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Abstract

This paper focuses on the inverse'probletn of identifying an internal
void in a bounded two or three:dimensional region. Information, in
the form of heat flux and temperature, is assumed to be obtainable
only on the external boundary of the region. The reciprocity gap
approach with suitable test functions is used in both the two- and
three-dimensional cases.

1 Introduction

Knowing the integrity of the inside of an object can be difficult without
destroying the object. Thermal imaging is one method of non-destructive
testing that allows one to determine if any defects exist within an object.
A heat flux is applied to the external boundary of the object, and then the
temperature of the object is measured on the external boundary. It is hoped
that the presence of the defect yields a different temperature pattern on the
surface. The flow of heat through the interior of the object is assumed to be
governed by the heat equation

Once the presence of a defect has been detected, the problem becomes one
of locating the defect and determining its size. This type of problem can be
considered with or without time dependence. In this paper, I will consider
the two- and three-dimensional cases without time dependence. The type
of defect examined is a circular/spherical hole or “void” where no material




exists. These methods are developed using past research by Bryan, Krieger,
and Trainor [1] and Spring and Talbott [2] as a basis.

1.1 Forward Problem

The steady-state forward problem is assumed to be governed by the time-
independent heat equation, or Laplace’s Equation. Let ) be a bounded
region in R™ and 90 denote the (n — 1)-dimensional boundary of . A void
D may exist inside 2 where no material is present; the boundary of the void

is denoted 9D. The temperature of ) at position (x1, z,, . .. , ) is denoted
by u(z1,22,...,x,), where u obeys Laplace’s Equation:
n
0%u
Ay = — = 0. 1
U= 5 (1)
Jj=1 J

A heat flux g(z1, 29, ..., x,) is applied to 9. In the steady state case the net
heat flux on 99 must be zero, that is, / g ds = 0, since energy can neither

a0
be created nor destroyed. No heat flows across 8D since we are assuming
the boundary of the void is insulating. These boundary conditions can be
quantified as

ou

5;.—~Vu-n—g on 9N (2)
ou
%-—O on 8D (3)

with n the outward unit normal vector on 8Q or 4D as appropriate. In the
future we will in fact take n on 8D to point OUT of D (away from the center
when D is a disk or sphere). s

Equations (1)-(3) possess a unique solution if we add the additional nor-

malization
/ udr = 0.
an

2 Two-Dimensional Inverse Problem

2.1 Reciprocity Gap Approach

For the two-dimensional inverse problem, we need to find the center (a,b)
and radius R of a circular void D contained within €. One method to solve
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the inverse problem is the Rec1proc1ty Gap Approach. The Reciprocity Gap
formula is derived from the Dlvergence Theorem and Green’s Second Identity.
Let v be a harmonic “test function” on Q. The Reciprocity Gap formula is

ov ou ov
/BQ (uan 5n> ds = u—a—ﬁ ds (4)
This is easily obtained by applying Green’s second identity to w and v on the
region 2\ D (v is harmonic on €, hence on 2\ D). Note we assume that n
on 0D points out of D (into Q\ D).
The left hand side of equation (4) can be calculated using known data.
A chosen heat flux g(z,y) = g“ﬁ is applied and the temperature u(z,y) is
measured on 9. Let us define

RG(v) := U — V= ds (5)
so that equation (4) can be written

RG(v) = - ug ds (6)

Our goal is to use cleverly chosen functions v and our ability to compute
RG(v) in (6) to extract information about D

2.2 Test Functions

Different classes of test functions can be used to locate a void D and deter-
mine its size. One class of harmonic test functions is

v(z,y) = In((z - p)* + (y — ¢)?) (7)

with (p, q) a point outside 2, the closure of Q.

