
Rose-Hulman Institute of Technology Rose-Hulman Institute of Technology

Rose-Hulman Scholar Rose-Hulman Scholar

Mathematical Sciences Technical Reports
(MSTR) Mathematics

7-3-2005

Mapping the Discrete Logarithm Mapping the Discrete Logarithm

Daniel R. Cloutier
Rose-Hulman Institute of Technology

Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr

 Part of the Discrete Mathematics and Combinatorics Commons, and the Number Theory Commons

Recommended Citation Recommended Citation
Cloutier, Daniel R., "Mapping the Discrete Logarithm" (2005). Mathematical Sciences Technical Reports
(MSTR). 49.
https://scholar.rose-hulman.edu/math_mstr/49

This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been
accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of
Rose-Hulman Scholar. For more information, please contact weir1@rose-hulman.edu.

https://scholar.rose-hulman.edu/
https://scholar.rose-hulman.edu/math_mstr
https://scholar.rose-hulman.edu/math_mstr
https://scholar.rose-hulman.edu/math
https://scholar.rose-hulman.edu/math_mstr?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/183?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.rose-hulman.edu/math_mstr/49?utm_source=scholar.rose-hulman.edu%2Fmath_mstr%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:weir1@rose-hulman.edu

Mapping the Discrete Logarithm

Daniel R. Cloutier

Adviser: Joshua Holden

Mathematical Sciences Technical Report Series
MSTR 05-06

July 3, 2005

Department of Mathematics
Rose-Hulman Institute of Technology

http://www.rose-hulman.edu/math

Fax (812)-877-8333 Phone (812)-877-8193

Mapping the Discrete Logarithm

Daniel R. Cloutier
Rose-Hulman Institute of Techonology

Terre Haute, IN 47803
Daniel.R.Cloutier@Rose-Hulman.edu

July 3, 2005

Abstract

The discrete logarithm is a problem that surfaces frequently in the field of cryptog-
raphy as a result of using the transformation ga mod n. This paper focuses on a prime
modulus, p, for which it is shown that the basic structure of the functional graph is
largely dependent on an interaction between g and p − 1. In fact, there are precisely
as many different functional graph structures as there are divisors of p− 1. This paper
extracts two of these structures, permutations and binary functional graphs. Estimates
exist for the shape of a random permutation, but similar estimates must be created for
the binary functional graphs. Experimental data suggests that both the permutations
and binary functional graphs correspond well to the theoretical data which provides
motivation to extend this to larger divisors of p − 1 and study the impact this forced
structure has on the many cryptographic algorithms that rely on the discrete logarithm
for their security. This is especially applicable to those algorithms that require a “safe”
prime (p = 2q + 1, where q is prime) modulus since all non-trivial functional graphs
generated using a safe prime modulus can be analyzed by the framework presented here.

1 Introduction

Just a few decades ago, cryptography was considered a domain exclusive to national gov-
ernments and militaries. However, the computer explosion has changed that. Every day,
millions of people trust that their privacy will be protected as they make online purchases
or communicate privately with a friend. Many of the cryptographic algorithms they will
use are built upon a common transformation, namely

gx ≡ y mod n. (1)

For instance, Diffie-Hellman key exchange, RSA and the Blum-Micali pseudorandom bit
generator all use (1). This paper will examine some of the properties exhibited by this
sort of transformation and provide theoretical and experimental data describing how the
interaction between g and the modulus impacts the behavior of this function. First, though,
we give a brief look at each of the algorithms listed above to provide an illustration of the
wide range of use (1) has found in the field of cryptography and the extent to which many
of these algorithms base their security on the properties of (1).

In 1976, Whitfield Diffie and Martin Hellman proposed a way to use (1) as part of a
method for key-exchange. They presented a scheme in [3] where two users compute a shared
secret key over a public communication channel using (1). Using a publicly specified p and

1

g, which is a primitive root (also referred to as a generator) modulo p, Alice computes ga

mod p and Bob computes gb mod p. They can exchange results and each can compute
the same shared key, namely gab mod p. The most obvious attack to this system involves
solving directly for a (or equivalently, b). Fortunately, this problem appears to be quite
difficult and is generally known as the discrete logarithm problem. Schneier [11, Section 11.6]
gives an introduction to the problem for the unfamiliar reader.

Two years after Diffie and Hellman announced their key-exchange system, Ronald
Rivest, Adi Shamir and Leonard Adleman used (1) as the backbone of a new public-key
encryption method dubbed RSA [10]. RSA is a simple and elegant algorithm, yet it appears
to provide an extremely high level of security. If Alice intends to send Bob a message, then
she looks up Bob’s public key which consists of two numbers, e and n. She then computes
C = M e mod n where M is the message she wishes to encrypt. Bob then takes Alice’s
encrypted message C and combined with his secret key d, computes M = Cd mod n. The
most obvious attack on this system is to compute d, Bob’s secret key. The authors argue
that this is equivalent to the problem of factoring n since the prime factorization of n can
be found using e and d. In general, however, factoring a large number has proven to be a
hard problem. Pomerance [9], describes the evolution of our attempts to find an efficient
solution to this problem.

In 1984, Blum and Micali introduced the first pseudorandom bit generator (PRBG)
designed to be secure enough for cryptographic applications [2]. Schneier [11, Section 17.9]
gives the following explanation of the algorithm. Let g be a prime and p be an odd prime.
A seed, x0 is used to start the process with each following bit computed using xi+1 = gxi

mod p. The output is 1 if xi < (p − 1)/2 and 0 otherwise. Assuming that g and p are
known, predicting the next bit with greater than 50% certainty appears to require solving
the discrete logarithm problem. Blum and Micali’s bit generator, however, was rather slow,
taking one entire modular exponentiation per bit. It has since been improved in a number
of ways to increase its efficiency while maintaining its cryptographic security. For instance,
the PRBG presented by Gennaro in [6] can produce n− c− 1 bits per exponentiation with
an n bit modulus and a c bit exponent.

2 Terminology and Background

A mapping relates elements in one set, the domain, to elements in another set, the codomain.
It does this by means of what will be referred to here as a transition function. For instance,
let A be the domain and B the codomain. If ϕ is the transition function, then for each
a ∈ A, ϕ(a) = b for some b ∈ B. In this paper, we will examine mappings generated with
(1) as the transition function and restrict the values of n to primes. For a more natural
notation, p will hereafter denote the prime modulus.

In some instances, it will prove to be useful to interpret the mappings as functional
graphs. A graph is a set of vertices (or nodes) and a set of edges where each edge is a
directed path from one vertex to another (or possibly the same) vertex. A functional graph
simply restricts the edges such that each vertex must have exactly one edge directed out
from it. Equivalently, the out-degree of each vertex must be one. The relationship between
the mappings which interest us and functional graphs is straightforward. In the mappings
of interest here, the domain and codomain are the same set, namely

S = {1, 2, ..., p− 1} .

2

1

4

10

9

8

7

6

53

2

Figure 1: The graph generated using ϕ(x) = 3x mod 11. This graph has two connected compo-
nents: one containing a cycle of length three (1,3,5) and the other containing a cycle of length one
(fixed point) at 4.

Each element in S can then be interpreted as a vertex. The edges are defined simply for
a, b ∈ S where an edge 〈a, b〉 is in the graph if and only if ϕ(a) = b.

There are a number of statistics of interest derived from functional graphs. Following
the convention of [5], which treats random mappings in detail, let ϕ : S → S be the
transition function so that the edges in the functional graph can be expressed as the ordered
pair 〈x, ϕ(x)〉 for x, ϕ(x) ∈ S. By applying the pigeonhole principle and noting that the
cardinality of S is p− 1 we can say that by starting at any random point u0 and following
the sequence u1 = ϕ(u0), u2 = ϕ(u1), ..., there must be a ui = uj after at most p iterations.
Suppose ui occurs before uj in the sequence of nodes. In this case, the tail length is the
number of iterations from u0 to ui. The cycle length is the number of iterations from ui to
uj . In more natural graphical terms, the cycle length is the number of edges (or equivalently
nodes) involved in the directed path from ui to itself. The tail length is the number of edges
from u0 to ui. Additionally, a terminal node is one with no pre-image, or more formally,
x is a terminal node if ϕ−1(x) = ∅. A node is an image node if it is not a terminal node.
Since each node has an out-degree of exactly one, each cycle with the trees grafted onto its
nodes will form a connected component. An example of a small functional graph can be
found in Figure 1.

The value of g plays a major role in determining the basic structure of the graph. In
fact, as Theorem 1 formalizes, the interaction among g and p − 1 will effectively fix the
in-degrees of the nodes in the graph. First, though, define an m-ary functional graph to be
a graph where each node has in-degree of exactly zero or m.

Theorem 1. Let m be any positive integer that divides p−1. Then there are φ(p−1
m) m-ary

functional graphs produced by the map ϕ for a given g and p. Furthermore, if r is any
primitive root modulo p, and g ≡ ra mod p, then the values of g that produce an m-ary
graph are precisely those for which gcd(a, p− 1) = m.

Proof. Let r be any primitive root modulo p. Choose a and b so that g ≡ ra mod p and

3

y ≡ rb mod p for g and y in (1). Then (1) can be written in terms of r as

rax ≡ rb mod p.

Since r is a primitive root, the solutions are the same as in

ax ≡ b mod p− 1.

Let m = gcd(a, p− 1). By [8, Theorem 2.17], there are m solutions if m|b and no solutions
otherwise. Since each solution is one directed edge to y, the in-degree of y is either m or 0
depending as m|b.1

It then remains, then, only to count the m-ary graphs. It should be clear that the values
of a which satisfy m = gcd(a, p− 1) are precisely the same as those that satisfy

1 = gcd(
a

m
,
p− 1

m
).

There are φ(p−1
m) values of a

m which satisfy this equation and are less than p−1
m . By multi-

plying the numbers relatively prime to and less than p−1
m by m, the values a which satisfy

m = gcd(a, p− 1) are obtained and the proof is complete.

Theorem 1 gives a strong indication that the graphs generated by (1) have to be con-
sidered separately for different values of m. In Section 4.1, experimental data is provided
to support this claim. It should be noted, though, that there are some values of m which
lead to completely predicable graphs. For instance, there is one (p− 1)-ary graph that cor-
responds to g ≡ 1 mod p. There is also one (p−1

2)-ary graph that corresponds to g ≡ −1
mod p. In general, however, an m-ary graph is not trivially predictable. This paper will
restrict its focus to unary functional graphs (which will be referred to as permutations since
they simply permute the numbers 1, ..., p − 1) and binary functional graphs. The values
of g which produce a permutation are precisely those which are primitive roots modulo
p. Figure 1 can now be identified more precisely as a binary functional graph since the
in-degree of each node is either zero or two.

