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BIG CWATSETS AND HAMMING CODES

MATTHEW DAVIS, THOMAS LANGLEY, AND NORAH MAZEL

ABSTRACT. In contrast to Lagrange’s Theorem in finite group theory, we show that
the ratio of the largest proper cwatset of degree d to the size of binary d-space ap-
proaches 1 as d approaches infinity. We show how to explicitly construct large cwatsets
as cosets of Hamming codes, and discuss many open questions that arise.

1. INTRODUCTION

Cwatsets are sets of binary words with algebraic structure that are not quite additive
groups. An example is the set F = {000,110, 101}. Note that F is not closed under
binary addition since, for example, 110 + 101 = 011. So F is not a subgroup of binary
3-space. But

F +110 = {110,000,011} = F(1.2)
F +101 = {101,011, 000} = F(1:3)

where, for example, F(12) is the set F with the first and second bits of each word
interchanged. So F is closed with a twist, leading to the following definition.

Definition 1.1. Let C be a subset of binary d-space and let Sy denote the symmetric
group on d symbols. Then C is a cwatset of degree d if for each ¢ € C there exists
o € Sy4 such that C +¢ = C°.

For a given word c the permutation ¢ need not be unique. Indeed, F(I’Q)' = F1.23),
Also, any subgroup G of binary d-space is a cwatset since G + g = G = G for any g
in G where 1d is the identity permutation in S,.

Hardigan [4] introduced the set F' in the late 1960s as a tool for bootstrapping con-
fidence intervals for the mean of a random variable. This set was rediscovered in the
late 1980s for the same purpose by Erich Friedman, a student at Rose-Hulman Institute
of Technology working with professor Gary Sherman. The above defining condition
followed shortly (7], spawning a rich algebraic and combinatorial theory of cwatsets,
with interesting applications to group theory and the theory of graphs and hypergraphs
[1, 2, 3, 5]. Many of the main results are due to the work of undergraduates, both at
Rose-Hulman’s NSF sponsored REUs and elsewhere.

A natural question to ask when considering any algebraic structure is how big can proper
substructures be? For example, Lagrange’s Theorem prevents a proper subgroup of a
finite group from containing more than half the elements of the group. The goal of this
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paper is to show that something decidedly different happens with cwatsets. Define a
proper cwatset to be a cwatset that is not all of binary d-space (which is itself a cwatset).
Then we will prove the following.

Theorem 1.2. Suppose C is a proper cwatset of degree d of mazimal size. Set py =
IC|/2%. Then py approaches 1 as d approaches infinity.

In particular the following have been established (see [6]:)

dl2 3 4 5 6 7
pa | 172 3/4 3/ 3/4 3/4 7/8

The jumps in p; at degrees 3 and 7 suggest that something interesting is happening at
degrees 2™ — 1. We will prove Theorem 1.2 by showing that the essence of the above
pattern holds in general, specifically that pyn_; > 2;; L This coupled with the fact that
pd is a nondecreasing function of d will give the result. We will demonstrate explicitly
how to construct the large cwatsets that realize these ratios, leading to an unexpected
connection with algebraic coding theory.

On the way to building these large cwatsets, we start in Section 2 with a crucial definition
and by showing that the ratio pq is nondecreasing. We continue in Section 3 by showing
how to double the size of a cwatset by adding a binary string to every element of the
cwatset. We then generalize this construction to allow us to add a, group instead of just
a single string in Section 4. With this construction in hand, the game of building large
cwatsets comes down to finding the right large group, and it is here that the connection
to coding theory arises. The right groups turn out to be Hamming codes, and we discuss
their use in building cwatsets in Section 5. Finally, in Section 6 we discuss some related
questions that arise from our construction of large cwatsets. We will pose a number of
open questions along the way.

2. THE RATIO pg IS NONDECREASING

To show that the ratio py is a nondecreasing function of d, we need a definition and
some notation. Since the structure of a cwatset lies not only in the binary words but
also in the associated permutations, the set of all word-permutation pairs associated
with a cwatset is well-studied.

