agl)aoﬂ :
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By the induction hypothesis, there is a product of four-flips such that
a = fyo---o f; and a product of four-flips such that 8 = f; ,0---0 f,.
Therefore, by (©), gey1 = fio fao - fio fix1 0+« fo, as required. O

All weight-preserving actions, which respect the order of row and
column weights, can be written as a product of four-flips:

Theorem 3.4. Let A and B be 0-1 matrices, with equal dimensions.
If A # B and if the i-th row (column) of A has the same weight as the
i-th row (column) of B, then there exist four-flips f1,..., fu such that
A = B9 where g = fio0-+-0 fg.

Proof. Define the difference matrix Dg = B — A, interpreting A and B
as matrices over R. Then, D records the positions, at which B differs
from A, as follows. If A = (a;;), B = (by) and Dp = (d5), then

0, lf aij = bij
df =< +1, ifa;=0and b, =1
-1, ifa;; =1 and b; = 0.

(For the remainder of the proof, we write “+” and “—” as abbreviations
for “+1” and “—1”, respectively.) More generally, non-zero entries of
Dp represent exactly those entries of B, which if flipped, send B to A.
Our plan is to “remove” all the non-zero entries from D, by applying
four-flips (¢ = fi o fx) to B, until Dgs = 0 and 4 = BY.

Suppose that

' + —|r 10
S N R
C1 Co

where the notation signifies that Dp contains the specified submatrix,
formed by the intersection of rows r, 75 and columns ¢, cp. If f is the
four-flip in B at rows r1, 7 and columns ¢y, ¢y, then

0 0 T1 f 01
molodn (o)),
C1 Cy
Choose four-flips fi,--+, f; in B that correspond to non-zero entries

in Dp and such that, for all rows 71,7, and columns ¢y, ¢, this holds:
writing g; := fyo--- o f; and B; := B9,

() Dg, % [f j o

1 C
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In other words, remove any four-flips in B that correspond to the non-
zero entries in Dy and label the resulting matrices By and Dp,.

If Dp, = 0, we're done. Otherwise, differences between A and By
remain. Without loss of generality, suppose that Dp, contains a “+”
at row 71 and column ¢;. We must show how to remove the difference,
by applying four-flips in B,. Observe that the following property holds:

Fact A. In any row or column of Dg,, the number of
“4+” entries is equal to the number of “—” entries.

Proof. The i-th row (column) of By has the same weight
as the i-th row (column) of B, by Lemma 3.3. But the
i-th row (column) of B has the same weight as the i-th
row (column) of A, by the theorem hypothesis. Thus,
the weight of any row or column of Dpg, is zero. O

Below is a procedure to remove the “+” at row ry, column ¢; in Dp,,
by applying four-flips in B;. The output is a product of four-flips g,
such that By = B{* and such that Dp, contains fewer non-zero entries
than DB1 .

To start, we are given that

(‘1) .DB1 D [+] T1.
51
By Fact A, row r; and column ¢; must contain a “~” entry, as well.

Hence, there exist a row ry and a column ¢, such that

(W) Dp, D [+ _] n

—_— X 7"2.

€1 C2

Again, by Fact A, row 7, and column ¢, must contain a “+” entry.
However, the corner entry = # “+”, by (). Hence, there exist a row
r3 and a column ¢z such that

(43) Dp, D |~ - +|rm.
* 4+ 3T

€1 C3 C3
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To proceed, we examine the value of z3. If z3 = “~”, then we’re done:
by Lemma 3.3, there is a product of four-flips gy = f11 0 f;42 such that
0 0 =x*|nr
Dngl D {0 ~/0 0 To.
* 0 0 T3
€1 ¢ C3

Otherwise, z3 = 0 or +, and we repeat the argument. By Fact A,

row 3 and column c3 must contain a “~” entry. However, each of the
entries x # “ —” by (). Hence, there exist a row 74 and a column c4
such that
+ = e x|
— - + X |Ty
‘4 Dg D .
() B o/+ + o4+ — 1| T3
* * - T4| T4

C1 C2 3 4

To continue, we now examine the value of z4. If x4 = “4”, then we're
done: by Lemma 3.3, there is a product of four-flips g, = fiv10 fipa0
fj+3 such that