Let us assume that D is a disk centered at (a,b), of radius R. We can
parameterize 0D as x = a+Rcos(6),y = b+Rsin(f) for 0 < 6 < 2r. The unit
normal vector which points AWAY from (a,b) is given by n = (cos 8, sin 6)
on 9D. The Reciprocity Gap Formula (6) with test function v defined by (7)
can now be written, after a bit of algebra, as

[ 2(a —p)cosf+2(b—q)sinf + R
RG(v)~/0 (R, 9)(a+Rc089 p)? + (b+Rsin0~q)2Rd0 )
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where we use ds = R df.
Let us assume that we have a small radius defect. We can approximate
(8) by using the first term of the Taylor approximation about R = 0 which

yields
_ [ 2(a - p) cosf + 2(b — q) sin
RGW) = [ u(R.0) e S T

We will use equation (9) to locate the center of the void.

2.3 Locating the Center of the Void

To find the center of the void, (9) can be written in the form

I z‘\,<2r"‘],1
RG(U) %’ |r‘|2 ! .

where

J= <‘]C7 J3>
r= <(1 - D, b~ q>
2w
Jo = / u(R,0) (cosd) R db
0

27

Jo= | u(R,6)(sin6) R df

S~

To simplify further, equation (10) can be written as

2|J|cos o
RG(v) = —l—{;l——— (11)

with « the angle between the vectors J and r. To recover the center (a, b), we
know J will remain constant since it depends on the radius R and u(R, 6),
but not (p,q). The vector r will vary as the distance between the chosen
point (p,q) and the center (a,b) varies. Figure 1 illustrates the relationship
between J and r. Since RG(v) can befcalcﬁlated~;at any (p, q) of our choosing
outside 2, we choose many points (p,q) that form a circle slightly outside
2. It’s easy to see from equation (11) that at exactly two points around the
3r

circle we have RG(v) = 0; these points will occur when a = 2,50 A line

segment, {, connecting the two points will pass through the center of D.
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(p,q)

H

RG(v)=0

Figure 1: Relationship of J and r

Strategically chosen points (p,q) can now reveal the exact center of D.
Starting at one end of [ (in §2), assume a given point P on [ is the center.
Choose a point j a distance d from the assumed center P such that the
line connecting it to P is orthogonal to I. Next, choose a point k£ the same
distance d from P, but so that the line connecting it to the assumed center
forms an angle 8 with [. If the assumed center P is the true center, equation
(11) shows that the following relationship will hold

. RG(k)

RG(j) = o5 B (12)
since J is orthogonal to [. By choosing a sequence of such assumed centers at
regular intervals along [ we may approximately locate the true center (at that
point where (12) holds). A plot of the relationship (12) for all the assumed
centers will easily show the location of the true center. Figure 2 displays the
method for determining the center using two points 7,k. A computational
example is given below. It remains to be shown that this approach recovers
the center uniquely.

Note that we also recover the value of the vector J.

2.4 Determining the Radius R

Once the center is known, the radius can be determined. Let J = J, + J,.
Polar coordinates are easiest to use with this section so let use define p as
the distance from the center (a,b) of the defect. In this case we have that
g—r“l simply becomes —g% on 9D. We will write u(p, 8) to denote u in the polar

coordinate system centered at (a,b).




RG(v) =0

Figure 2: Method to find Center

We need to approximate u(R,6) (that is, u on dD) to determine R.
Let’s consider up(x,y) to be the solution to equations (1)-(2) when no defect
is present. If a defect is present, u(z,y) should be close to ug, that is,
u(z,y) = uo(z, y)+w(z,y) with w(z, y) a “small” adjustment function. Then
w = u — ug is harmonic on @\ D. Also, on 8Q we have g“’ﬁ = 0 since u and
ug have the same normal derivatives. On 8D we have

ow Oug
=20 13
We will approximate w by aséuniing that g% is negligible on 91, of order

O(R?), while the other approximations we make will be order O(R?). A proof
of this fact can be given using the techniques in [1].
Accordingly, let @ denote the harmonic function on R?\ D which satisfies

%’“g = —%*;)Q on dD. Using the same assumption that R is small, we can
approximate Vug(z,y) on D to be Vug(a,b). This means

%20— = Vug(a,b) - (cosd, sin )
up to an error of O(R). We then can say

%15 = —Vug(a,b) - (cos b, sin b)

on 0D. We can find a harmonic w that satisfies (2.4); it is

w(p,H) = R Vug(a, b) - (cos 8, sin )
| p




On 9D, p = R we have
w(R,0) = RVugy(a,b) - (cosd,sinh) .