Definition 2.1. For a cwatset C of degree d, the maximal covering group of C is the
set
Mo ={(0,c) € S4x 2§ |C +c= (7}

where Z¢ is the set of all binary words of length d.
For example, Mp is the set

{(id, 000), ((2,3),000), ((1,2), 110),((1,2,3),110), ((1, 3), 101), ((1,3,2),101)}.
Calling M¢ the maximal covering group is no accident as there is indeed a group struc-
ture on the set Sy x Z¢ that is suggested by the defining condition C +¢ = C°. We can

rewrite this as
C°+ec=C,
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suggesting a possible action of pairs (o,¢) on sets of binary strings, defined by
Clo®) =09 e,
If we apply this operation twice, we obtain
(C(O‘,C))(T,d) — (CU ._.I_ C) (T’d)
(C7+c)" +d
(C’U)‘T + CT _'_ d
= C7+c"+d
C(UT,CT—f-d)

I

where we read products of permutations from left to right so that o7 is the permutation
obtained by first applying ¢ and then 7. This now suggests the group structure on
Sy x Z4, since for our operation to be a group action we would like to have

(C(a,c) ) (rd) C(cf,c)(-r,d) )

So we set (0,¢)(r,d) = (o7,¢” +d). It is routine to check that the set Sq x Z§ with
this binary operation is indeed a group, called the wreath product of S; by Z» and de-
noted Sq 1 Z; (this group is also called the hyperoctahedral group or the group of signed
permutations). The set Mc is then the stabilizer of C' under the action defined above,
and is therefore a subgroup of S;1 Z,. The cwatset C is covered by Me in the sense
that every element of C is contained as a component of an element of My and My is
called the maximal covering group since it contains all possible pairs (o, c) that respect
the defining cwatset condition.

We are now ready to show that py is nondecreasing.

Proposition 2.2. If p; is as defined in Theorem 1.2, then pgi1 > pq for all d.

Proof. For a cwatset C, define C' x Z5 to the set obtained by appending both a 0 and
a 1 to each word in F. So for example,

0000 0001
FxZy=< 1100 1101
1010 1011

It is routine to check that if a permutation o in S3 is paired with a word ¢ in My, then
the natural embedding of o in Sy (where 4 is a fixed point) will pair with the two words
obtained by appending 0 and 1 to ¢ in M FxZy- 30 F X Z5 is a cwatset. Similarly, so is
C x Z, for any cwatset C'. So we can always double the size of a cwatset by increasing
the degree by 1. Therefore if C' is a cwatset that realizes Pd, then
> IC x Zy|  2|C] _}_C__[_
Pil = o0 = 51 T 5a = Pd-

3. DOUBLING THE SIZE OF A CWATSET

We now begin our quest to construct large cwatsets of a given degree. We start with
the natural question: can we build large cwatsets from smaller cwatsets? Fortunately
the answer is yes, and in a very natural way.
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Example 3.1. Let’s again start with F = {000,110,101}. To build a new cwatset {of
degree 3), add the word 111 to each word in F and take the union of F and these new
words:

W = {000,111,110,001, 101, 010}.
It is routine to check that W is a cwatset, and that the word-permutation pairs in its
maximal covering group are

words l permutations
000,111 id, (2, 3)

110,001 | (1,2),(1,2,3)
101,010 | (1,3),(1,3,2)

(so 000 and 111 are both paired with id and (2,3) in Mw). So we can double the size
of I and obtain a new cwatset by adding 111. However, adding an arbitrary word does
not result in a cwatset in general (try adding 001 for instance). Is 111 the only word
that we can use? Well for F, the answer is yes. But the answer in general is no. So let’s
examine the situation a little closer to see precisely what is special about 111. The key
lies in the structure suggested by the above table. After adding 111 to F, we view W
as a union of cosets of the group G = {000,111} by elements of F. In particular,

W:{ 000 110 101

111 001 o010

To confirm that W is a cwatset, we need to pair each word ¢ in W with a permutation
o such that W + ¢ = W7, A few observations:

}:GU(G+110)U(G+101)-

e The cosets of G by elements of F are all distinct because the word that we
chose to add, 111, is not in F and is not equal to the sum of any two elements
of F'. If, for example, we had tried adding 011 = 110 + 101 instead so that
G = {000,011}, then 110 would be in both G + 110 and G + 101.

e The set W is closed under addition by 111, that is, W + 111 = W. So 111 is
paired with the same permutations in My, as 000.