In cryptography, it is common to look for primes where p−1 has at least one large prime
factor. For instance, the PRBG described by Gennaro in [6] and mentioned in Section 1
requires the modulus to be of the form p = 2q + 1 where q is also prime. A prime of this
form is known as a safe prime (q is also known as a Sophie Germain prime). These primes
are of interest here not only because of their extensive use in cryptography, but also because
p − 1 has only four divisors, namely 1, 2, q and 2q. It can be quickly verified that there
is only one q-ary (g ≡ −1 mod p) and one 2q-ary (g ≡ 1 mod p) graph generated. More
importantly, there are φ(q) permutations and φ(q) binary functional graphs which represent
the remaining values of g (since φ(q) is q − 1). Thus, not only do safe primes provide large
numbers of permutations and binary functional graphs, but every graph generated by a
safe prime is either trivial (the graphs where g is either 1 or -1) or fits into the theoretical
framework presented in Section 3.

3 Theoretical Results

In Theorem 1, it is shown that the in-degree of each node is dependent on the value of
both g and p. This is clearly imposing a structure on any functional graphs generated

1The structure of this proof is due to personal communication with Joshua Holden.

4

using (1). It seems reasonable, though, that a large collection of functional graphs generated
by using (1) as the transition function would tend toward exhibiting behavior similar to
that of a collection of random functional graphs. At a minimum, a complex factorization
for p− 1 would certainly seem to hide the structure imposed by Theorem 1 since the many
divisors of p − 1 would each contribute some graphs. Section 4.1 will give evidence that
this is not the case. However, the methods used to obtain the theoretical bounds for the
random functional graphs can be extended to analyze m-ary graphs for specific m.

While most of the parameters that are of interest depend on the exact graph generated,
the number of image nodes can be computed directly from the values of g and p.

Theorem 2. The number of image nodes in any m-ary graph is p−1
m .

Proof. The values of y in (1) that have solutions are precisely the image nodes in a functional
graph. Then, using the same machinery as in the proof of Theorem 1, let r be any primitive
root modulo p and choose a and b such that g ≡ ra mod p and y ≡ rb mod p for g and
y in (1). If, m = gcd(a, p − 1) (or equivalently, the functional graph is m-ary) there is a
solution only if m|b. Thus, it is sufficient to count the values of b that are multiples of m.
A moment’s reflection should demonstrate that of the first p − 1 integers, precisely p−1

m of
them are multiples of m.

Theorem 2 helps to quantify the repercussions of Theorem 1 and the restrictions on
in-degree in m-ary graphs. The number of image nodes is a direct function of m which
can greatly limit the shapes each graph can take on. None of the other parameters appear
to have a generalization as convenient as the image nodes and will be treated as specific
parameters in permutations and binary functional graphs.

3.1 Random Functional Graphs

Flajolet and Odlyzko do a thorough analysis of functional graphs in [5]. While none of
these results are original, Flajolet and Odlyzko demonstrate that all of these parameters
can be estimated through a singularity analysis of generating functions. This appears to be
the first method that can be applied to all of these parameters. Their methods can then be
adapted for any fixed value of m to estimate the parameters of interest for an m-ary graph.
Specifically, the methods will be used to confirm some permutation results and to develop
all of the binary functional graph results. The results from [5] are summarized below in
Theorem 3.

Theorem 3. The asymptotic values for the parameters of interest in a random functional

5

graph of size n are:

Number of components
log (2n) + γ

2
(i)

Number of cyclic nodes
√

πn/2− 1
3

(ii)

Number of tail nodes n−
√

πn/2 +
1
3

(iii)

Number of terminal nodes e−1n (iv)

Number of image nodes (1− e−1)n (v)

Average cycle length
√

πn/8 (vi)

Average tail length
√

πn/8 (vii)

Maximum cycle length
√

πn

2

∫ ∞

0

[
1− exp

(
−

∫ ∞

v
e−u du

u

)]
dv

≈ 0.78248
√

n (viii)
(2)

In part (i), γ refers to the Euler constant which is approximately 0.57721566. The
second order terms for parts (i), (ii), and (iii) were not given in [5], but can be computed
with a careful singularity analysis using precisely the same methods used there.

3.2 Permutations

Predicting the behavior of the permutations is, in many ways, much easier than other m-ary
graphs. The most important reason for this is that there are no terminal nodes or tail nodes.
This follows quickly from the definition of a permutation as a unary functional graph and
the fact that the sum of the in-degrees must be the same as the sum of the out-degrees.
Each node has an out-degree of exactly one, and if any node were to have an in-degree of
zero, then, by the pigeon-hole principle, at least one node must have an in-degree of more
than one. This is not allowed so each node must have in-degree of exactly one. Furthermore,
since every tail must contain at least one terminal node, this also implies that every node is
cyclic. The parameters that can then be determined from the definition of a permutation
are given below.

Number of cyclic nodes n

Number of tail nodes 0
Number of terminal nodes 0
Number of image nodes n

Average tail length 0
(3)

There are three non-trivial parameters of interest. They are expressed in Theorem 4.

Theorem 4. The asymptotic values for the number of components, the average cycle length
as seen from a random node and the maximum cycle length in a random permutation of

6

size n have the following values:

Number of components
n∑

i=1

1
i

(i)

Average cycle length
n + 1

2
(ii)

Maximum cycle length n

∫ ∞

0

[
1− exp

(
−

∫ ∞

v
e−u du

u

)]
dv

≈ 0.62432965n (iii)

Proof. In e.g., [1, Theorem 1], it is shown that the expected number of cycles of length i in
a random permutation is asymptotic to 1/i. Part (i) follows immediately as

Number of components =
n∑

i=1

1
i
.

Part (ii) of the Theorem follows from the observation that for each cycle of length i, each
of the i nodes will contribute a weight of i for the cycle. Thus, the solution follows

Average cycle length =
1
n

n∑

i=1

1
i
i2 =

n + 1
2

.

Part (iii) seems to have first been solved by Shepp and Lloyd in 1966 [12]. An alternative
solution and proof more similar to the methods used here is offered by Flajolet and Odlyzko
in [4].

The relative simplicity of permutations provides an opportunity to introduce the meth-
ods that will be developed more fully in Section 3.3. While all of Theorem 4 could be
shown using these methods (as well as the parameters that followed from the definition of
a permutation), an alternative proof is given only for part (i).

As in [5], the first order of business is to enumerate the permutations in a form that can
be converted into generating functions. This can be done as

Permutation = set(Components)
Component = cycle(Tree)
Tree = Node
Node = Atomic Unit.

A permutation is a set of connected components. Each component is nothing more than a
cycle of trees where each tree is only a single node. Clearly, the structure for tree could be
omitted in this case. However, this definition adapts more easily to that used in Section 3.3
and provides no further complications. The notation, especially in this case, is fairly intu-
itive. The conversion into generating functions is quite mechanical (see [5] for the details).
The resulting generating functions are

f(z) = ec(z) =
1

1− z
(4)

c(z) = log
1

1− z
(5)

t(z) =
z

1− z
(6)

7

where f counts the functional graphs, or permutations in this case, c represented the com-
ponents and t represents the trees.

From these definitions, the bivariate generating function ξ(u, z) can be determined by
taking f and using u to mark the parameter of interest. In this case, the parameter of
interest is a component so the generating function is simply

ξ(u, z) = eu·c(z) = exp
(

u log
1

1− z

)
.

Then, Ξ(z) which is the generating function for the mean of ξ can be defined by simply
taking the partial derivative of ξ with respect to u and evaluating at u = 1. Performing
these operations gives the definition of Ξ(z) to be

Ξ(z) =
1

1− z
log

1
1− z

.

Performing a singularity analysis2 of this generating function leads to

[zn]Ξ(z) = log n + γ + O

(
2 + log n

n

)

where [zn]Ξ(z) denotes the coefficient of zn in Ξ(z). This gives the number of components
to be asymptotic to log n + γ where γ is the Euler constant defined as

γ = lim
n→∞

(
− log n +

n∑

i=1

1
i

)
.

Thus, log n + γ is asymptotically the same result derived in the proof of Theorem 4(i).
A careful reader may notice that Ξ(z) is an exponential generating function and the

coefficient was taken without regard for the n! inherent to all exponential generating func-
tions. Additionally, Ξ(z) contains cumulative data on all of the possible permutations. This
should necessitate scaling the coefficient by the number of graphs to obtain the expected
results for a single graph. However, since there are n! possible permutations, these two
factors cancel themselves out and, in this case, can be ignored. In the following derivations,
this is not the case and this normalizing process adds a small complication to the process
described above.

3.3 Binary Functional Graphs

While estimates for the parameters investigated here exist in literature for the random
functional graphs and permutations, it does not appear similar estimates exist for binary
functional graphs. However, the methods in [5] that were introduced with the alternate
proof of Theorem 4(i) can be extended to develop these estimates. Imitating the methods
of [5], we first need to convert our ideas of a binary functional graph into corresponding
generating functions. The machinery is fairly straightforward once we define the following
as in [5]:

2The analysis in this paper have been performed using the computer algebra program Maple and the
packages created as part of the Algorithms Project at INRIA, Rocquencourt, France. The packages can be
found online at http://pauillac.inria.fr/algo/libraries/software.html.

8

BinFunGraph = set(Components)
Component = cycle(Node*BinaryTree)
BinaryTree = Node + Node*set(BinaryTree, cardinality = 2)
Node = Atomic Unit

This implies that a binary functional graph is a set of components. Each component is
a cycle of nodes with each node having an attached binary tree to bring its in-degree
to two. A binary tree is either a node (terminal node) or a node with two binary trees
attached. Finally, a node is simply an atomic unit. A moment’s reflection should indicate
that this natural specification does, in fact, specify a binary functional graph. Imitating
the transformations in [5, Section 2.1], the generating functions of interest are

f(z) = ec(z) =
1

1− zb(z)
(7)

c(z) = log
1

1− zb(z)
(8)

b(z) = z +
1
2
zb2(z) (9)

Here f generates the number of binary functional graphs, c generates the number of com-
ponents, and b generates the number of binary trees of a given size. Solving the quadratic
formula for (9), we can produce the following equations f and c which simplify some of the
cases:

f∗(z) =
1√

1− 2z2
(10)

c∗(z) = log
1√

1− 2z2
(11)

In order to compute asymptotic forms of any of the statistics of interest, we must first
compute an asymptotic form for f or f∗ to normalize results. The following derivations
give only a highlight of the methods used by Flajolet and Odlyzko. The interested reader
is encouraged to see [4, 5] for detailed proofs.

From equation (10) it is clear that there is a singularity at z = 1/
√

2. Performing the
analysis as in [5, Section 2], the asymptotic form for f∗ falls out quickly as

f∗(z) ∼ 2n/2

√
2πn

. (12)

In at least one case, there are some second-order interactions between the error terms of the
number of graphs and the appropriate statistic. In these cases, a more exact form of (12)
must be used. Expanding one more term in the expansion of f∗ gives

f∗(z) ∼ 2n/2

√
2πn

− 2n/2

4n
√

2πn
=

2n/2(4n− 1)
4n
√

2πn
(13)

In most cases, using this more precise expansion of f is not necessary and does not change
the results. Therefore, in all but the necessary cases, (12) will be used.

We begin by deriving the results for the most simple parameters.