It can be shown (again, using the techniques of [1]) that @(R, 8) = w(R, 6) +
O(R?).

We next approximate u = uy + w = ug + 0, which yields
u(R,0) = uo(R,0) + RVug(a,b) - (cos b, sin )

on dD. For a final approximation, if we use the tangent plane approximation
to approximate ug at (a,b), we have

-

tto(R, 0) = uo(a,b) +Veio(a,b) - (Roos §, Rsin6) + O(R?)
Putting all of this into (2.4), we now have
u(R,0) = ug(a,b) + 2RVuy(a,b) - {cos 0, sin 6) (14)

We now substitute (14) into (6) and integrate over dD (i.e., 0 < 6 < 27);
the ug(a,b) term falls out when integrated, and we end with the following
relationship

J=J.+ J, ~ 2rR* <%%9(a, b) + %(a,b)) (15)

to order O(R3).
We have already recovered the center (a, b) and the vector J, in particular,
the values of J; and J,. Since ug is known, we can solve equation (15) for R.

2.5 Example

Let’s consider an example of a two-dimensional steady state inverse problem.
Let  be the unit disk in R?. Let g(f) = sinf, which means heat flows in
the top and out the bottom of 2. Let D be a circular void centered at
(0.3,-0.2) with radius 0.15. The temperature u(z,y) on 89 is calculated
and plotted using Femlab. On the following plot, the green curve shows the
temperature with no defect, and the red curve shows the temperature with
the defect. A difference can be seen between the temperature with no defect
present and the temperature with a defect present. In this it’s easy to see
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Figure 3: Plot of Temperature Differences

that up(z,y) = v.

Next, the RG(v) values are calculated and plotted around a circle with
radius 1.1 centered at (0,0). Figure 4 shows RG(v) = 0 at two points; when
6 a2 3.324,6.101. Figure 5 shows when these points are connected, the line
[ is equivalent to y ~ —0.199, which passes through the center. The RG (v)
values are calculated at points j, & with distance d = 2. Point k was chosen
with o = 7 /4. Figure 6 shows when plotted, it is easily seen (12) holds at one
point, z &~ 0.310. The center of D is now known, (a,b) ~ (0.310, ~-0.199).
These values are now used to calculate the radius R. When Vug is calculated
at (0.310,~0.199), the resulting vector is (0,1). J is calculated to be J ~
0.146. The relationship (15) shows R =~ —0.152,0.152. Since the radius
cannot be less than zero, we know R ~ 0.152.
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Figure 5: RG(v)=0




Figure 6: Center computation

3 Three-Dimensional Inverse Problem

3.1 Test Functions

The three-dimensional inverse problem is to find the center (a, b, ¢) and radius
R of a single void D. Note that the Reciprocity Gap approach extends to the
three-dimensional case, for equation (4) still holds. The recovery procedure
is very similar to the two-dimensional case.

We will again employ the reciprocity gap functional, but with harmonic
test functions of the form

1
v(z,y,2) = (16)
VE=pP+ -9+ (z-s)?
with (p,q, s) a point outside 2. We parameterize the surface of the void D
as

T =a-+ Rsin¢gcosf
y=>b-+ Rsin¢sinf
z2=c+ Rcos¢
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where 0 < 6 < 27,0 < ¢ < 7. Note that surface measure is given by
dS = R®sing df. With this parameterization the (outward) unit normal
vector on 9D is

n = (sin ¢ cos 4, sin ¢ sin 6, cos ¢) (17)

The Reciprocity Gap Formuila (6) can now be written as

RG() = / - / " u(R,0,6) 2L B sin g dg db (18)
o Jo on
with
ov (p—a)singcosf + (¢ — b)singsind + (s — c)cos¢ — R
on [(a+Rsin¢cos€~p)2+(b+Rsin¢Sin9’q)2+(c+Rcos¢—?)5g;/2
1

We assume that R is close to zero, so that we can approximate (19) by using
the first term of the Taylor approximation about R = 0 which yields

Ov (p—a)singcosf + (q—b)singsind + (s — ¢) cos ¢
2 [(a=p)* + (b= g+ (c— 5)2)"

We now show how to use this to approximate the center of the void.