¢ Given a word c in F, any permutation o that is paired with ¢ in My will also
be paired with ¢ + 111. This follows since

W+ (1ll+c)=(W+1ll)+c=W +c.

So there is a natural pairing of words and their complements by 111 in the
maximal covering group of the new cwatset. Note that this pairing does not
depend specifically on our choice of 111. Had we used another word to form
the new cwatset there would still be a pairing of the original words and their
complements by this new word.

Now, exactly what is it about 111 that enables us to find a permutation that pairs
with each element of F in the new maximal covering group My ? Well, from the table
above, we see that each permutation that paired with F' in My also pairs with F in
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My . To see precisely why this is, let’s follow the action of an element of Mp on W, say
((1,2,3),110). For emphasis, we’ll start by writing W as it was constructed using 111:

w - [ 000 110 101
~ L 000+111 1104111 1014111 (-

Now compute W + 110 and W{123) and compare:

110 000 011
W 110 = { 1104111 000+ 111 011 + 111 }
while
(1,2,3) 000(1:2:3) 110(1,2:3) 101(1:2:3)
v — 1 0000023 4 1110:28) 110029 4111023 101023 4 1710.28)

000+ 111 0114111 110+ 111

Now, the top rows of W + 110 and W(1:23) are equal because ((1,2,3),110) is in Mp
and the top row of W is just F. The heart of our construction lies in what what makes
the bottom rows equal. Drumroll...the bottom rows are equal precisely (and simply)
because 111(123) = 111. Because 111 is fixed by (1,2,3), the element ((1,2,3),110) that
first lived in Mp now also lives in My . This will be true for any element of Mr since
any permutation fixes 111, so every every element can be paired with a permutation in
My, and therefore W is a cwatset.

_ { 000 011 110 }

One more observation: although 111 is fixed by every permutation that appears in M, P,
to guarantee that W is a cwatset it is only necessary that that 111 be fixed by at least
one permutation paired with each word of F in Mp. With that in mind, our example
illustrates the following theorem.

Theorem 3.2. Suppose C is a cwatset of degree d and x is a binary word such that

® X 18 not the sum of any two elements of F,
* for each c in C there is an element (o,¢) in Mq such that x° = x.

Set G = {0,x}. Then Ueec(G + ¢) is a cwatset whose size is twice that of C.

Note that since the composition of two permutations that fix x also fixes x, another
way of stating Thoerem 3.2 is to say that Ucec (G + ¢) is a cwatset if x is fixed by some
covering group of C' (but not necessarily all of Mc). In fact, the heart of Theorem 3.2
lies in the fact that if (¢, ¢) is in the maximal covering group of the original cwatset and
o fixes x, then (o, ¢) is in the maximal covering group of the new cwatset. The converse
of this statement is also true, that is, if (0,c) is in the maximal covering group of the
original cwatset but o does not fix x, then (o, ¢) is not in the maximal covering group
of the new cwatset (this is a special case of Theorem 6.2 below). So we emphasize again
that all of the original maximal covering group may not go through to the new cwatset.
Here’s an example.

Example 3.3. Let F; = {000000, 111100, 110011}. This cwatset has the same structure
as I' if we consider each 2-bit block as a “super bit”. To understand the maximal
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covering group, consider adding 111100:
F> +111100 = {11 11 00,00 00 00,00 11 11}.