9

Theorem 5. The asymptotic forms for the number of components, number of cyclic nodes,
number of tail nodes, number of terminal nodes and number of image nodes in a random
binary functional graph of size n, as n →∞ are

Number of components
log (2n) + γ

2
(i)

Number of cyclic nodes
√

πn/2− 1 (ii)

Number of tail nodes n−
√

πn/2 + 1 (iii)
Number of terminal nodes n/2 (iv)

Number of image nodes n/2 (v)

In part (i), γ represents the Euler constant which is approximately 0.57721566. The
highlights of the proofs as they differ from those in [5] follow.

Proof. It should first be noted that part (ii) and part (iii) are complements of each other.
Likewise, parts (iv) and (v) must sum to n. The forms for parts (iii) and (v) follow from
the derivation of their partners. As in [5], the following bivariate generating functions need
to be defined with parameter u marking the elements of interest. The generating functions
for the number of components, number of cyclic nodes and number of terminal nodes are
respectively:

ξ1(u, z) = exp
(

u log
1

1− zb(z)

)
(14)

ξ2(u, z) =
1

1− uzb(z)
(15)

ξ3(u, z) =
1√

1− 2uz2
(16)

Equation (16) follows from marking the appropriate element in (9), solving the quadratic
formula and substituting into (7). Imitating the methods in [5], the mean value generating
function, Ξ(z), is found by taking the partial derivative of ξ(u, z) with respect to u and
evaluating at u = 1. This yields the following results

Ξ1(z) =
1

1− zb(z)
log

(
1

1− zb(z)

)
(17)

Ξ2(z) =
zb(z)

(1− zb(z))2
(18)

Ξ3(z) =
z2

(1− 2z2)3/2
. (19)

Equations (17), (18), and (19) lead to the following expansion around the singularity z =
1/
√

2.

Ξ1(z) =
log

(
1√

2
√

1−z
√

2

)

√
2
√

1− z
√

2
+ O

(√
1− z

√
2

(
log

∣∣∣∣
1

1− z
√

2

∣∣∣∣ + 2
))

(20)

Ξ2(z) =
1

2(1− z
√

2)
−

√
2

2
√

1− z
√

2
+ O(1) (21)

Ξ3(z) =
√

2
8(1− z

√
2)3/2

− 5
√

2

32
√

1− z
√

2
+ O

(√
1− z

√
2
)

(22)

10

Applying singularity analysis as in [5], Equations (20) through (22), lead to the following:

[zn]Ξ1(z) =
2n/2 log n

2
√

2πn
+

2n/2(γ + log 2)
2
√

2πn
+ O

(
2n/2(log |n|+ 2)

n3/2

)
(23)

[zn]Ξ2(z) =
2n/2(

√
πn−√2)

2
√

πn
+ O

(
2n/2

n3/2

)
(24)

[zn]Ξ3(z) =
2n/2(4n− 1)

8
√

2πn
+ O

(
2n/2

n3/2

)
(25)

The forms in the statement of the proof follow by normalizing (23) and (24) by (12) and (25)
by (13). Parts (iii) and (v) follow from parts (ii) and (iv) respectively since the respective
pairs must sum to n.

The asymptotic values for the length of a cycle and tail as seen from a random point in
the graph are also interesting. The asymptotic forms of these values are given in Theorem 6.

Theorem 6. The expected values for the cycle size and tail length as seen from a random
node in a random binary functional graph of size n are asymptotic to

Average cycle length
√

πn/8 (i)

Average tail length
√

πn/8 (ii)

Proof. In order to calculate the average cycle length and average tail length, the generating
functions must be manipulated to account for each node in the cycle or tail. This can be
done by using the same methods as in the previous proof, but on the component function
and taking an additional derivative with respect to z to weight each cycle and tail by the
nodes involved. Multiplying again by z replaces the factor lost in the differentiation and by
1/(1− b(z)) cumulates over all of the components. This strategy is used to prove the result
for average cycle size in [5]. More background on the method can be found there.

Let ξ1(z) be the exponential generating function for the average cycle length and ξ2(z)
be the exponential generating function for the average tail length. Then, they can be defined
as

ξ1 =
z

1−√1− 2z2

[
∂2

∂z∂u
log

1
1− u(1−√1− 2z2)

]

u=1

(26)

ξ2(z) =
z

1−√1− 2z2

[
∂2

∂z∂u
log

1√
1− 2uz2

]

u=1

(27)

In order to properly mark ξ2, the marking was done in b(z). The quadratic equation could
then be solved and the result inserted back into c(z). Performing a singularity analysis of
the two generating functions and normalization by

2n/2

n
√

2πn

as done in the previous Theorems, lead to the statement of the Theorem. The additional
factor of n in the denominator is needed to compensate for the fact that the parameters
were estimated across all nodes in the graph and the goal is to determine them from any
single random node in the graph.

11

The final parameter that needs to be calculated is the maximum cycle length. The
result is given as Theorem 7. The proof for this result follows precisely the methods of [5]
with substitution of the proper generating function f . Therefore, the proof of Theorem 7
is omitted.

Theorem 7. The expected length of the largest cycle in a random binary functional graph
of size n has the following asymptotic form

√
πn

2

∫ ∞

0

[
1− exp

(
−

∫ ∞

v
e−u du

u

)]
dv ≈ 0.78248

√
n

4 Observed Results

In [7], heuristics and observed values for the number of small cycles (fixed points and two-
cycles) in graphs of the type investigated here are given. Our methods build on this to
generate experimental data for the parameters described by the theoretical predictions in
Section 3. The method of data collection was straightforward. A prime was chosen as the
modulus and then for each g ∈ {1, 2, 3, ..., p− 1}, the corresponding map or permutation was
generated. The results were then computed as averages over all p− 1 graphs observed. The
permutations and binary functional graphs were noted and their results were also tabulated
separately. In this manner, the data can be examined in its complete form over all graphs
and individually over the permutations and binary functional graphs. The generation and
analysis of each of the graphs was handled by C++ code written by the author.

The primes chosen for these calculations were

100043 = 2 · 50021 + 1,

100057 = 23 · 3 · 11 · 379 + 1, and

106261 = 22 · 3 · 5 · 7 · 11 · 23 + 1.

The total number of graphs, permutations and binary functional graphs can be computed
using Theorem 1 and are shown in Table 1. The combined results of all functional graphs

100043 100057 106261

Permutations 50020 30240 21120

Binary Functional Graphs 50020 15120 10560

Total Functional Graphs 100042 100056 106260

Table 1: The number of permutations, binary functional graphs and total functional graphs asso-
ciated with p = 100043, p = 100057, and p = 106260.

will be examined first in Section 4.1 where the observed results will be compared to the
theoretical framework for random functional graphs given in Theorem 3. In Section 4.2, the
observed results for the permutations will be compared to the theoretical results given in
Theorem 4. Finally, the observed results for the binary functional graphs will be examined
in Section 4.3. Theorems 5 through 7 will provide the theoretical predictions for these
values. Since the terminal nodes and tail nodes can be directly computed from the image
nodes and cyclic nodes, including them in the collected data does not add any insight. For

12

this reason, they have both been excluded from the analysis conducted in the following
sections. Appendix D gives some of the interesting extremal data such as the longest cycle
observed for each prime.

4.1 Combined Results

It would seem that by combining better than one hundred thousand functional graphs
generated by (1), the results would tend toward a random functional graph. Theorem 1
shows that the modular exponentiation function imposes some structure onto the functional
graphs, but especially if p−1 has a complex factorization, the large number of graphs should
be able to overcome the structure. However, as Table 2 clearly shows, these graphs are not
tending toward a random functional graph. A more complete table which includes the

100043 100057 106261

Observed Error Observed Error Observed Error

Components 9.235 44.481% 7.603 18.947% 6.742 4.983%

Cyclic Nodes 50271.600 12578.567% 30399.400 7574.478% 21268.600 5110.130%

Image Nodes 75029.000 18.644% 47838.800 24.363% 69435.300 3.374%

Avg Cycle 25088.934 12557.883% 15249.500 7593.148% 10629.500 5103.529%

Avg Tail 197.951 0.130% 114.215 42.380% 92.590 54.674%

Max Cycle 31320.700 12555.466% 19027.821 7587.860% 13259.600 5098.564%

Table 2: The observed results for the three primes over all functional graphs generated and the
corresponding percent errors.

predicted values can be found in Appendix A.
There are only a few of the statistics that give a reasonable percent error. The first that

stands out is the average tail length for p = 100043. This, however, can be easily explained.
Since there are only four divisors of p− 1, nearly half of the graphs ((p− 3)/2 graphs) are
permutations. These permutations have no tails, and therefore, the only tail contributions
are from binary functional graphs and the g = 1 and g = p− 1 graphs. Thus, this result is
nearly the same as the average tail length statistic that will be presented in Section 4.3.

The only other statistics that have under 15 percent error are the number of components
and image nodes for p = 106261. This appears to be a result of a more complex factorization
for p− 1 leading to more variety in the m-ary graphs. The increasing complexity does not
appear to hide the graph structure demonstrated by the other statistics, though.

As was stated above, the permutations are notably different than other m-ary graphs
due to the fact that each node must be cyclic. If the permutations are removed from the
results shown in Table 2, the percent errors do, in fact, decrease in a number of instances.
Table 3 gives the results with the permutations and graphs with g = 1 and g = p − 1
removed. Again, a more complete table can be found in Appendix A. For p = 100043 this
leaves only the binary functional graphs, but for the other primes the graphs are still quite
diverse. This explains why the percent errors nearly go to zero for p = 100043 on most of
the statistics. The predicted values for a binary functional graph are nearly identical (or
even identical) to a random functional graph in many cases. Since there are only binary
functional graphs left for p = 100043 it is to be expected that the results follow closely those

13

100043 100057 106261

Observed Error Observed Error Observed Error

Components 6.389 0.045% 5.675 11.217% 5.406 15.821%

Cyclic Nodes 395.303 0.197% 228.389 42.342% 185.412 54.580%

Image Nodes 50021 20.901% 25222.257 60.121% 19600.94 70.819%

Avg Cycle 198.319 0.056% 114.832 42.069% 93.103 54.423%

Avg Tail 197.961 0.125% 114.218 42.379% 92.592 54.673%

Max Cycle 247.261 0.092% 143.023 42.215% 116.054 54.501%

Table 3: The observed results for the three primes over the m-ary graphs for 2 ≤ m < p−1
2 and the

corresponding percent errors.

that will be presented in Section 4.3. Namely, the data conforms well to the predictions for
binary functional graphs.

The more complex cases, however, do not fare as well. In fact, p = 106261 actually has
more graphs that are more varied, but the results are actually worse than for p = 100057.
The data seems to imply that as more graphs are added with a generally higher value of m,
there are fewer cyclic nodes, which lead to shorter cycles. Additionally, the tails also seem
to become shorter in these graphs. This fits with the results of Theorem 2 which claims
that a larger value of m leads to fewer image nodes with which to work.

The results in Tables 2 and 3 give evidence that the graphs should be broken up and
analyzed separately by the value of m. The results in Table 3 for p = 100043 especially lead
to that conclusion as the error goes nearly to zero in the cases where the expected values
remained nearly unchanged for random functional graphs to binary functional graphs.