0 0 o *x|m
0 -0 0 =*{m
D% .
B - 0/+ 0 o+ O T3
* * 0 O T4
€t C2 C3 ¢4
Otherwise, x4 = — or 0, and we repeat the argument. ... By induction,

use Fact A and () to define (#s), (M), (#7), (Mg), ..., as necessary.
Since the dimension of Dp, is finite, the sequence (#;) must terminate.
(Otherwise, Dp, contains an infinite number of rows and columns.)
That is, there exists some ¢ > 5, for which there exists a product of

four-flips g2 = fj410 fj420 fi430 -0 fi4i-1 such that

+ - % % x] my 00 = x %1 ny
— % 4+ % T 0 « 0 = x| r

Dp, D | 4+ + ; Dg321 21%x 0 0 *| :
* %+ ok F| 7 * x 0 x 0] r_y
¥ % k% F | 7 * % % 0 0] r
G C - G G Ct C3 -** Cie1 G

This concludes the procedure.
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If Dp, = 0, we're done. Otherwise, differences between A and B,
remain. Use induction on the procedure above to produce a sequence
of four-flip products gs, ga, ..., as necessary such that for all 4 > 3,
B; = B}*, and Dg, contains fewer non-zero entries than does Dpg, ,.
Since each Dp, has a fixed and finite dimension, it follows that Dg, =0,
for some £ > 3. Thus, A = BY where g = gy0gy0- - -0g, is a composition
of products of four-flip. Therefore, a product of four-flips g = fio-- -0 fi
sends B to A, as claimed. 0

To recap, Theorem 3.4 states that if two 0-1 matrices A and B have
the same row and column weights, with weights appearing in the same
order, then there is a sequence of four-flips fi, ... fr that send B to A.
Therefore, the class of weight-preserving actions on a 0-1 matrix that
also preserve the order of row and column weights is exactly the set of
all legal products of four-flips in the matrix.

For arbitrary weight-preserving actions on 0-1 matrices, the following
generalization of the theorem easily follows. Any weight-preserving
action on a 0-1 matrix is just a permutation of rows or columns, followed
by a product of four-flips:

Corollary 3.5. Let A and B be 0-1 matrices, with equal dimensions.
If w(A) = w(B) and if A and B are not equivalent, then there exist a
permutation of rows mg, a permutation of columns mg, and four-flips
fiy- -+, fx such that A = B9 where g = mgmco fio---o fy.

Proof. Since w(A) = w(B), we can choose 7 and m¢ such that the
i-th row (column) of A has the same weight as the i-th row (column)
of By := B"™7¢, But A and B are not equivalent, so A # B;. Thus,
by Theorem 3.4, there exists a product of four-flips g, = fi0--- 0 fi
such that A = B{*. Therefore, A = (B™#"¢)9 as required. O

Next, let’s illustrate the procedure of Theorem 3.4 and Corollary 3.5,
using the example of U and V. Recall that U is sent to V,

0000 070 0000 070
1000 1|2 1001 0f2
0100 1|2 0100 1|2

U=l0011 0|2 V=10011 o2
1011 1|4 1011 1]4
0111 1]4 0111 1]y
2 2 3 38 /4 2 23 4 3

by a transposition 7 in the second row and right-most columns of U.
Since U and V have the same weights, but are not equivalent (as shown
above), apply the method of Corollary 3.5, with A=V and B = U.
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First, we must select a permutation of rows mg and a permutation of
columns 7o such that the weights of U™R™C appear in the same order
as the weights of V. Because the row weights of U are already in the
same order as the row weights of V, it is simplest to choose mp = id.
Also, since only two column weights are out of order, it is easiest to
choose the permutation that transposes these two columns; namely, the
permutation 7g = (4, 5)¢ that exchanges the fourth and fifth columns.
Under these choices, U™ equals

0

U(4v5)C o

O = OO
O O - OO
——_-0 OO
ft D bt e D
ket - O OO
Bl AL D WD

11
2 28 4 8

At this point, it is easy to verify that the weights of U(*5¢c do appear

in the same order as the weights of V. The next step in the corollary

is to apply Theorem 3.4, with A = V and B = U%%c. Following the

theorem’s procedure, we define the difference matrix D = U{4lc — v/,
by interpreting the entries of the matrices as real numbers. In this case,