So for example, just as (1,2, 3) is paired with 110 in M F, We can pair any permutation
that cycles the three “super bits” with 111100 in M 5. The most natural of these is
(1,3,5)(2,4,6), but any of the following will work:
(1,3,5)(2,4,6) (1,4,5)(2,3,6) (1,3,5,2,4,6) (I,
(1,3,6)(2,4,5) (1,4, 6)(2,3,5) (1,3,6,2,4,5) (1,
Now consider adding 101010 to £, obtaining the new set

W, — 000000 111100 110011
71 101010 010110 011001 -

This 101010 meets the criteria of Theorem 3.2 since it it is not the sum of two elements
of F» and is fixed by the permutations in the following covering group of Fy:

{(id,000000), ((1,3,5)(2,4,6), 111100), ((1, 5, 3)(2,6,4),110011)}.
So W5 is a cwatset, and the elements of this covering group are in Myy,. However, the
element ((1,3,6)(2,4,5),111100) of Mg, is not in My, since 101010136245 — (11001

It is also worth noting that the permutation (1,3,5)(2,4) fixes 101010 but does not
appear in Mp,, in contrast to Example 3.1 where every permutation in Sz fixes 111 and
every permutation appears in My .

4) 5)2’ 376)
4,6,2,3,5).

i b

The converse of Theorem 3.2 is an open question.

Question 3.4. If C is a cwatset and x is a binary word such that D = C' U (C + x) is
a cwatset, then must x be fixed by a covering group of C?

There are two components to this question. First, are there elements (o,a) of Mp that
are not elements of Mc? If not, then the answer to Question 3.4 is yes. Second, if there
are such elements, then can they be the only elements of Mp? That is, can all of the
elements of M be lost in the transition to M p?

4. GROWING CWATSETS BY TAKING COSETS OF LARGER GROUPS.

So now we know when we can use a single word x to double the size of a cwatset. The
new cwatset is just the union of cosets of the group {0,x} by elements of the cwatset.
Fortunately, it is easy to generalize our construction to obtain cwatsets that are unions
of cosets of larger groups. This will allow us to obtain large enough cwatsets of degrees
d = 2" — 1 to show that the ratio of the maximum size of a proper cwatset of degree d
to the size of all of binary d-space space goes to 1 as d gets large.

Example 4.1. Start with the following degree 4 version of F: Fy = {0000,1100, 1010}
and let G be the group {0000,1111,0001, 1110}. Then Wjy is the disjoint union of the
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cosets of GG by elements of Fy:

0000 1100 1010
1111 0011 0101
0001 1101 1011
1110 0010 0100

So now we have built a new cwatset by starting with a small cwatset and then adding
a group and its cosets. Here are the pairings in Mw,:

W, = = G U (G +1100) U (G + 1010).

words | permutations
0000,1111,0001,1110 id, (2,3)
1100,0011, 1101, 0010 (1,2),(1,2,3)
1010,0101,1011,0100 (1,3),(1,3,2)

Note the following similarities to Example 3.1:

¢ The cosets of G by elements of Fy are all distinct since G does not contain the
sum of any two distinct elements of Fy (and in particular does not contain any
elements of Fy except 0000).

e The set Wy is closed under addition by elements of G.

¢ Elements in the same coset of G are paired with the same permutations in Mwy,.
This follows since if ¢ is in Fy and g is in G, then

Wit (g+c)=(Ws+g)+c=W;+c.

So any permutation o that is paired with ¢ in My, is also paired with each
element of the coset G + c.

¢ Every element of G is fixed by the permutations that appear as components of
elements of Mp,. This is in fact is a stronger condition than we need in general.
All that is required to force Wy to be a cwatset is that for each element ¢ of
Fy, there is an element (o, ¢) in Mg, such that G° = G. This equality is a set
equality so that ¢ does not necessarily need to fix each element of G, but it
must take elements of G to other elements of . This condition is the necessary
generalization of the condition in Theorem 3.2 that x° = x.

With these observations, an argument similar to the one preceding Theorem 3.2 leads
to the following theorem.

Theorem 4.2. Let C be a cwatset of degree d and let G be a group in Zg that does not
contain the sum of any two distinct elements of C. Set D = Ueec (G + ¢). Then D is
a cwatset if for each ¢ € C, there ezists (0,¢) € Mc such that G° = G.

Again, this begs the question of the converse.

Question 4.3. Can we expand a cwatset C in the same manner as in Theorem 4.2 to
obtain a cwatset D, but also have an element ¢ in C such that in Mp, c is not paired
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with any of the permutations that it is paired with in Mg ? In other words, does Mp
have to contain a subgroup of Mc that covers C'?