4.2 Permutation Results

The results in Section 4.1 imply that the graphs should be split based on the value of m, or
the possible in-degrees of each node. It is also clear from Section 4.1 that the permutations
differ greatly from the other functional graphs by the change in percent error which occurred
by removing them. Section 3.2 and Theorem 4 clearly indicate the differences in the expected
value of many of the parameters between random functional graphs and binary functional
graphs. The results of looking at only the values of g that were a primitive root modulo p
can be found in Table 4. As in the previous section, a more detailed table which includes
the predicted values computed using Theorem 4 can be found in Appendix B.

100043 100057 106261

Observed Error Observed Error Observed Error

Components 12.081 0.083% 12.054 0.306% 12.126 0.205%

Avg Cycle 49980.551 0.082% 50191.352 0.326% 53105.104 0.048%

Max Cycle 62395.488 0.102% 62627.745 0.256% 66245.807 0.144%

Table 4: The observed results for the three primes over the permutations and the corresponding
percent errors.

14

Unlike the results in the previous section, the percent error here is nearly zero in every
instance. This seems to indicate that there are no obvious structural differences between a
random permutation and a permutation generated by the process used here.

4.3 Binary Functional Graph Results

The binary functional graphs should prove more interesting than the permutations examined
in the previous section. Unlike permutations, binary functional graphs do not appear to
have been previously studied in detail. The statistics derived from the binary functional
graphs and the error when compared to the results derived in Section 3.3 can be found in
Table 5. As with the previous two sections, more detailed results which include the actual

100043 100057 106261

Observed Error Observed Error Observed Error

Components 6.389 0.047% 6.364 0.437% 6.370 0.810%

Cyclic Nodes 395.303 0.029% 395.858 0.105% 408.433 0.217%

Image Nodes 50021 0% 50028 0% 53130 0%

Avg Cycle 198.319 0.056% 197.766 0.230% 202.651 0.795%

Avg Tail 197.961 0.125% 197.550 0.339% 202.422 0.907%

Max Cycle 247.261 0.094% 247.302 0.082% 256.986 0.754%

Table 5: The observed results for the three primes over all binary functional graphs generated and
the corresponding percent errors.

predicted values generated using Theorems 5 through 7 can be found in Appendix C.
The number of image nodes came out exactly as expected and predicted by Theorem 2.

However, in many other cases the results were nearly as good. In no case is any percent
error over one percent and in many cases it is less than 0.1%. The relative size of the
error follows the number of binary functional graphs for each prime. This is especially
worth noting for p = 100043 which has over fifty thousand binary functional graphs while
100057 and 106261 have approximately fifteen thousand and ten thousand respectively.
Since having more graphs appears to push the results closer to those derived in Section 3.3,
this seems to further support the claim that the results hold for any binary functional graph
produced by our mapping.

5 Conclusions and Future Work

The transformation used here to generate functional graphs and permutations is an ex-
ceedingly important transformation in cryptography. If the output of the function were to
fall into a predictable pattern, it could be an exploitable flaw in many algorithms consid-
ered secure today. For instance, the average cycle length seems particularly important for
PRBGs since, in many cases, it relates directly to the predictability of the PRBG. As Theo-
rem 1 demonstrates, the use of (1) repeatedly forces a non-trivial structure onto the graphs
generated. This is certainly worth investigating as any imposed structure may be open
to an exploit. In fact, as Section 4.1 demonstrates, this structure is visible even through
a relatively large number of graphs. The notable differences in permutations from other
m-ary graphs contributes a large amount of this error since the structure of a permutation

15

does not allow terminal nodes or tails whereas other m-ary graphs have both. Even after
removing the permutations, however, the error is still prevalent and appears to only get
worse as the factorization of p− 1 gets more complex and there are more functional graphs
with larger possible in-degrees.

The advantage of using a safe prime is that every non-trivial graph can be analyzed
by the theoretical framework laid out in this paper. Their use is also very prevalent in
cryptographic applications. For instance, the pseudo-random bit generator specified in [6]
requires the use of a safe prime to defend against other attacks. However, the methods used
for binary functional graphs in Section 3.3 can and should be extended to larger values of
m. In an ideal case, they should be extended in the general case for an m-ary graph that
can be specified by

FunctionalGraph = set(Components)
Component = cycle(Node*Set(Tree, cardinality = m− 1))
Tree = Node + Node*set(Tree, cardinality = m)
Node = Atomic Unit

The associated generating functions for these functional graphs would be

f(z) = ec(z)

c(z) = log
(

1− z

(m− 1)!
tm−1(z)

)−1

t(z) = z +
z

m!
tm(z)

where f(z) is the exponential generating function associated to the functional graphs, c(z)
is the exponential generating function associated to the connected components and t(z) is
associated to the trees. The methods in Section 3.3 could also be extended to obtain values
for additional parameters such as the maximum tail length.

This paper has focused on the graphs generated when the modulus is prime. In practice,
though, this is not always the case. For this reason, it could be worthwhile to attempt to
extend the type of analysis done here to a composite modulus.

While the data generated for this project appears to confirm that the graphs do tend
toward the shape and structure of a random graph of the appropriate type, no data was col-
lected on the distribution of the different parameters. This data could help to give a clearer
picture of how closely individual graphs may be expected to exhibit the characteristics of a
random graph.

This paper has shown that the functional graphs generated by using (1) do not conform
well to the expected shape of a random functional graph. In fact, it has shown that the
structure of the graph is largely dependent on a predictable interaction between g and
p− 1. Once this interaction is accounted for, the graphs can be divided into categories and
analyzed separately. The number of categories is simply the number of divisors of p − 1
and there will be φ(p−1

m) graphs of that variety for each m that divides p − 1. For m = 1
the result are permutations. These appear to conform well to established theory on the
shape of random permutation. If m = 2, the graphs appear to converge on a general shape
suggested by theoretical results derived in Section 3.3 for binary functional graphs. This
provides motivation to extend the results to m-ary graphs with larger values of m, as well
as to investigate the impact this imposed structure can have on the many cryptographic
algorithms that rely on the discrete log and modular exponentiation for their security.

16

Acknowledgements The author would like to thank his thesis advisor, Joshua Holden,
for his help and support throughout this project.

17

A Combined Data and Results

NOTE: The results marked No Permutations have had the permutations and the graphs
generated by g = 1 and g = p− 1 removed.

Data for p = 100043

Including Permutations No Permutations

Predicted Observed Error Predicted Observed Error

Components 6.392 9.235 44.481% 6.392 6.389 0.045%

Cyclic Nodes 396.083 50217.600 12578.567% 396.083 395.303 0.197%

Image Nodes 63238.605 75029.000 18.644% 50021 63238.605 20.901%

Avg Cycle 198.208 25088.934 12557.883% 198.208 198.319 0.056%

Avg Tail 198.208 197.951 0.130% 198.208 197.961 0.125%

Max Cycle 247.488 31320.700 12555.466% 247.488 247.261 0.092%

Data for p = 100057

Including Permutations No Permutations

Predicted Observed Error Predicted Observed Error

Components 6.392 7.603 18.947% 6.392 5.675 11.217%

Cyclic Nodes 396.110 30399.400 7575.478% 396.111 228.389 42.342%

Image Nodes 63247.455 47838.800 24.362% 63247.455 25222.257 60.121%

Avg Cycle 198.222 15249.500 7593.148% 198.222 114.832 42.069%

Avg Tail 198.222 114.215 42.380% 198.222 114.218 42.379%

Max Cycle 247.505 19027.824 7587.860% 247.511 143.023 42.215%

Data for p = 106261

Including Permutations No Permutations

Predicted Observed Error Predicted Observed Error

Components 6.422 6.742 4.983% 6.422 5.406 15.821%

Cyclic Nodes 408.216 21268.600 5110.130% 408.216 185.412 54.580%

Image Nodes 67169.131 69435.300 3.374% 67169.131 19600.940 70.819%

Avg Cycle 204.275 10629.500 5103.529% 204.275 93.103 54.423%

Avg Tail 204.275 92.590 54.674% 204.275 95.592 54.673%

Max Cycle 255.063 13259.600 5098.564% 255.069 116.054 54.501%

18

B Permutations Data and Results

Data for p = 100043

Predicted Observed Error

Components 12.091 12.081 0.083%

Avg Cycle 50021.500 49980.551 0.082%

Max Cycle 62459.187 62395.488 0.102%

Data for p = 100057

Predicted Observed Error

Components 12.091 12.054 0.306%

Avg Cycle 50028.500 50191.352 0.326%

Max Cycle 62467.927 62627.745 0.256%

Data for p = 106261

Predicted Observed Error

Components 12.151 12.126 0.205%

Avg Cycle 53130.500 53105.104 0.048%

Max Cycle 66341.269 66245.807 0.144%

19

C Binary Functional Graphs Data and Results

Data for p = 100043

Predicted Observed Error

Components 6.392 6.389 0.047%

Cyclic Nodes 395.416 395.303 0.029%

Image Nodes 50021 50021 0%

Avg Cycle 198.208 198.319 0.056%

Avg Tail 198.208 197.961 0.125%

Max Cycle 247.494 247.261 0.094%

Data for p = 100057

Predicted Observed Error

Components 6.392 6.364 0.437%

Cyclic Nodes 395.447 395.858 0.105%

Image Nodes 50028 50028 0%

Avg Cycle 198.222 198.766 0.230%

Avg Tail 198.222 197.550 0.339%

Max Cycle 247.505 247.302 0.082%

Data for p = 106261

Predicted Observed Error

Components 6.422 6.370 0.810%

Cyclic Nodes 407.550 408.433 0.217%

Image Nodes 53130 53130 0%

Avg Cycle 204.275 202.651 0.795%

Avg Tail 204.275 202.422 0.907%

Max Cycle 255.063 256.986 0.754%

20

D Extremal Data

For p = 100043, the longest cycle observed was 100042 which occurred for two different
values of g. They were g = 20812 and g = 94034. The longest tail had a length of 1448
and was observed when g = 89339. There were five instances where the graphs contained
no cycles longer than one which occurred for g = 1, 72116, 91980, 95997, and 100042.

The graphs generated by p = 100057 had an overall longest cycle of 100052 when
g = 58303. The longest tail observed was 1589 when g = 18115. There were also 26
different values of g that produced a graph that did not have a cycle longer than one.

The largest cycle observed in graphs generated using p = 106261 was 106257 when
g = 102141. The longest tail was 35822 when g = 1480. There were 92 different values of g
that produced graphs with no cycles longer than a fixed point.