0000

0
0
+ b
0

)

)
cococo
cooco
cocooco

0
+
0

0000 O

where “4” and “—” are abbreviations for “+1” and “—1”, respectively.
Our next goal is to “remove” all of the non-zero entries of D, by using
four-flips in B (= U®*%¢), In this instance, the difference matrix clearly
suggests applying a four-flip f at rows 3,4 and columns 4, 5:

0 0000

Df — , (U(4)5)C)f —_

[ B o R an B¥ e N e JY o]
OO OO OO
OO o OO Oo
(e 2 en B an Y e B e B oo}
o OO oo
O = OO~
—_0 0 =O
o OO
ot et O =
== O e OO
PRl D WD

2 2 3 4

Hence, we have decomposed the weight-preserving action 7 on U as the
product of a permutation of columns and a four-flip, 7 = (4,5)cf.

Co
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Remark 3.6. Permutations of rows and columns, and four-flips are
both necessary and sufficient to classify the weight-preserving actions
on 0-1 matrices. On one hand, some actions are not permutations of
rows and columns, such as the action of 7 on U. On the other hand,
some permutations of rows and columns are not a product of four-flips,
since permutations may change the order of weights. Thus, both types
of action are necessary for classification; the sufficiency of the two types
of action follows from Corollary 3.5. 4

4. Two CONJECTURES

Let’s return our discussion to the action of weight-preserving sets.
Examples 1.2 and 2.3 looked at a weight-preserving set I, which is sent
to its cosets under addition by permutations of rows and columns of
its matrix representations; i.e., F' is a cwatset. Section 3 demonstrated
that permutations do not cover all weight-preserving actions on 0-1
matrices. Do other actions occur in the weight-preserving sets, as well?

Recall that U = {00000, 10001,01001,00110,10111,01111} C Z3.
We verify below that U is a weight-preserving set. But while the matrix
representations of U are compatible with weight-preserving actions that
are not permutations of rows and columns (such as 7), the actions which
send U to its cosets under addition are as follows:

U + 00000 = U

U + 10001 = UG2DrAS)rLS) e —

— O = = O
—_O O OO
b OSSO
o e OO O
OO~ OO

U + 01001 = UI3r(AE)R(2S)C
U + 00110 = UMHrE5REE)R

U + 10111 = ULSrZARE6)R(1LS5)0
U +01111 = UOOrE25)RGAR2S5)c

(Note the permutations are relative to the matrix representation in §3.)

Hence, U is a cwatset. In other words, a weight-preserving action on

the matrix representations of U, which is not just a permutation of rows

and columns, does not take U to any of its cosets under addition. This

observation is circumspect. Is every weight-preserving set a cwatset?
We suspect an answer, in the affirmative:
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Conjecture 4.1. Let A C Z¢. Then, A is a weight-preserving set if,
and only if, A is a cwatset. -

Yet, a stronger conjecture is that the collection of equivalence classes
of weight-preserving sets is partitioned by row and column weights:

Conjecture 4.2. Let A, B C Z% be weight-preserving sets. Then, A
and B are equivalent if, and only if, w(A) = w(B). -

Remark 4.3. Observe that Conjecture 4.1 follows from Conjecture 4.2
and the following lemma. —

Lemma 4.4. Let A C Z2 be a weight-preserving set. The coset A+ a
15 a weight-preserving set if, and only if, a € A.

Proof. Let A be a weight-preserving set.
(<) Suppose that A+ a is a weight-preserving set. Since 0 € A +a,
there exists a; € A such that a;+a = 0. Thus, a = a; € A, as required.
(=>) Suppose that a € A. For any a; +a € A + a, it follows that
w((A+a)+ (ag + a)) = w(A + az) = w(A) = w(A + a), because A is
a weight-preserving set and a,a, € A. |

Remark 4.5. To date, we have verified that Conjectures 4.1 and 4.2
hold in degree d, for all 1 < d < 5. For degrees 1 and 2, the conjectures
are trivial. For degrees 3 through 5, the reader can compare the lists
of all inequivalent weight-preserving sets in the appendix with the lists
of all inequivalent cwatsets in [8]. ~

Motivated by the classification of weight-preserving actions on 0-1
matrices given in section 3, we suggest the following line of attack on
the two conjectures. Let A C Z4 be a weight-preserving set. Show
that if g = fi 0.+ 0 fi is a product of four-flips in A such that A9 is a
weight-preserving set, then g is a permutation of the rows and columns
of A. Then, Conjecture 4.2 follows from Theorem 3.5 and Lemma 4.4.
Of course, there is a possibility that Conjecture 4.2 fails, yet 4.1 holds.
One might prove Conjecture 4.1 directly using an induction argument
on the degree of weight-preserving sets.