5. BiG CWATSETS AND HAMMING CODES

So now we've reduced the game of finding big cwatsets to finding the right cwatset
to start with and taking the union of cosets of the right big group by elements of the
cwatset. For degree 3, the correct cwatset is F', which we can double to produce W,
the maximal size cwatset of degree 3. So the correct group is G = {000,111}. The next
jump in py appears at degree 7, and it turns out that the correct cwatset to use is a
degree 7 generalization of F', and a degree 7 generalization of G. We'll call the cwatset
K

1100000
1010000
1001000

K= 1000100
1000010
1000001

The big question is what is the degree 7 generalization of G? To satisfy the conditions
of Theorem 4.2, we need a large group that is fixed under permutations that appear as
components of elements of M. Fortunately we have a lot of permutations to choose
from. Consider adding 1100000 to K7:

3 (

(00000 O0O 1100000
1100000 0000O0O0O0
1010000 0110000
K7 +1100000=<¢ 1 0 0 1 0 0 0 »+1100000=¢ 0 1 0 1 0 0 0O
1000100 0100100
1000010 01 000T10
100000 1 0100001

So adding 1100000 to K7 moves the the column with 6 ones from the first column to
the second column. Therefore if we want K7 + 1100000 = K7, the only restriction on
o is that it must send 1 to 2. So any permutation that sends 1 to 2 will be paired
with 1100000 in Mg, . Similarly, any permutation that sends 1 to 3 will be paired with
1010000 and so on. So in fact every permutation in S7 appears as a component of an el-
ement of M., (just as every permutation in S3 appeared in a pairing in Mp). Therefore
we need to find a group G that is fixed by at least one permutation that sends 1 to i for
any 7. In group theory lingo, this is equivalent to requiring the group of permutations
that fixes G to be transitive.

So how do we find G?7 Well, let’s review what properties it needs to have. It can’t
contain the elements of K7 (except the 0 word), or the sum of any two distinct elements
of K7. So G can’t contain any words with two 1s. Such words are often said to have
weight two. So we need a big group with no weight two words, of degree 23 — 1, which
is fixed by a transitive group of permutations. Well, if you happen to mention those
qualifications to someone familiar with a little algebraic coding theory, you're likely to
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hear the words “Hamming code”, which turns out to be precisely the group that we need.

So what is a Hamming code? First of all, conveniently enough for our purposes, Ham-
ming codes are defined for degrees 2" —1. Coding theorist like to talk about the distance
between words in a code, which is defined to be the number of bits in which the two
words differ. For example, the distance between 101 and 110 is 2, since they differ in
the second and third bits. The distance between any two words in a Hamming code is
at least 3. Because of this, Hamming codes are said to have minimum distance 3. Since
Hamming codes are groups, they contain 0, and so Hamming codes do not contain any
words of weight 1 or 2, which meets our criteria.

Hamming codes are useful in the theory of error correcting codes in the following way.
If elements of a Hamming code are to be sent over a communications line (wireless or
otherwise) and a single bit flips due to noise, the resulting word will be closest to a
unique word in the Hamming code (since the minimum distance betweern words is 3)
and therefore the original message word can be recovered. So Hamming codes are called
l-error correcting codes.

Here’s how you get them. For degree d = 2" — 1, form an n x 2"~! matrix whose columns
are all nonzero binary strings of length n. For example, for degree 7 we might choose

1111000
A=10011 0 1 1
01 01101

The associated Hamming code H is just the null space of this matrix if we write binary
words as column vectors. In this way H can be viewed as a vector space over the field
Zy, and is therefore a binary group.

The properties of H that we need are well-known and can easily be deduced from the
matrix A. First, for a binary word ¢ written as a coluran vector, the product Ac is just
a sum of the columns of 4 that correspond to the positions of the 1s in c. Since the
minimum number of columns of A that sum to 0 is 3, H contains no words of weight 1
or 2. So in particular, H does not contain the sum of any two distinct elements of K.