21

E Code to Produce Experimental Data

E.1 bn prime.h

/* Auto generated by bn_prime.pl */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young’s, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word ’cryptographic’ can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ‘‘AS IS’’ AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

22

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

#ifndef EIGHT_BIT
#define NUMPRIMES 2048
#else
#define NUMPRIMES 54
#endif
static const unsigned int primes[NUMPRIMES]=
{

2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, 41, 43, 47, 53,
59, 61, 67, 71, 73, 79, 83, 89,
97, 101, 103, 107, 109, 113, 127, 131,

137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193, 197, 199, 211, 223,
227, 229, 233, 239, 241, 251,

#ifndef EIGHT_BIT
257, 263,
269, 271, 277, 281, 283, 293, 307, 311,
313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457,
461, 463, 467, 479, 487, 491, 499, 503,
509, 521, 523, 541, 547, 557, 563, 569,
571, 577, 587, 593, 599, 601, 607, 613,
617, 619, 631, 641, 643, 647, 653, 659,
661, 673, 677, 683, 691, 701, 709, 719,
727, 733, 739, 743, 751, 757, 761, 769,
773, 787, 797, 809, 811, 821, 823, 827,
829, 839, 853, 857, 859, 863, 877, 881,
883, 887, 907, 911, 919, 929, 937, 941,
947, 953, 967, 971, 977, 983, 991, 997,

1009,1013,1019,1021,1031,1033,1039,1049,
1051,1061,1063,1069,1087,1091,1093,1097,
1103,1109,1117,1123,1129,1151,1153,1163,
1171,1181,1187,1193,1201,1213,1217,1223,

23

1229,1231,1237,1249,1259,1277,1279,1283,
1289,1291,1297,1301,1303,1307,1319,1321,
1327,1361,1367,1373,1381,1399,1409,1423,
1427,1429,1433,1439,1447,1451,1453,1459,
1471,1481,1483,1487,1489,1493,1499,1511,
1523,1531,1543,1549,1553,1559,1567,1571,
1579,1583,1597,1601,1607,1609,1613,1619,
1621,1627,1637,1657,1663,1667,1669,1693,
1697,1699,1709,1721,1723,1733,1741,1747,
1753,1759,1777,1783,1787,1789,1801,1811,
1823,1831,1847,1861,1867,1871,1873,1877,
1879,1889,1901,1907,1913,1931,1933,1949,
1951,1973,1979,1987,1993,1997,1999,2003,
2011,2017,2027,2029,2039,2053,2063,2069,
2081,2083,2087,2089,2099,2111,2113,2129,
2131,2137,2141,2143,2153,2161,2179,2203,
2207,2213,2221,2237,2239,2243,2251,2267,
2269,2273,2281,2287,2293,2297,2309,2311,
2333,2339,2341,2347,2351,2357,2371,2377,
2381,2383,2389,2393,2399,2411,2417,2423,
2437,2441,2447,2459,2467,2473,2477,2503,
2521,2531,2539,2543,2549,2551,2557,2579,
2591,2593,2609,2617,2621,2633,2647,2657,
2659,2663,2671,2677,2683,2687,2689,2693,
2699,2707,2711,2713,2719,2729,2731,2741,
2749,2753,2767,2777,2789,2791,2797,2801,
2803,2819,2833,2837,2843,2851,2857,2861,
2879,2887,2897,2903,2909,2917,2927,2939,
2953,2957,2963,2969,2971,2999,3001,3011,
3019,3023,3037,3041,3049,3061,3067,3079,
3083,3089,3109,3119,3121,3137,3163,3167,
3169,3181,3187,3191,3203,3209,3217,3221,
3229,3251,3253,3257,3259,3271,3299,3301,
3307,3313,3319,3323,3329,3331,3343,3347,
3359,3361,3371,3373,3389,3391,3407,3413,
3433,3449,3457,3461,3463,3467,3469,3491,
3499,3511,3517,3527,3529,3533,3539,3541,
3547,3557,3559,3571,3581,3583,3593,3607,
3613,3617,3623,3631,3637,3643,3659,3671,
3673,3677,3691,3697,3701,3709,3719,3727,
3733,3739,3761,3767,3769,3779,3793,3797,
3803,3821,3823,3833,3847,3851,3853,3863,
3877,3881,3889,3907,3911,3917,3919,3923,
3929,3931,3943,3947,3967,3989,4001,4003,
4007,4013,4019,4021,4027,4049,4051,4057,
4073,4079,4091,4093,4099,4111,4127,4129,
4133,4139,4153,4157,4159,4177,4201,4211,
4217,4219,4229,4231,4241,4243,4253,4259,

24

4261,4271,4273,4283,4289,4297,4327,4337,
4339,4349,4357,4363,4373,4391,4397,4409,
4421,4423,4441,4447,4451,4457,4463,4481,
4483,4493,4507,4513,4517,4519,4523,4547,
4549,4561,4567,4583,4591,4597,4603,4621,
4637,4639,4643,4649,4651,4657,4663,4673,
4679,4691,4703,4721,4723,4729,4733,4751,
4759,4783,4787,4789,4793,4799,4801,4813,
4817,4831,4861,4871,4877,4889,4903,4909,
4919,4931,4933,4937,4943,4951,4957,4967,
4969,4973,4987,4993,4999,5003,5009,5011,
5021,5023,5039,5051,5059,5077,5081,5087,
5099,5101,5107,5113,5119,5147,5153,5167,
5171,5179,5189,5197,5209,5227,5231,5233,
5237,5261,5273,5279,5281,5297,5303,5309,
5323,5333,5347,5351,5381,5387,5393,5399,
5407,5413,5417,5419,5431,5437,5441,5443,
5449,5471,5477,5479,5483,5501,5503,5507,
5519,5521,5527,5531,5557,5563,5569,5573,
5581,5591,5623,5639,5641,5647,5651,5653,
5657,5659,5669,5683,5689,5693,5701,5711,
5717,5737,5741,5743,5749,5779,5783,5791,
5801,5807,5813,5821,5827,5839,5843,5849,
5851,5857,5861,5867,5869,5879,5881,5897,
5903,5923,5927,5939,5953,5981,5987,6007,
6011,6029,6037,6043,6047,6053,6067,6073,
6079,6089,6091,6101,6113,6121,6131,6133,
6143,6151,6163,6173,6197,6199,6203,6211,
6217,6221,6229,6247,6257,6263,6269,6271,
6277,6287,6299,6301,6311,6317,6323,6329,
6337,6343,6353,6359,6361,6367,6373,6379,
6389,6397,6421,6427,6449,6451,6469,6473,
6481,6491,6521,6529,6547,6551,6553,6563,
6569,6571,6577,6581,6599,6607,6619,6637,
6653,6659,6661,6673,6679,6689,6691,6701,
6703,6709,6719,6733,6737,6761,6763,6779,
6781,6791,6793,6803,6823,6827,6829,6833,
6841,6857,6863,6869,6871,6883,6899,6907,
6911,6917,6947,6949,6959,6961,6967,6971,
6977,6983,6991,6997,7001,7013,7019,7027,
7039,7043,7057,7069,7079,7103,7109,7121,
7127,7129,7151,7159,7177,7187,7193,7207,
7211,7213,7219,7229,7237,7243,7247,7253,
7283,7297,7307,7309,7321,7331,7333,7349,
7351,7369,7393,7411,7417,7433,7451,7457,
7459,7477,7481,7487,7489,7499,7507,7517,
7523,7529,7537,7541,7547,7549,7559,7561,
7573,7577,7583,7589,7591,7603,7607,7621,

25

7639,7643,7649,7669,7673,7681,7687,7691,
7699,7703,7717,7723,7727,7741,7753,7757,
7759,7789,7793,7817,7823,7829,7841,7853,
7867,7873,7877,7879,7883,7901,7907,7919,
7927,7933,7937,7949,7951,7963,7993,8009,
8011,8017,8039,8053,8059,8069,8081,8087,
8089,8093,8101,8111,8117,8123,8147,8161,
8167,8171,8179,8191,8209,8219,8221,8231,
8233,8237,8243,8263,8269,8273,8287,8291,
8293,8297,8311,8317,8329,8353,8363,8369,
8377,8387,8389,8419,8423,8429,8431,8443,
8447,8461,8467,8501,8513,8521,8527,8537,
8539,8543,8563,8573,8581,8597,8599,8609,
8623,8627,8629,8641,8647,8663,8669,8677,
8681,8689,8693,8699,8707,8713,8719,8731,
8737,8741,8747,8753,8761,8779,8783,8803,
8807,8819,8821,8831,8837,8839,8849,8861,
8863,8867,8887,8893,8923,8929,8933,8941,
8951,8963,8969,8971,8999,9001,9007,9011,
9013,9029,9041,9043,9049,9059,9067,9091,
9103,9109,9127,9133,9137,9151,9157,9161,
9173,9181,9187,9199,9203,9209,9221,9227,
9239,9241,9257,9277,9281,9283,9293,9311,
9319,9323,9337,9341,9343,9349,9371,9377,
9391,9397,9403,9413,9419,9421,9431,9433,
9437,9439,9461,9463,9467,9473,9479,9491,
9497,9511,9521,9533,9539,9547,9551,9587,
9601,9613,9619,9623,9629,9631,9643,9649,
9661,9677,9679,9689,9697,9719,9721,9733,
9739,9743,9749,9767,9769,9781,9787,9791,
9803,9811,9817,9829,9833,9839,9851,9857,
9859,9871,9883,9887,9901,9907,9923,9929,
9931,9941,9949,9967,9973,10007,10009,10037,
10039,10061,10067,10069,10079,10091,10093,10099,
10103,10111,10133,10139,10141,10151,10159,10163,
10169,10177,10181,10193,10211,10223,10243,10247,
10253,10259,10267,10271,10273,10289,10301,10303,
10313,10321,10331,10333,10337,10343,10357,10369,
10391,10399,10427,10429,10433,10453,10457,10459,
10463,10477,10487,10499,10501,10513,10529,10531,
10559,10567,10589,10597,10601,10607,10613,10627,
10631,10639,10651,10657,10663,10667,10687,10691,
10709,10711,10723,10729,10733,10739,10753,10771,
10781,10789,10799,10831,10837,10847,10853,10859,
10861,10867,10883,10889,10891,10903,10909,10937,
10939,10949,10957,10973,10979,10987,10993,11003,
11027,11047,11057,11059,11069,11071,11083,11087,
11093,11113,11117,11119,11131,11149,11159,11161,