The key application of Conjecture 4.1 is to speed up the detection
of cwatsets in computer code. Given a set of binary words A C Z4,
suppose that we want to determine if A is a cwatset. To check that
Definition 2.1 is satisfied, we must be able to enumerate the symmetric
group on d symbols. But as the degree d — oo, the order of Sy grows
superexponentially (O(d!)). This prevents the detection of cwatsets,
even in degrees as low as 9. On Conjecture 4.1, however, it suffices to
sort row and column weights of A+ a for comparison with the weights
of A, which is almost linear (O(nlogn)) in the dimensions of A.
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5. MISCELLANEOUS RESULTS

To close, we provide a technical refinement of the Lagrange type
theorem for cwatsets, cited in section 2. Recall that Proposition 2.5
states that, for an arbitrary cwatset A in degree d of order n,

) n|2%d!.

But n = |A| < 2¢, since A C Z¢. Hence, the power of 2 in the divisor
condition (b) is not sharp, in the following sense. If a(d) denotes the
highest power of 2 dividing d!, then

) n|29- g,
Yet, a(d) — oo as d — oco. Hence, the condition () improves over (b).

To make (4) sharp, we must lower bound «(d), for arbitrary d.

Definition 5.1 (Greatest Dividing Exponent). Let b > 2 be an integer.
We define 1 : N* — N such that 1,(n) := max{k : b¥|n}. ~

Lemma 5.2. Let m > 1, n > 1 be integers, p > 2 prime. Then,

(1) 9p(n) > 0 4f, and only if, p|n

(2) ¥hp(mn) = ¢p(m) + Yp(n)

(3) ¥o(p™) =n

(4) Yp(p™) = (" - 1)/(p - 1)
Proof. Claims (1), (2), and (3) follow easily from Definition 5.1 and the
Fundamental Theorem of Arithmetic. For Claim (4), we observe that

Yo(P™H) = Yp(p) + - + (07"
1
+p(p" +p) + -+ 1hp(2p7)
2
FoF Up((p = Dp" +p) + -+ (07

4

=%p(p) + - + % (p")

1
+Pplp) + -+ wp(pn)l
2
o p(p) + -+ (p”) 41

p

to find the recurrence relation

() ™) = p(") + 1, Yo (p°!) = (1) = 0.
Therefore, solving (x) yields 9,(p™!) = (p" — 1)/(p — 1). O
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Theorem 5.3. Letn > 2 be an integer. Then, 1 < n—1y(n!) < [lgn].
Both inequalities are obtained for an infinite class of n.

Proof. Fix an integer k£ > 1. By Lemma 5.2, 1,(2F!) = 25 — 1; i.e.,
(o) 2k — 4y (2F1) = 1,
Moreover, 13((251 — 1)1) = g (28F11) — 9y (25+1) = 2841 — 1 — (k4 1).
Yet, since k + 1 = [lg(2F+1 - 1)],
ok+l 1 w2((2k+1 - 1)!) - ﬂg(2k“ _ 1)-|

Thus, we know that the claimed lower and upper bounds for n — 1, (n!)
are achieved infinitely often. It remains to show that for each integer
ne (25,261 1), 1 <n —hy(n!) < lgn] =k + 1.

In fact, because 5 ((n + 1)) = 1)5(n!) for all integers n > 2, n even,
it suffices to show that for all n € Ag := {2F + 2,2k 4 4,... 2k _ 2}
that 1 <n —s(n!) < k+ 1. Proceed by induction on k.

Base Case: For k = 2, Ay = {6} and 6 — 1/,(6!) =2 € (1,3).