How big is H? Well, since A has three linearly independent rows, the dimension of its
row space, and therefore its column space, is 3. Since A has 7 columns, the dimension
of its null space is 7~ 3 = 4. So H has dimension 4 as a vector space over Zs, and
therefore has cardinality 2¢ = 16. So taking the union of the 7 cosets of H by elements
of K7 yields a set of size 7-16 = 112, which is 7/8 of the 128 strings of length 7. So if
this union is a cwatset, we will have found a cwatset that realizes py.

So now we just need to verify that for each 1, 1 <4 <7, we can find a permutation o
that takes 1 to ¢ and such that H° = H. This again follows from A.

Lemma 5.1. Let H be a Hamming code of length 2™ — 1 and let G be the group of all
permutations o that satisfy H® = H. Then G is transitive.
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Proof. The proof lies in the structure of the defining matrix A. Permuting columns
of A and then taking the null space of the resulting matrix gives a code obtained by
permuting the corresponding bits of H. Consider the matrix A above. Let’s start with
© = 2. We would like to modify A so that column 1 ends up in column 2, and do the
modification in such a way the the nullspace is unchanged. So all we do is add the first
row to the third row, obtaining

1111000
0011011
1010101

Note that this results in a permutation o of the columns of A that sends the first column
to the second column. Since the null space, and therefore H, hasn't changed, we have
H? = H. We can do similar row operations to send the first column to columns 3 and
4. To send the first column to columns 5, 6, or 7, we first need to interchange rows
one and three, to get a one to the top of the column. For example, here’s how to send
column 1 to column 7:

1111000 0101101 0101101
0011011}{-—10011011}|—1_]01101 10
0101101 1111000 1111000

Again, the main point is that performing row operations just results in a permutation
of the columns, and therefore a permutation of H , but leaves the null space of H un-
changed.

The above example generalizes easily to an arbitrary degree d = 2" — 1. The corre-
sponding Hamming code H will have dimension 2" — 1 —n = d — n, and therefore size
20-7, Constructing K, in the same manner as K7, and taking cosets of H by elements
of K4 will produce a cwatset of size d(2%"). Dividing by the total number of binary
strings of length d, we obtain a ratio of
dt™) 4 2 -1

24 on T on

So we have illustrated the following.

Theorem 5.2. If py is as in Theorem, 1.2, then for d = 2" — 1 we have py > 2—2—;—1

This theorem, along with our observation that pd is nondecreasing (Proposition 2.2),
finally proves Theorem 1.2: the ratio of the size of the largest cwatset of degree d to
the size of binary d-space goes to 1 as d goes to infinity. Again we emphasize that
this is in contrast to most algebraic structures, where there is typically a quantum leap
between the size of the largest proper substructure and the size of the host structure.
There is one caveat that we should mention. We have been careful to avoid using the
term subcwatset. The reason is that there is more to being a subcwatset than just be-
ing a subset that is also a cwatset. The subcwatset structure must necessarily also be
reflected in the corresponding maximal covering group, and in fact there is more than
one possible definition of subcwatset (see [3]). However, in each definition any cwatset
is always a subcwatset of the entire space, so that our result does parallel the idea of
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other substructures.

We are still left with some obvious open questions, which we state as conjectures.

Conjecture 5.3. The cwatsets built from Hamming codes are mazimal. That is, we

know that at degrees d = 2™ — 1 that py is at least 27;_;1. We believe that in fact this is
an equality.

Conjecture 5.4. The ratio py changes only at d = 2" — 1.

6. THE IDENTITY GROUP AND CWATSET STRUCTURE

We will conclude with some observations and questions that arrive from the work of the
previous sections. Now that we have a method for constructing larger cwatsets from
smaller ones, the next question is, of course, are all big cwatsets constructed in this way?
In our examples above, the cwatset elements paired with the identity permutation in
the maximal covering group played a central role. In any cwatset, these words form a
group. With that in mind, a definition.

Definition 6.1. For a cwatset C, define the identity group of C, denoted Cyy, to be
the set of elements of C' that are paired with id in Mg (so C is closed under addition
by these elements).

With this definition, any cwatset in a sense behaves like our examples above, with Cjy
playing the part of the group G. Specifically, we have the following theorem.