26

11171,11173,11177,11197,11213,11239,11243,11251,
11257,11261,11273,11279,11287,11299,11311,11317,
11321,11329,11351,11353,11369,11383,11393,11399,
11411,11423,11437,11443,11447,11467,11471,11483,
11489,11491,11497,11503,11519,11527,11549,11551,
11579,11587,11593,11597,11617,11621,11633,11657,
11677,11681,11689,11699,11701,11717,11719,11731,
11743,11777,11779,11783,11789,11801,11807,11813,
11821,11827,11831,11833,11839,11863,11867,11887,
11897,11903,11909,11923,11927,11933,11939,11941,
11953,11959,11969,11971,11981,11987,12007,12011,
12037,12041,12043,12049,12071,12073,12097,12101,
12107,12109,12113,12119,12143,12149,12157,12161,
12163,12197,12203,12211,12227,12239,12241,12251,
12253,12263,12269,12277,12281,12289,12301,12323,
12329,12343,12347,12373,12377,12379,12391,12401,
12409,12413,12421,12433,12437,12451,12457,12473,
12479,12487,12491,12497,12503,12511,12517,12527,
12539,12541,12547,12553,12569,12577,12583,12589,
12601,12611,12613,12619,12637,12641,12647,12653,
12659,12671,12689,12697,12703,12713,12721,12739,
12743,12757,12763,12781,12791,12799,12809,12821,
12823,12829,12841,12853,12889,12893,12899,12907,
12911,12917,12919,12923,12941,12953,12959,12967,
12973,12979,12983,13001,13003,13007,13009,13033,
13037,13043,13049,13063,13093,13099,13103,13109,
13121,13127,13147,13151,13159,13163,13171,13177,
13183,13187,13217,13219,13229,13241,13249,13259,
13267,13291,13297,13309,13313,13327,13331,13337,
13339,13367,13381,13397,13399,13411,13417,13421,
13441,13451,13457,13463,13469,13477,13487,13499,
13513,13523,13537,13553,13567,13577,13591,13597,
13613,13619,13627,13633,13649,13669,13679,13681,
13687,13691,13693,13697,13709,13711,13721,13723,
13729,13751,13757,13759,13763,13781,13789,13799,
13807,13829,13831,13841,13859,13873,13877,13879,
13883,13901,13903,13907,13913,13921,13931,13933,
13963,13967,13997,13999,14009,14011,14029,14033,
14051,14057,14071,14081,14083,14087,14107,14143,
14149,14153,14159,14173,14177,14197,14207,14221,
14243,14249,14251,14281,14293,14303,14321,14323,
14327,14341,14347,14369,14387,14389,14401,14407,
14411,14419,14423,14431,14437,14447,14449,14461,
14479,14489,14503,14519,14533,14537,14543,14549,
14551,14557,14561,14563,14591,14593,14621,14627,
14629,14633,14639,14653,14657,14669,14683,14699,
14713,14717,14723,14731,14737,14741,14747,14753,
14759,14767,14771,14779,14783,14797,14813,14821,

27

14827,14831,14843,14851,14867,14869,14879,14887,
14891,14897,14923,14929,14939,14947,14951,14957,
14969,14983,15013,15017,15031,15053,15061,15073,
15077,15083,15091,15101,15107,15121,15131,15137,
15139,15149,15161,15173,15187,15193,15199,15217,
15227,15233,15241,15259,15263,15269,15271,15277,
15287,15289,15299,15307,15313,15319,15329,15331,
15349,15359,15361,15373,15377,15383,15391,15401,
15413,15427,15439,15443,15451,15461,15467,15473,
15493,15497,15511,15527,15541,15551,15559,15569,
15581,15583,15601,15607,15619,15629,15641,15643,
15647,15649,15661,15667,15671,15679,15683,15727,
15731,15733,15737,15739,15749,15761,15767,15773,
15787,15791,15797,15803,15809,15817,15823,15859,
15877,15881,15887,15889,15901,15907,15913,15919,
15923,15937,15959,15971,15973,15991,16001,16007,
16033,16057,16061,16063,16067,16069,16073,16087,
16091,16097,16103,16111,16127,16139,16141,16183,
16187,16189,16193,16217,16223,16229,16231,16249,
16253,16267,16273,16301,16319,16333,16339,16349,
16361,16363,16369,16381,16411,16417,16421,16427,
16433,16447,16451,16453,16477,16481,16487,16493,
16519,16529,16547,16553,16561,16567,16573,16603,
16607,16619,16631,16633,16649,16651,16657,16661,
16673,16691,16693,16699,16703,16729,16741,16747,
16759,16763,16787,16811,16823,16829,16831,16843,
16871,16879,16883,16889,16901,16903,16921,16927,
16931,16937,16943,16963,16979,16981,16987,16993,
17011,17021,17027,17029,17033,17041,17047,17053,
17077,17093,17099,17107,17117,17123,17137,17159,
17167,17183,17189,17191,17203,17207,17209,17231,
17239,17257,17291,17293,17299,17317,17321,17327,
17333,17341,17351,17359,17377,17383,17387,17389,
17393,17401,17417,17419,17431,17443,17449,17467,
17471,17477,17483,17489,17491,17497,17509,17519,
17539,17551,17569,17573,17579,17581,17597,17599,
17609,17623,17627,17657,17659,17669,17681,17683,
17707,17713,17729,17737,17747,17749,17761,17783,
17789,17791,17807,17827,17837,17839,17851,17863,
#endif
};

E.2 LinkedList

This is a linked list class that I implemented to provide a dynamic structure and allow
explicit control over the allocation and deallocation of memory.

28

E.2.1 LinkedList.h

#ifndef LINKEDLIST_HEADER
#define LINKEDLIST_HEADER

#define NULL 0

#include<iostream>
#include<fstream>
#include "mpi.h"

typedef struct Node {
int value;
Node * next;

} Node;

class LinkedList {

public:

LinkedList();

void makeEmpty();
void insert(int);
int get(int);
int length();
int find(int);
int* toArray();
void destroyArray();

private:

Node* head;
Node* tail;
int size;
int * array;

int get_r(int, Node);
int find_r(int, Node, int);
void deleteList(Node*);

};

class IndexOutofBoundsException {
public:

IndexOutofBoundsException()

29

: message("attempted access to an invalid data structure element"){}
const char *what() const {return message;}

private:
const char *message;

};

#endif

E.2.2 LinkedList.cpp

#include "LinkedList.h"

LinkedList::LinkedList() {
head = tail = NULL;
size = 0;

}

void LinkedList::makeEmpty() {
if(head != NULL) deleteList(head);
head = tail = NULL;
size = 0;

}

void LinkedList::insert(int val) {
if (size == 0) {

head = new Node();
if(head == NULL) {

std::cerr<<"Error allocating new nodes.\n";
ofstream status("status.txt");
status << "Exiting\n";
status.close();
MPI_Finalize();
exit(1);

}
(*head).value = val;
(*head).next = NULL;
tail = head;
size++;
return;

}
Node* temp = new Node();;
if(temp == NULL) {

std::cerr<<"Error allocating new nodes.\n";
ofstream status("status.txt");
status << "Exiting\n";
status.close();

30

MPI_Finalize();
exit(1);

}
(*temp).next = NULL;
(*temp).value = val;
(*tail).next = temp;
tail = temp;
temp = NULL;
delete temp;
size++;

}

int LinkedList::length() {
return size;

}

int LinkedList::get(int m){
if (m > size) throw IndexOutofBoundsException();
return get_r(m, *head);

}

int LinkedList::get_r(int m, Node node){
if(m == 0) return node.value;

return get_r(m-1, *node.next);
}

int LinkedList::find(int n) {
return find_r(n, *head, 0);

}

int LinkedList::find_r(int n, Node node, int index) {
if(node.value == n) return index;
if(node.next == NULL) return -1;
return find_r(n, *node.next, index+1);

}

int* LinkedList::toArray() {
array = new int[size];
if(array == NULL) {

std::cout<<"Error allocating array for list\n";
ofstream status("status.txt");
status << "Exiting\n";
status.close();
MPI_Finalize();
exit(1);
return array;

}
if(size==0) return array;

31

Node node = *head;
for(int i = 0; i < size; i++) {

array[i] = node.value;
if(node.next != NULL)

node = *node.next;
}
return array;

}

void LinkedList::destroyArray() {
delete[] array;

}

void LinkedList::deleteList(Node* n) {
Node* next;
while(n != NULL) {

next = (*n).next;
delete n;
n = next;

}
}

E.3 Version 1

This version of the program will generate all graphs for the given value of p. It will then
track the statistics for the results of all graphs, permutations and other functional graphs.

E.3.1 Version1.cpp

#include "LinkedList.h"
#include "ca1.h"
#include <exception>
#include <string>
#include<fstream>
#include "mpi.h"

using std::exception;
using std::cout;
using std::endl;
using std::string;

int main(int argc, char* argv[]) {
MPI_Init(&argc, &argv);

try {

32

run();

} catch (...) {
//do nothing, just let MPI_Finalize() run

}
MPI_Finalize();
ofstream status("status.txt");
status << "Exiting program\n";
status.close();
return 0;

}

E.3.2 ca1.h

#ifndef CA1
#define CA1

#include "LinkedList.h"
#include <fstream>
#include <string>
#include <sstream>
#include <iostream>
#include <math.h>
#include <time.h>
#include "bn_prime.h"

using std::string;
using std::ofstream;
using std::ifstream;

#define n 106261

void run();
int m_exp(int, int, int);
long long ml_exp(long long, int, long long);
void computeResults(int, const int*, const int*, int*, int*,

int*, int*, int*, int*);
void writeResults(int, int*, int *, int*);
void setArrays(int*,bool*, int*, bool*);
bool isPrimRoot(int);
bool isRelPrime(int);
void writeTotalResults(const int*, const int*, const int*,

const int*, const int*, const int*,
const int*, const int*, const int*,

33

const int*, const int*, const int*,
const int*, const int*, const int*,
const int*, const int*, const int*,
const int*, const int*, const int*,
const int*, const int*, const int*,
const int*, const int*, const int*,
const int*, const int*, const int*);

int gcd(int, int);
bool isPrime(int);
bool MillerRabin(int, int, int, int);

template<class F1, class F2> void convert(F1 in, F2 out){
std::stringstream ss;
ss << in;
ss>> out;

}

#endif

E.3.3 ca1.cpp

#include "ca1.h"

int m_exp(int b, int r, int num = n) {
return (int) ml_exp((long long) b, r, (long long) num);

}

long long ml_exp(long long b, int r, long long num) {
if (r == 0) return 1;
if(r % 2 == 0) {

long long result = ml_exp(b,r/2,num);
return result * result % num;

}
long long result = ml_exp(b,r/2,num);
return (b * result % num) * result % num;

}

void computeResults(int base, const int* cycle, const int* toCycle,
int* allCResults, int* allTResults, int* allToCycleResults,
int* allSplitCResults, int* allSplitTResults,
int* allSplitToCResults) {

for(int i = 0; i < n; i++) {
allSplitToCResults[toCycle[i]]++;

34

allToCycleResults[toCycle[i]]++;
if(cycle[i] < 0) {

allSplitTResults[-1*cycle[i]]++;
allTResults[-1*cycle[i]]++;

}
else if (cycle[i] > 0) {

allSplitCResults[cycle[i]]++;
allCResults[cycle[i]]++;

}
}

}

void writeResults(int base, int* cycleResults, int* tailResults,
int* toCycleResults){

bool primRoot = isPrimRoot(base);
bool relPrime = isRelPrime(base);
char* file = new char[20];
convert<int, char*>(n, file);
string fileStr = file;
if (primRoot && relPrime)

fileStr+="PRRP";
else if (primRoot)

fileStr+="PR";
else if (relPrime)

fileStr+= "RP";
else

fileStr += "NONE";
fileStr += ".txt";
ifstream in(fileStr.c_str());
int prevC, prevT, prevToC;
for(int i = 1; i <= n; i++){

in>>prevC;
in.ignore(1,0);
in>> prevT;
in.ignore(1,0);
in>> prevToC;
in.ignore(1,0);
cycleResults[i]+= prevC;
tailResults[i]+= prevT;
toCycleResults[i] += prevToC;