Induction Step: Suppose there exists k > 2 such that n — 1,(n!) €
(1,k+1), for all n € A. Tt is useful notation to define two sequences
(0)E and (n)Z,, by oy = 95(2% + %) and 7 = (2" + 24),
respectively. Then, by (o), the induction hypothesis states that
(o) O<2‘i"‘0’1—-"'—‘0'i<2k'—0'1°'“'—'0'2k——1

for all 1 <4 < 2871, Now, we must verify that n — ,(n!) € (1, k + 2),
for all n € Agy1. Again, by (o), this means we must show that

(o) O<2i——71-~-—7‘1-<2’“""1—'r1—~~-—7-2;c
for all 1 <i < 2F. But, for all 1 < ¢ < 2F-1

Ti = Tipgk—~1 = Oy, and Tok-1 = Uzk—ly — 1.
Therefore, (o) follows from (o), as required. a

Corollary 5.4. If A C Z& is a cwatset in degree d and order n, then

) n|2Medl 4!
Proof. By Proposition 2.5, we know that n|2%d!. However, n < 24, since
A C 74, and 2¢-M&d] ld!, by Theorem 5.3. Therefore, n|2“gfﬂd!. a

Remark 5.5. The power of 2 in (f) cannot be reduced for arbitrary d,
because the lower bound d — [lgd] < 1.(d!) = a(d) in Theorem 5.3 is
obtained for an infinite class of d, namely d = 25*1 — 1, k > 1. Hence,
Corollary 5.4 is the best refinement of Proposition 2.5 in this direction
for arbitrary d. At the same time, the upper bound in Theorem 5.3
shows that if A is a cwatset in degree d = 2%, k > 1, then |A|]2d!. ~
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APPENDIX
Small Degree Weight-Preserving Sets

The following lists contain representatives of all inequivalent classes
of weight-preserving sets through degree five. These were generated
using software developed by the author, which is available online at:

<http://www.pitt.edu/~mab39/awp>.
Degree 1: (2 Classes)
la. {0}
2a. {0,1} =71

Degree 2: (4 Classes)
la. {00}
2a. {00,10}



WEIGHT-PRESERVING SETS

2b. {00,11}
4a. {00,10,01,11} = Z2

Degree 3: (10 Classes)
la. {000}
2a. {000,100}
2b. {000,110}
2¢. {000,111}
3a. {000,110,101}
4a. {000,100, 010,110}
4b. {000,100,011,111}
dc. {000,110,101,011}
6a. {000,100, 010,101,011,111}
8a. {000,100, 010,110,001,101,011,111} = Z3

Degree 4: (22 Classes)

1a. {0000}

2a. {0000, 1000}

2b. {0000, 1100}

2¢. {0000,1110}

2d. {0000,1111}

3a. {0000,1100, 1010}

4a. {0000,1000,0100, 1100}

4b. {0000, 1000, 0110, 1110}

4e. {0000,1000,0111,1111}

4d. {0000,1100,1010,0110}

4e. {0000, 1100, 1010, 1001}

4f. {0000,1100,0011,1111}

4g. {0000,1100,1011,0111}

6a. {0000, 1000, 0100,1010,0110, 1110}

6b. {0000,1000,0110, 1110, 0101, 1101}

6¢c. {0000, 1100,1010,0101,0011,1111}

8a. {0000, 1000, 0100, 1100, 0010, 1010, 0110, 1110}

8b. {0000,1000,0100,1100,0011,1011,0111,1111}

8c. {0000, 1000,0110,1110,0101,1101,0011,1011}

8d. {0000,1100, 1010, 0110, 1001, 0101, 0011, 1111}

12a. {0000,1000,0100,1100,0010,1010,0101,1101,0011, 1011,
0111,1111}

16a. {0000, 1000, 0100, 1100,0010,1010,0110, 1110, 0001, 1001,
0101,1101,0011,1011,0111,1111} = Z4