(20)

3.2 Locating the Center of the Void

To find the center of the void, note that (18) (with the approximation (20))
can be written as a dot product
-J
RG(v) = ﬁ-? (21)
r

where

r:<p_a7Q"—b7$—c>
J= <JscaJ337Jc>

u(R, 0, ¢)sin ¢ cos O R?sin ¢ dpdh

I

27
A
/27r

0

Jo =

™
™

JSC
'-]8 3

(
u(R, 0, ¢)sin ¢ sin OR*sin ¢ dpdf

1

S— S—

2m kg

u(R, 0, ¢) cos pR?sin ¢ dodh

0

S~

11




To simplify, (21) can be expanded to

RG(v) = BIC—O;E (22)

r]

with o the angle between J and r.

In recovering the center (a,b,c), we know J will remain constant since it
depends on the radius R and u(R, 6, ), neither of which vary for a single
input flux. The vector r will vary as the distance between the chosen point
(p,q,s) and the center (a,b,c) varies. Since RG(v) can be calculated at any
(p, q, s) outside Q2 of our choosing, we choose points (p, g, s) that form a sphere
larger than Q. Then it is easy to see from equation (22) that RG(v) = 0
exactly when J and r are orthogonal; these points will form a plane P that
passes through the center (a, b, c) of D. Thus we can easily identify this plane
P.

Strategically chosen points (p, q,s) can now reveal the exact center of D.
Assume that a point ¢* on the plane P (within §2) is the center of D. Choose
a point j a distance d from c¢* such that the line L; connecting j to c* is
orthogonal to P. Next, choose a point k at the same distance d from c* with
Ly at an angle 8 to L;. Choose a third point m a distance d from ¢* with
Ly, also at an angle 8 to L;. The points j, k, and m should be distinct from
one another. If ¢* is the true center, then equation (22) shows that following
relationship will hold

RG(k) _ RG(m)

RG() = cosfB  cosf

(23)

since J is orthogonal to P.

By testing equation (23) for “each” point ¢* in the section of P intersecting
§2, we can identify the true center. A plot of (23) for all ¢* will easily identify
the center of D. Figure 7 illustrates the relationship between the points
J»k,m and how to find the center. As in the two-dimensional case, it remains
to be shown that this approach recovers the center uniquely.

3.3 Determining the Radius R

A theorem for determining the radius of a void D is

12
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Figure 7: Method to Find the Center

Theorem: For any harmonic test function U(:::z?f,“y, z) = \/(z_P)2+(;_q)2+(z_8)2
with (p,q, s) outside of Q we have

RG(v) = 21 R* (Vuo(a, b, ¢) - Vu(a, b, c)) + O(RY (24)

where (a,b,c) is the center of a void of radius R and uy is the harmonic
Junction on Q with Neumann data g.

The following is the development of this theorem. To determine the
radius R, spherical coordinates are easiest to use. Let’s start by considering
the temperature u(z, y, z) as the sum of uy(z,, z) (the temperature with no
defect present) and a “small” adjustment function w(z,y, z). The function
up 18 harmonic on Q and w is harmonic on Q\D. Moreover, %‘ﬁl = g on Of);
as such, the function ug is known or computable.

For w, we note that w = u — ug and so

Ow

= =0 on 4Q (25)
Sw _ 8’&0
-8_1’1 = —8—5 on 0D (26)

We will “ignore” the boundary condition (25), and instead define w as that
function which is harmonic on R® which satisfies the boundary condition (26)
and decays to zero at infinity. Using the techniques in [1], one can show that
this introduces error of order O(R?), which will not affect our theorem.