}
in.close();
ofstream out(fileStr.c_str());
for(int i = 1; i <= n; i++)

out<<cycleResults[i] << " " <<tailResults[i]<< " " << toCycleResults[i]
<< ’\n’;

out.close();

35

delete file;
}

bool isPrimRoot(int base) {
if(!isPrime(n)) return false;

int n_1 = n-1;

if ((unsigned)n_1 > (primes[NUMPRIMES-1]*primes[NUMPRIMES-1]))
std::cerr<<"Error in Primitive Root Testing, n could "

<<"have prime factor too large for testing."<<std::endl;
int n1 = n_1;
int index = 0;
int p;
while(n1 > 1 && index < NUMPRIMES) {

if((n1 % primes[index]) == 0) {
p = primes[index];
while((n1 % primes[index] == 0)) n1/=primes[index];
if(m_exp(base,n_1/p) == 1) return false;
if(n1 == 50021) return (m_exp(base,n_1/50021) != 1);

}
index++;

}
return true;

}

bool isPrime(int num) {
for(int i = 0; i < 50;i++) {

if(primes[i] > (unsigned)num) return true;
if((num % primes[i] == 0) && (num!=primes[i])) return false;

}

int k = 0;
int q = num-1;
while(q % 2 == 0) {

k++;
q >>= 1;

}
srand(time(0));
int a;
for(int i = 0; i < 10; i++) {
a = (rand() % (num-2)) + 1;
if(!MillerRabin(num, k, q, a)) return false;
}

return true;
}

36

bool MillerRabin(int num, int k, int q, int a) {
int n1 = num-1;
if(m_exp(a,q, num) == 1) return true;
for(int i = 0; i < k; i++)
if(m_exp(a,(int)pow(2,i)*q, num) == n1) return true;
return false;

}

bool isRelPrime(int base) {
return gcd(base, n-1) == 1;

}

int gcd(int a, int b) {
int r = a % b;
int d = b;
int c;
while (r > 0) {

c = d;
d = r;
r = c % d;

}
return d;

}

void setArrays(int * cycle, bool* visit, int* toCycle, bool* image){
for(int i = 0; i < n; i++){

visit[i] = false;
cycle[i] = 0;
toCycle[i] = 0;
image[i] = false;

}
}

void writeTotalResults(const int* allCResults, const int* allTResults,
const int* allToCycleResults, const int* allPRCResults,
const int* allPRTResults, const int* allPRToCResults,
const int* allNONECResults, const int* allNONETResults,
const int* allNONEToCResults, const int* maxTAll,
const int* maxTPR, const int* maxTNone,
const int* maxCAll, const int* maxCPR, const int* maxCNone,
const int* terminalAll, const int* terminalPR,
const int* terminalNone) {

37

char* file = new char[20];
convert<int, char*>(n, file);
string fileStr = file;
fileStr += "all.txt";
ofstream out(fileStr.c_str());
for(int i = 1; i <= n; i++) {

if(i == 1 || i == n)
out<< allCResults[i]/i << " " << allTResults[i] << " "

<< allToCycleResults[i] << " " << 0 <<" " << 0 << " "
<< 0 <<’\n’;

else
out<< allCResults[i]/i << " " << allTResults[i] << " "

<< allToCycleResults[i] << " " << terminalAll[i] << " "
<< maxCAll[i] << " " << maxTAll[i] << ’\n’;

}
out.close();
convert<int, char*>(n, file);
string filePR = strcat(file,"PR.txt");
convert<int, char*>(n, file);
string fileNotPR = strcat(file, "NotPR.txt");
ofstream outPR(filePR.c_str());
ofstream outNotPR(fileNotPR.c_str());
for(int i = 1; i <= n; i++) {

if(i == 1 || i == n) {
outPR << allPRCResults[i]/i << " " << allPRTResults[i]

<< " " << allPRToCResults[i] << " " << 0 << " " << 0 << " "
<< 0 << ’\n’;

outNotPR << allNONECResults[i]/i << " " << allNONETResults[i] << " "
<< allNONEToCResults[i] << " " << 0 << " "
<< 0 << " " << 0 << ’\n’;

} else {
outPR << allPRCResults[i]/i << " " << allPRTResults[i] << " "

<< allPRToCResults[i] << " " << terminalPR[i] <<
" " << maxCPR[i] << " " << maxTPR[i] << ’\n’;

outNotPR << allNONECResults[i]/i << " " << allNONETResults[i] << " "
<< allNONEToCResults[i] << " " << terminalNone[i] << " "
<< maxCNone[i] << " " << maxTNone[i] << ’\n’;

}
}
outPR.close();
outNotPR.close();
delete file;

}

void run() {
ofstream status("status2.txt");

38

status << "Allocating...\n";
status.close();
bool* visit = new bool[n];
bool* image = new bool[n];
int* maxTAll = new int[n];
int* maxTPR = new int[n];
int* maxTNone = new int[n];
int* maxCAll = new int[n];
int* maxCPR = new int[n];
int* maxCNone = new int[n];
int* terminalAll = new int[n];
int* terminalPR = new int[n];
int* terminalNone = new int[n];
int *cycle= new int[n];
int *toCycle = new int[n];
int *allCResults = new int[n+1];
int *allTResults = new int[n+1];
int *allToCycleResults = new int[n+1];
int *allPRCResults = new int[n+1];
int *allNONECResults = new int[n+1];
int *allPRTResults = new int[n+1];
int *allNONETResults = new int[n+1];
int *allPRToCResults = new int[n+1];
int *allNONEToCResults = new int[n+1];

int next, size, loc, baseTail, cycleLength, mC, mT, terminal;
LinkedList list;
int* listArray;
bool PR;
for(int i = 0; i <= n; i++){

allCResults[i] = 0;
allTResults[i] = 0;
allToCycleResults[i] = 0;
allPRCResults[i] = 0;
allNONECResults[i] = 0;
allPRTResults[i] = 0;
allNONETResults[i] = 0;
allPRToCResults[i] = 0;
allNONEToCResults[i] = 0;
if(i < n) {

maxTAll[i] = 0;
maxTPR[i] = 0;
maxTNone[i] = 0;
maxCAll[i] = 0;
maxCPR[i] = 0;
maxCNone[i] = 0;
terminalAll[i] = 0;
terminalPR[i] = 0;

39

terminalNone[i] = 0;
}

}
status.open("status2.txt", fstream::app);
status << "Starting...\n";
status.close();
for(int base = 2; base < n-1; base++) {

mC = 0;
mT = 0;
setArrays(cycle, visit, toCycle, image);
if(base % 100 == 0) {

status.open("status2.txt");
status << "Base is " << base << std::endl;
status.close();

}
for(int i = 1; i < n; i++) {

list.makeEmpty();
next = i;
list.insert(next);
while(!visit[next]){

visit[next] = true;
next = m_exp(base,next);
image[next] = true;
list.insert(next);

}
if(cycle[next] != 0) {

if(cycle[next] > 0) {//all tail into cycle
listArray = list.toArray();
size = list.length();
loc = list.find(next);
cycleLength = cycle[listArray[size-1]];
if(size - 1 > mT) mT = size - 1;
for(int j = 0; j < loc; j++){

cycle[listArray[j]] = 1+j-size;
toCycle[listArray[j]] = cycleLength;

}
} else {//extension of tail

listArray = list.toArray();
size = list.length();
baseTail = cycle[listArray[size-1]];
cycleLength = toCycle[listArray[size-1]];
if(size-1-baseTail > mT) mT = size-1-baseTail;
for(int j = 0; j < size-1; j++) {

cycle[listArray[j]] = j+1-size+baseTail;
toCycle[listArray[j]] = cycleLength;

}
}

} else {//new cycle found

40

listArray = list.toArray();
loc = list.find(next);
size = list.length();
cycleLength = size - loc - 1;
if(cycleLength > mC) mC = cycleLength;
if(loc > mT) mT = loc;
for(int j = 0; j <= loc - 1; j++) {

cycle[listArray[j]] = -loc+j;
toCycle[listArray[j]] = cycleLength;

}
for(int j = loc; j < size - 1; j++)

cycle[listArray[j]] = cycleLength;
}
list.destroyArray();

}

PR = isPrimRoot(base);
terminal=0;
for(int i = 1; i < n; i++)

if(!image[i]) terminal++;
maxTAll[base] = mT;
maxCAll[base] = mC;
terminalAll[base] = terminal;
if(!PR) {

maxTNone[base]=mT;
maxCNone[base] = mC;
terminalNone[base] = terminal;
computeResults(base, cycle, toCycle, allCResults, allTResults,

allToCycleResults, allNONECResults, allNONETResults,
allNONEToCResults);

} else {
maxTPR[base] = mT;
maxCPR[base] = mC;
terminalPR[base] = terminal;

computeResults(base, cycle, toCycle, allCResults, allTResults,
allToCycleResults, allPRCResults, allPRTResults,
allPRToCResults);

}

}
status.open("status2.txt", fstream::app);
status << "Writing Results...\n";
status.close();
writeTotalResults(allCResults, allTResults, allToCycleResults,

allPRCResults, allPRTResults, allPRToCResults,

41

allNONECResults, allNONETResults, allNONEToCResults,
maxTAll, maxTPR, maxTNone,
maxCAll, maxCPR, maxCNone,
terminalAll, terminalPR, terminalNone);

status.open("status2.txt", fstream::app);
status << "Cleaning up...\n";
status.close();
delete [] visit;
delete [] cycle;
delete [] toCycle;
delete [] allCResults;
delete [] allTResults;
delete [] allToCycleResults;
delete [] allPRCResults;
delete [] allNONECResults;
delete [] allPRTResults;
delete [] allNONETResults;
delete [] allPRToCResults;
delete [] allNONEToCResults;
delete[] maxTAll;
delete[] maxTPR;
delete[] maxTNone;
delete[] maxCAll;
delete[] maxCPR;
delete[] maxCNone;
delete [] terminalAll;
delete [] terminalPR;
delete [] terminalNone;

}

E.4 Version 2

This version of the program will only examine the m-ary graphs for the given value of m
and p. It will not generate any of the other graphs.