Theorem 6.2. If C is a cwatset, then
(1) C is a union of cosets of Cyy.
(2) If (0,a) is in Mc, then (o,b) is in Mc if and only if a and b are in the same
coset of Cyy.
(3) If (0,c) is an element of M, then Cf = Ciy.

Proof. For the first statement, let M;; be the set of elements of Me that have id as
their first component. Then M;; is a subgroup of M¢ so M¢ is a disjoint union of left
cosets of M;,. But the projection of a left coset of M4 onto binary space will be a coset
of C;4 since

(0,8)Miq = {(0,a)(id, c) | (id,c) € My} = {(o,a+c¢)|c e Ciy}.

For the second statement, the proof follows from our observation preceding Thoerem 4.2.
For the third statement, note that if C;; = {0}, then every permutation fixes C;4 so the
result is trivial. Now suppose x is in C;y and (0,a) is in Mc. Then (id, x) is in M, so
(td,x)(0,a) = (0,x% +a) is also in Mc. But then a and x? + a have to be in the same
coset of Cy4, namely C;y + a. So x° 4+ a = y + a for some y in C;y. Therefore x° = y
for some y in Cjy. So C?, = Ciq as required.

One note: in each of Examples 3.1, 3.3, and 4.1, the group G is identical to the identity
group of the larger cwatset because 0 is the only word paired with the identity permu-
tation in the original cwatset. If the original cwatset has a nontrivial identity group,
then the group G will be a subgroup of the identity group. Here’s an example.
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Example 6.3. Consider the cwatset F’ that was obtained by appending both a 0 and
1 to each word in F:

F = {0000, 0001, 1100, 1101, 1010,1011}.
Then Fj; = {0000, 0001}. If we double F’ by adding 1111, we get

D= 0000 0001 1100 1101 1010 1011
© | 1111 1110 0011 0010 0101 0100

50 D = Uee pr (G +¢) where G is the group {0000, 1111}. But because 0001 is also paired
with the identity permutation in Mg, the identity group of D is {0000, 1111, 0001, 1110}.
So D can also be considered a union of cosets of this identity group:

0000 1100 1010
1111 0011 o101
0001 1101 1011
1110 0010 0100

Now that we know there is a natural representation of a cwatset as a union of cosets of
its identity group, a natural question to ask is do all cwatsets with nontrivial identity
groups have the same structure as the cwatsets we built in the preceding sections.
Specifically, if Cjq is nontrivial, can you always find a set of representatives of the cosets
of Ciy (or the cosets of some subgroup of Cjy) that is itself a cwatset? The answer,
interestingly enough, is no.

D=

Example 6.4. Consider the set

O = 0000 1101 0111 0110
| 1111 0010 1000 1001

It can be shown that C is a cwatset with Cyy = {0000,1111}. However, there is no way
to take a representative from each of the four cosets of Ciq and form a cwatset. For
example, suppose we choose the representatives R = {0000,1101,0111,0110}. Then,
for example, R + 1101 = {1101, 0000, 0100, 1011} which has no element of weight 2. So
R 41101 can’t be a permutation of B. A similar argument works for any set of four
coset representatives.

We should note that the union of Cj; and any one of its cosets form a group, and
therefore a cwatset. So C contains a cwatset of size 4, it just does not contain one that
consists of representatives of cosets of Cjy.

With our counterexample in hand, we conclude with two questions.

Question 6.5. Given a cwatset nontrivial identity group, when can you find a system
of representatives of cosets of the identity group that form a cwatset?

We note, for example, that the situation in Example 6.4 can’t happen with an odd
degree cwatset. It is easy to show that all the even weight words in any cwatset form a
cwatset. So if the degree of C is odd and Cyy = {0, 1}, then the even weight words in
C will form a system of representatives of the cosets of C;q that is also a cwatset,.

But given the discussion following Example 6.4, a refinement of Question 6.5 might be:
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Question 6.6. Given a cwatset C' with nontrivial Ciq, if there exists a system of coset
representatives R such that the set of weights of the elements of C is preserved under
addition by elements of C, is R a cwatset?

Acknowledgment. The authors thank Gary Sherman for suggesting the original prob-
lem.
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