19
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Degree 5: (53 Classes)
la. {00000}
2a. {00000, 10000}
2b. {00000, 11000}
2¢. {00000,11100}
2d. {00000,11110}
2e. {00000,11111}
3a. {00000, 11000, 10100}
4a. {00000, 10000, 01000, 11000}
4b. {00000, 10000, 01100, 11100}
4c. {00000, 10000,01110,11110}
4d. {00000, 10000,01111,11111}
4e. {00000, 11000, 10100, 01100}
4t. {00000, 11000, 10100, 10010}
4g. {00000, 11000, 00110, 11110}
4h. {00000, 11000, 10110, 01110}
4i. {00000,11000, 10110,10101}
4j. {00000, 11000,00111,11111}
4k. {00000,11000,10111,01111}
41. {00000,11100,10011,01111}
5a. {00000, 11000, 10100, 10010, 10001}
5b. {00000, 11000, 00110,11101, 10111}
6a. {00000, 10000,01000, 10100, 01100, 11100}
6b. {00000, 10000, 01100, 11100,01010, 11010}
6c. {00000, 11000, 10100, 01010, 00110, 11110}
6d. {00000, 11000, 10100,00011, 11011, 10111}
6e. {00000, 11000, 10100,01011,00111, 11111}
8a. {00000, 10000, 01000, 11000, 00100, 10100, 01100, 11100}
8b. {00000, 10000, 01000, 11000, 00110, 10110, 01110, 11110}
8c. {00000, 10000, 01000, 11000,00111,10111,01111, 11111}
8d. {00000, 10000, 01100, 11100, 01010, 11010, 00110, 10110}
8e. {00000, 10000, 01100, 11100, 01010, 11010, 01001, 11001}
8f. {OOOOO,10000,01100,11100,00011,10011,01111,11111}
8g. {00000,10000, 01100, 11100, 01011, 11011,00111, 10111}
gh. {00000, 11000, 10100, 01100, 10010, 01010, 00110, 11110}
8i. {00000, 11000,10100,01100,00011,11011,10111, 01111}
8j. {00000, 11000, 10100, 01100, 10011, 01011, 00111, 11111}
8k. {00000,11000,00110,11110,10101, 01101, 10011, 01011}
10a. {00000, 10000, 01000, 10100,01010, 10101,01011, 10111,
01111,11111}
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10b. {00000, 10000, 01100, 11010, 01110,10101, 11101, 00011,
11011,00111}

10¢. {00000, 11000, 10100, 10010, 01110, 10001, 01101, 01011,
00111,11111}

10d. {00000, 11000, 10100, 10010, 01001, 00101, 11101, 00011,
11011,10111}

12a. {00000, 10000, 01000, 11000, 00100, 10100, 01010, 11010,
00110,10110, 01110, 11110}

12b. {00000, 10000, 01000, 11000, 00110, 10110, 01110, 11110,
00101,10101,01101,11101}

12¢. {00000,10000, 01000, 10100, 01100, 11100, 00011, 10011,
01011,10111,01111,11111}

12d. {00000, 10000, 01100, 11100, 01010, 11010, 00101, 10101,
00011,10011,01111,11111}

12e. {00000,11000, 10100, 01100, 10010, 01010, 00101, 11101,
00011,11011,10111,01111}

16a. {00000,10000,01000, 11000, 00100, 10100, 01100, 11100,
00010, 10010, 01010, 11010, 00110, 10110, 01110, 11110}

16b. {00000, 10000, 01000, 11000, 00100, 10100, 01100, 11100,
00011,10011,01011,11011,00111,10111,01111,11111}

16¢. {00000, 10000, 01000, 11000, 00110, 10110, 01110, 11110,
00101,10101, 01101, 11101,00011, 10011, 01011, 11011}

16d. {00000,10000,01100,11100, 01010, 11010, 00110, 10110,
01001,11001, 00101, 10101,00011,10011,01111,11111}

16e. {00000,11000, 10100, 01100, 10010, 01010, 00110, 11110,
10001, 01001,00101, 11101, 00011, 11011, 10111, 01111}

20a. {00000, 10000, 01000, 00100, 10010, 01010, 11010, 00110,
10110, 01110, 10001, 01001, 11001, 00101, 10101, 01101,
11011,10111,01111, 11111}

24a. {00000, 10000, 01000, 11000, 00100, 10100, 01100, 11100,
00010,10010, 01010, 11010, 00101, 10101, 01101, 11101,
00011,10011,01011,11011,00111,10111,01111,11111}

32a. {00000, 10000, 01000, 11000, 00100, 10100, 01100, 11100,
00010, 10010, 01010, 11010, 00110, 10110, 01110, 11110,
00001, 10001, 01001, 11001, 00101, 10101, 01101, 11101,
00011,10011,01011,11011,00111,10111,01111, 11111} = Z3
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