E.4.1 Version2.cpp

#include "LinkedList.h"
#include "ca2.h"
#include <exception>
#include <string>
#include<fstream>
#include "mpi.h"

using std::exception;
using std::cout;

42

using std::endl;
using std::string;

int main(int argc, char* argv[]) {

MPI_Init(&argc, &argv);

try {
run();

} catch (...) {
//do nothing, just let MPI_Finalize() run

}
MPI_Finalize();

return 0;
}

E.4.2 ca2.h

#ifndef CA2
#define CA2

#include "LinkedList.h"
#include <fstream>
#include <string>
#include<sstream>
#include<iostream>
#include<math.h>
#include<time.h>
#include "bn_prime.h"

using std::string;
using std::ofstream;
using std::ifstream;

#define STATUS "status_3_100057.txt"
#define n 100057
#define M_ARY 3

void run();
int m_exp(int, int, int);
long long ml_exp(long long, int, long long);
void computeResults(int, const int*, const int*, int*, int*, int*);

43

void writeResults(int, int*, int *, int*);
void setArrays(int*,bool*, int*, bool*);
bool isPrimRoot(int);
bool isRelPrime(int);
void writeTotalResults(const int*, const int*, const int*,

const int*, const int*, const int*);

int gcd(int, int);
bool isPrime(int);
bool MillerRabin(int, int, int, int);

template<class F1, class F2> void convert(F1 in, F2 out){
std::stringstream ss;
ss << in;
ss>> out;

}

#endif

E.4.3 ca2.cpp

#include "ca2.h"

int m_exp(int b, int r, int num = n) {
return (int) ml_exp((long long) b, r, (long long) num);

}

long long ml_exp(long long b, int r, long long num) {
if (r == 0) return 1;
if(r % 2 == 0) {

long long result = ml_exp(b,r/2,num);
return result * result % num;

}
long long result = ml_exp(b,r/2,num);
return (b * result % num) * result % num;

}

void computeResults(int base, const int* cycle, const int* toCycle,
int* allCResults, int* allTResults,
int* allToCycleResults) {

for(int i = 0; i < n; i++) {
allToCycleResults[toCycle[i]]++;
if(cycle[i] < 0) {

44

allTResults[-1*cycle[i]]++;
} else if (cycle[i] > 0) {

allCResults[cycle[i]]++;
}

}
}

void writeResults(int base, int* cycleResults, int* tailResults,
int* toCycleResults){

bool primRoot = isPrimRoot(base);
bool relPrime = isRelPrime(base);
char* file = new char[20];
convert<int, char*>(n, file);
string fileStr = file;
if (primRoot && relPrime)

fileStr+="PRRP";
else if (primRoot)

fileStr+="PR";
else if (relPrime)

fileStr+= "RP";
else

fileStr += "NONE";
fileStr += ".txt";
ifstream in(fileStr.c_str());
int prevC, prevT, prevToC;
for(int i = 1; i <= n; i++){

in>>prevC;
in.ignore(1,0);
in>> prevT;
in.ignore(1,0);
in>> prevToC;
in.ignore(1,0);
cycleResults[i]+= prevC;
tailResults[i]+= prevT;
toCycleResults[i] += prevToC;

}
in.close();
ofstream out(fileStr.c_str());
for(int i = 1; i <= n; i++)

out<<cycleResults[i] << " " <<tailResults[i]<< " "
<< toCycleResults[i] << ’\n’;

out.close();
delete file;

}

bool isPrimRoot(int base) {

45

if(!isPrime(n)) return false;

int n_1 = n-1;

if ((unsigned)n_1 > (primes[NUMPRIMES-1]*primes[NUMPRIMES-1]))
std::cerr<<"Error in Primitive Root Testing, n could "

<<"have prime factor too large for testing."<<std::endl;
int n1 = n_1;
int index = 0;
int p;
while(n1 > 1 && index < NUMPRIMES) {

if((n1 % primes[index]) == 0) {
p = primes[index];
while((n1 % primes[index] == 0)) n1/=primes[index];
if(m_exp(base,n_1/p) == 1) return false;
if(n1 == 50021) return (m_exp(base,n_1/50021) != 1);

}
index++;

}
return true;

}

bool isPrime(int num) {
for(int i = 0; i < 50;i++) {

if(primes[i] > (unsigned)num) return true;
if((num % primes[i] == 0) && (num!=primes[i])) return false;

}

int k = 0;
int q = num-1;
while(q % 2 == 0) {

k++;
q >>= 1;

}
srand(time(0));
int a;
for(int i = 0; i < 10; i++) {

a = (rand() % (num-2)) + 1;
if(!MillerRabin(num, k, q, a)) return false;

}

return true;
}

bool MillerRabin(int num, int k, int q, int a) {
int n1 = num-1;
if(m_exp(a,q, num) == 1) return true;

46

for(int i = 0; i < k; i++)
if(m_exp(a,(int)pow(2,i)*q, num) == n1) return true;

return false;
}

bool isRelPrime(int base) {
return gcd(base, n-1) == 1;

}

int gcd(int a, int b) {
if(a== 0) return b;
if(b==0) return a;
int r = a % b;
int d = b;
int c;
while (r > 0) {

c = d;
d = r;
r = c % d;

}
return d;

}

void setArrays(int * cycle, bool* visit, int* toCycle, bool* image){
for(int i = 0; i < n; i++){

visit[i] = false;
cycle[i] = 0;
toCycle[i] = 0;
image[i] = false;

}
}

void writeTotalResults(const int* allCResults, const int* allTResults,
const int* allToCycleResults,

const int* maxTAll,
const int* maxCAll,
const int* terminalAll) {

char* file = new char[20];
convert<int, char*>(n, file);
string fileStr = file;
fileStr += "_";
char* m_ary = new char[10];
convert<int, char*>(M_ARY, m_ary);
fileStr += m_ary;
fileStr += ".dat";

47

ofstream out(fileStr.c_str());
for(int i = 1; i <= n; i++) {

if(i == 1 || i == n)
out<< allCResults[i]/i << " " << allTResults[i] << " "

<< allToCycleResults[i] << " " << 0 <<" " << 0 << " "
<< 0 <<’\n’;

else
out<< allCResults[i]/i << " " << allTResults[i] << " "

<< allToCycleResults[i] << " " << terminalAll[i] << " "
<< maxCAll[i] << " " << maxTAll[i] << ’\n’;

}
out.close();
delete file;

}

void run() {
ofstream status(STATUS);
status << "Allocating...\n";
status.close();
bool* visit = new bool[n];
bool* image = new bool[n];
int* maxTAll = new int[n];
int* maxCAll = new int[n];
int* terminalAll = new int[n];
int *cycle= new int[n];
int *toCycle = new int[n];
int *allCResults = new int[n+1];
int *allTResults = new int[n+1];
int *allToCycleResults = new int[n+1];

int next, size, loc, baseTail, cycleLength, mC, mT, terminal;
int root, exp, base;
LinkedList list;
int* listArray;

for(int i = 0; i <= n; i++){
allCResults[i] = 0;
allTResults[i] = 0;
allToCycleResults[i] = 0;
if(i < n) {

maxTAll[i] = 0;
maxCAll[i] = 0;
terminalAll[i] = 0;

}
}
status.open(STATUS, fstream::app);
status << "Finding a PR...\n";

48

status.close();

for(root = 1; !isPrimRoot(root); root++);

status.open(STATUS, fstream::app);
status <<"Prim root is "<<root <<"...\n";
status.close();

for(exp = 0; exp < n; exp++) {
if(exp % 100 == 0) {

status.open(STATUS);
status << "Exp is " << exp << std::endl;
status.close();

}
if(gcd(exp,n-1) != M_ARY) continue;
base = m_exp(root,exp);
mC = 0;
mT = 0;
setArrays(cycle, visit, toCycle, image);

for(int i = 1; i < n; i++) {
list.makeEmpty();
next = i;
list.insert(next);
while(!visit[next]){

visit[next] = true;
next = m_exp(base,next);
image[next] = true;
list.insert(next);

}
if(cycle[next] != 0) {

if(cycle[next] > 0) {//all tail into cycle
listArray = list.toArray();
size = list.length();
loc = list.find(next);
cycleLength = cycle[listArray[size-1]];
if(size - 1 > mT) mT = size - 1;
for(int j = 0; j < loc; j++){

cycle[listArray[j]] = 1+j-size;
toCycle[listArray[j]] = cycleLength;

}
} else {//extension of tail

listArray = list.toArray();
size = list.length();
baseTail = cycle[listArray[size-1]];
cycleLength = toCycle[listArray[size-1]];
if(size-1-baseTail > mT) mT = size-1-baseTail;
for(int j = 0; j < size-1; j++) {

49

cycle[listArray[j]] = j+1-size+baseTail;
toCycle[listArray[j]] = cycleLength;

}
}

} else {//new cycle found
listArray = list.toArray();
loc = list.find(next);
size = list.length();
cycleLength = size - loc - 1;
if(cycleLength > mC) mC = cycleLength;
if(loc > mT) mT = loc;
for(int j = 0; j <= loc - 1; j++) {

cycle[listArray[j]] = -loc+j;
toCycle[listArray[j]] = cycleLength;

}
for(int j = loc; j < size - 1; j++)

cycle[listArray[j]] = cycleLength;
}
list.destroyArray();

}

terminal=0;
for(int i = 1; i < n; i++)

if(!image[i]) terminal++;
maxTAll[base] = mT;
maxCAll[base] = mC;
terminalAll[base] = terminal;
computeResults(base, cycle, toCycle, allCResults, allTResults,

allToCycleResults);

}
status.open(STATUS, fstream::app);
status << "Writing Results...\n";
status.close();
writeTotalResults(allCResults, allTResults, allToCycleResults,

maxTAll, maxCAll, terminalAll);
status.open(STATUS, fstream::app);
status << "Cleaning up...\n";
status.close();
delete [] visit;
delete [] cycle;
delete [] toCycle;
delete [] allCResults;
delete [] allTResults;
delete [] allToCycleResults;
delete[] maxTAll;
delete[] maxCAll;
delete [] terminalAll;

50

status.open(STATUS, fstream::app);
status<<"Exiting...\n";
status.close();

}

References

[1] R. Arratia and S. Tavaré. The cycle structure of random permutations. Ann. Probab.,
20(3):1567–1591, 1992.

[2] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM Journal on Computing, 13(4):850–864, 1984.

[3] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22(6):644–654, 1976.

[4] P. Flajolet and A. Odlyzko. Singularity analysis of generating functions. SIAM J.
Discrete Math., 3(2):216–240, 1990.

[5] P. Flajolet and A. M. Odlyzko. Random mapping statistics. In Advances in
cryptology—EUROCRYPT ’89 (Houthalen, 1989), volume 434 of Lecture Notes in
Comput. Sci., pages 329–354. Springer, Berlin, 1990.

[6] R. Gennaro. An improved pseudo-random generator based on the discrete logarithm
problem. Journal of Cryptology, 18(2):91–110, 2005.

[7] J. Holden. Fixed points and two-cycles of the discrete logarithm. In Algorithmic number
theory (Sydney, 2002), volume 2369 of Lecture Notes in Comput. Sci., pages 405–415.
Springer, Berlin, 2002.

[8] I. Niven, H. S. Zuckerman, and H. L. Montgomery. An Introduction to the Theory of
Numbers. John Wiley & Sons, Inc, 1991.

[9] C. Pomerance. A tale of two sieves. Notices Amer. Math. Soc., 43(12):1473–1485, 1996.

[10] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Comm. ACM, 21(2):120–126, 1978.

[11] B. Schneier. Applied Cryptography: Protocols, Algorithms and Source Code in C. John
Wiley & Sons, Inc, 2 edition, 1996.

[12] L. A. Shepp and S. P. Lloyd. Ordered cycle lengths in a random permutation. Trans.
Amer. Math. Soc., 121:340–357, 1966.

51

	Mapping the Discrete Logarithm
	Recommended Citation

	05-06cover
	05-06direct