On 8D, (26) can be written as —Vuy(z, y, z) - n, which is approximately
—Vug(a,b,c) - n+ O(R) assuming D is small. If we consider @ to be an ap-
proximation of w, the solution to AW = 0 in R*\ D with %011 = —Vug(a,b,c)-n
® R3Vug(a,b,c) n

2p?

w(p,0,¢) = (27)

13




with p as the radial component in spherical coordinates centered at (a,b,c).
Again, with the techniques of [1] we can show that w = @ + O(RY).
On 8D, p is the radius R, which makes (27)

T(R,6,8) = %Rvuo(a;b, ¢) . (28)

Next, we need to approximate ug(z, y, z) on &D. Doing so gives us,

uo(@, Y, 2) = uo(a,b, ) + RVuo(a,b,c) - n + O(R?), (29)

We can now write an approximation of u(z, y, z) on 9D using (28) and (29)
which yields

u = ug+w~ u(a,b,c)+ gRVuo(a, b,c)-n (30)

A similar approximation for g”ﬁ on 9D yields

gg = Vu(z,y,2) n =~ Vu(a,bc) n+O(R). (31)

Thus, substituting (30) and (31) into (6), we have to order O(RY),

27 ™
u@— dA = / / uo(a, b, c) + §RVu0(a, byc)-n ) (Vu(a,b,c) - n) R?sin ¢pdodh
op On o Jo 2
, (32)
The uy(a, b, c) term will fall out when integrated. The result is
RG(v) = 2nR* (Vug(a, b, ¢) - Vo(a, b, c)) (33)

up to an error of O(R*). This completes the proof of the theorem.
We can now locate a void D and determine its size in a three-dimensional
object.

3.4 Example

Let Q be the unit sphere in R3. Let g(#) = cos ¢ = z with the usual spherical
coordinates parameterization, which means that heat flows in the top and
out the bottom of Q. For this heat fux, u, (z,y,2) = 2. Let D be a spherical
void centered at (0.2,0.1,0.5) with radius 0.2. The temperature u(z,y, z) is

14




calculated from “measured” data (computed using Femlab, at total of 1300
on the surface of Q, on a 50 point longitudinal by 26 point latitudinal grid).

In Figure 8 the RG(v) values are calculated and plotted around a sphere
with radius 2. The plot shows the ¢ (latitude) axis, labelled by point numbers
1 to 26, and the @ axis, labelled by point numbers 1 to 50. The value of
RG(v) at the relevant point is indicated by elevation and color. Figure 8
shows that the set RG(v) = 0 forms a plane through Q at ¢ ~ 1.508. The
plane P is approximately z = 0.4363, which approximately passes through
the center of D. The RG(v) values are calculated at points j, k,m with
distance d = 3. Points k and m are chosen with B = m/4. Figure 9 shows
(23) holds at one point, (z,y) ~ (0.2421,0.0622). The center of D is now
known, (0.2421,0.0622, 0.4363). These values are now used to calculate the
radius R. When Vuyg is calculated at (0.2421,0.0622, 0.4363), the resulting
vector is (0,0,1). To evaluate for R, we take (r,q,s) = (1.2,1.2,1.2). The
radius is calculated to be R = 0.1725 using (33). Figures 10 and 11 show
the position of the recovered void relative to {2 and D.

4 Conclusion

The above method shows a circular/spherical void can be located and its
size determined from the boundary data in both two- and three-dimensional
objects. A few ways to continue this research would be to consider multiple
defects, multiple heat influxes, time dependence, cracks, and other types of
inclusions. It may also be possible to develop more “methodical” approaches
to the computations, and optimize them for more stable reconstructions.
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Figure 10: Q with Real void D

Figure 11: Q with Recovered void D

17




	Thermal Imaging to Recover a Defect in Three Dimensional Objects
	Recommended Citation

	tmp.1406730439.pdf.Jqea2

